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Non-defensive programming
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The Elevator Example
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Trace of the elevator execution
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Trace of the elevator execution

Level Action
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The door opens ONLY if requested!

I-Come-pressed \ \ stopListAdd(i);

i-Go-j \\ stop ListAd d(j);

I-0oor-open \stopListHas(l) \ stopListRem();

I-0oor-open \not{stopListHas(i)) '



Current supervisor configuration

exit



Property-aware supervisors







Possible actions to take
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What other versions of the code may be

o "Safe mode" version of the code

« The previous version of the code (before last patch)

» The previous (stable) implementation of the system



Summary of our idea

Existing Erlang linking mechanism is just a special case...

Erlang Our Proposal
the supervisor is only the supervisor is notified of all
notified of abnormal relevant events, checking
termination behaviour against properties

Not all errors lead to abnormal termination...
so force offending processes to fail-fast!



What tools are available for
monitoring?

There is a tool for Java systems called Larva...

...can it be adapted for Erlang? ... ELarva!
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Erlang system
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Don't throw away your tests!



"1 have to write formal properties!"

Truel... but you would probably already have them!



Don't throw away your tests!

QuickCheck Larva
QuickCheck automata



WORK IN PROGRESS



Centralisation

Tracing is centralised

... we have a bottleneck of incoming events

S do o6
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We wish to have decentralised tracing...



Centralised tracing
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A Cleaner Approach

Wrapping the worker inside a verifier

exit
Verifier wrap-around
" gatrace
i zzen el ,.Hkill
ﬁ

Supervisor mechanism unchanged!




Feedback

Questions, comments, suggestions...

...Thanks!





