Erlang - A monitoring-oriented programming language

Christian Colombo

joint work with
Adrian Francalanza, Rudolph Gatt, Kevin Falzon,

Andrew Gauci, Ruth Mizzi
University of Malta

Cr
It

Runtime
Monitoring

Execu
and

State space
explosion

Runtime
Monitoring

Separates logic
from exception
handling

Checks at
runtime

Links monitor
to system

Executes system
and monitor
concurrently

Non-defensive programming

Garbage to server

Non-defensive

server (the server does not
try to handle error)

Client

Response to client) _
l Client request is handled

by the monitor

Monitor

State space
explosion

Runtime
Monitoring

Separates logic
from exception
handling

Checks at
runtime

Links monitor
to system

Executes system
and monitor
concurrently

O

I at

1CY 1S
“rlang

Erlang
Systems

State space
explosion

Runtime
Monitoring

Separates logic
from exception

handling

Checks at
runtime

Links monitor

to system

Executes system
and monitor
concurrently

The Elevator Example

Type checking
must occur at
runtime

Monitor/Link

Concurrency is
natural in Erlang

Concurrency
worsens explosion
problem

Erlang
Systems

Supervision tree

.

State space
explosion

Runtime
Monitoring

Separates logic
from exception

handling

Checks at
runtime

Links monitor

to system

Executes system
and monitor
concurrently

The Elevator Example

Type checking
must occur at
runtime

Monitor/Link

Concurrency is
natural in Erlang

Concurrency
worsens explosion
problem

Erlang
Systems

The Elevator Example

g ...l) e |

Come

Eomel

IHED 01 SUOTIDE 3[qISs0q

The door opens ONLY if requested!

iCrm amzsnnd dhaina isAde T

Su- 0 LR
Trace of the elevatar execution Pl Ll
iCecrspen bomplootl s sle plistR=rafiy
Level Ac

iMaar epes el Al as(a s

siosiatadns areme-i1iadorg

Trace of the elevator execution

Level Action

W ON N N W H H H -

Come pressed
Door opened
Go 2 pressed
Door closed
Come pressed
Door opened
Go 3 pressed
Door closed
Door opened

Trace of the elevator execution

Level Action

L R S S R

Come pressed
Door opened
Go 2 pressed
Door closed
Come pressed
Door opened
Go 3 pressed
Door closed
Door opened

The door opens ONLY if requested!

I-Come-pressed \ \ stopListAdd(i);

i-Go-j \\ stop ListAd d(j);

I-0oor-open \stopListHas(l) \ stopListRem();

I-0oor-open \not{stopListHas(i)) '

Current supervisor configuration

exit

Property-aware supervisors

Possible actions to take

kill
&

restart

&
restart using

another versio
of the code

What other versions of the code may be

o "Safe mode" version of the code

« The previous version of the code (before last patch)

» The previous (stable) implementation of the system

Summary of our idea

Existing Erlang linking mechanism is just a special case...

Erlang Our Proposal
the supervisor is only the supervisor is notified of all
notified of abnormal relevant events, checking
termination behaviour against properties

Not all errors lead to abnormal termination...
so force offending processes to fail-fast!

What tools are available for
monitoring?

There is a tool for Java systems called Larva...

...can it be adapted for Erlang? ... ELarva!

Java system

Interesting

/ events

Specification
(Larva automata)

)

Aspect] Code

Monitor

N e“@/

Java system

Java system

\x'\'ie'i':";"'\“%
e

WO
.o cati®
o E{:"&‘\L <0 {0“5_19'\
A

aare?
Larva / N

\. e ‘f’bﬁqyo
1,

e
[#)
3
Q‘O,.

events

>

Aspect] Code Monitor
<

feedback

Erlang system

Interesting
/ events
EJQI,VQ
: Specification

(Larva automata)

&S
K o
/ é
/ Q)
\(ch’b Tracing Code
$ >

Monitor

Erlang system

events

>
Erlang system Tracing Code Monitor

<
feedback

Don't throw away your tests!

"1 have to write formal properties!"

Truel... but you would probably already have them!

Don't throw away your tests!

QuickCheck Larva
QuickCheck automata

WORK IN PROGRESS

Centralisation

Tracing is centralised

... we have a bottleneck of incoming events

S do o6
e- ‘-\b e- ; A

We wish to have decentralised tracing...

Centralised tracing

/'

Central Tracer — s

A Cleaner Approach

Wrapping the worker inside a verifier

exit
Verifier wrap-around
" gatrace
i zzen el ,.Hkill
ﬁ

Supervisor mechanism unchanged!

Feedback

Questions, comments, suggestions...

...Thanks!

