
Submitted to:
FESCA 2016

Extracting Runtime Monitors from Tests

Christian Colombo Mark Micallef Keith Spiteri
PEST Research Lab

Department of Computer Science
University of Malta, Malta

{christian.colombo | mark.micallef | keith.spiteri}@um.edu.mt

The effort and training required to specify runtime monitors in industry might be one of the factors
explaining the slow uptake of the technique. In this position paper, we discuss ways in which run-
time monitors can be extracted automatically from tests which are typically available with industrial
systems.

This brings with it a number of challenges, however, mainly because tests are typically focused
on checking very specific behaviour, rendering the checks practically unusable in a runtime verifica-
tion setting where the behaviour is user-directed rather than test-specified. In this context, we present
an experiment and preliminary results which should provide the basis for further future exploration.

1 Introduction

A large portion of the software development industry relies on testing as the main technique for quality
assurance while other techniques which can provide extra guarantees are largely ignored. A case in point
is runtime verification [3, 12, 5, 13] which provides assurance that a system’s behaviour is correct at
runtime. Compared to testing, this technique has the advantage of checking the actual runs of a system
rather than a number of representative testcases.

Based on experience with the local industry, one of the main reasons for the lack of uptake of runtime
verification is the extra effort required to formally specify the correctness criteria to be checked at runtime
— runtime verifiers are typically synthesised from formal specifications (e.g., Larva [5], JavaMOP [13]).
One potential approach to counteract this issue would be to use the information available in tests to
automatically obtain monitors [9]. The plausibility of this approach is the similarity between tests and
runtime verifiers: tests drive the system under test and check that the outcome is correct; runtime verifiers
also check that the outcome is correct but let the system users drive the system. Notwithstanding the
similarities, the fact that in runtime verification the users drive the system means that, while tests are
typically focused on checking very specific behaviour, runtime verification assertions need to be able to
handle the general case. This makes it hard to create runtime monitors (which are generic enough to be
useful) from tests, in particular due to the following aspects:

• Input: The checks of the test may only be applicable to the particular inputs specified in the
test. Once the checks are applied in the context of other inputs they may no longer make sense.
Conversely, the fewer assumptions on the input the assertion makes, the more useful the assertion
would be for monitoring purposes.

• Control flow: The test assertions may be specific to the control flow as specified in the test’s
context with the particular ordering of the methods and the test setup immediately preceding it.

• Data flow: The test may also make assumptions on the data flow, particularly in the context of
global variables and other shared data structures — meaning that when one asserts the contents of
a variable in a different context, the assertion may no longer make sense.

2 Extracting Runtime Monitors from Gherkin Specifications

• External state: A similar issue arises when interacting with stateful external elements (e.g., state-
ful communication with a third party, a database, a file, etc.): if a test checks state-dependent
assertions, the runtime context might be different from the assumed state in the test environment.

In view of these potential limitations, most tests do not provide useful information for monitoring
purposes (due to their narrow applicability). Thus, one approach would be to build sifting mechanisms
to select the useful tests while avoiding others which would add monitoring overheads without being
applicable in general. Unfortunately, deciding which tests are general enough for monitoring is typically
a hard if not impossible task to perform automatically since the assumptions the developer made when
writing the assertion are not explicit. One solution is thus to explicitly ask the tester for the assumptions
made. In practise this would however be impractical as the number of questions involved is significant:
at least one question for each issue mentioned above.

Another approach would be to target tests which are less specific — more abstract — by design:
While unit tests would typically be very low level and focused on a particular method, system level tests
perform a number of steps which potentially touch upon several modules. Due to their higher level of
abstraction, such tests make less implicit assumptions on the context in which they run. For example,
Gherkin [10] tests are typically implemented for generic input with no assumptions on the order in which
the tests are to be run.

In this position paper, we report on exploratory work which has been carried out both on converting
unit tests (Section 3) as well as converting Gherkin tests into runtime monitors (Section 4). Next, we
report preliminary empirical results (Section 5) and compare our approach to related work (Section 6),
concluding with future avenues of exploration in the final section.

2 Background

This section touches upon unit and system-level testing, particularly the jUnit and Gherkin tools, as well
as runtime verification, providing an overview to enable the reader to understand the work presented in
the rest of the paper.

Unit Testing Unit testing involves having suites of numerous test cases, each targeting different parts of
the system under test. It executes tests in an isolated manner with setup and teardown code invoked
before and after each test. The underlying idea is to simply test the behaviour of a particular module
and not the way it interacts with the rest of the system or its execution history. Therefore assertions
implicitly assume that each test is run on a freshly set up system and takes into consideration the
actual inputs used in the testcase. jUnit1 is the de-facto unit testing API for Java which runs test
cases from within the test environment.

Gherkin Gherkin [10] is a business readable, domain-specific language which lets users describe what a
software system should do without specifying how it should do it. Gherkin tests take on a so-called
Given-When-Then format as illustrated in Example 1 and the underlying concept is that a business
user can specify what is expected from a system using a series of concrete scenarios. Given some
precondition, When the user does something specific, Then some postcondition should hold true.

Example 1 Consider the following Gherkin scenario:

1http://junit.org

C. Colombo, M. Micallef & K. Spiteri 3

Scenario: Navigate to lab results page
Given I am on the doctors landing page
When I click on laboratory results
Then I should go to the lab results page

In this example, the client has specified one scenario as part of a feature on an online health
system: if laboratory results are clicked, then user should be taken to the lab results page.

While useful as a specification language, testers use tools such as Cucumber [6] to specify browser
interacting code (using tools such as Selenium2) for each step in the Gherkin scenario, called step
definition, resulting in having automatically executable tests: Each test will execute a sequence of
steps to make the (Given) precondition true, then carry out an action (When) and check that the
post-condition holds (Then). For the example above, the Selenium script would include opening
the doctors’ landing page, clicking on the laboratory results, and then checks that the browser ends
up in the lab results page.

Runtime Verification Runtime verification [3, 12, 5, 13] encompasses a set of techniques aimed at
generating monitors which observe the system behaviour at runtime and check that it adheres to
some specification.
To avoid the possibility of having erroneous monitors, these are typically generated automatically
from formal specifications such as finite state machines. We note that such specifications are
generic in the sense that one specification symbolically describes the expected behaviour of the
system under all circumstances rather than for any ones in particular.

Considering the above, we note that runtime verification monitors are essentially test oracles which
check user behaviour rather than specific testcases. This leads us to attempt to extract monitors from
tests in the sequel.

3 Converting Unit Tests into Monitors

In our initial experiments with converting tests into monitors, we started out considering jUnit tests. This
primarily consisted of parsing the tests to identify the sequence of method calls leading to the assertion,
and then translating this sequence into a pattern detected through aspect-oriented programming [11].
Whenever the pattern is matched, the same assertions of the test are executed.

Example 2 For example consider the following unit test which tests a withdraw method:

@Test
public void withdrawTest(){

double balance = 1000;
double amount = 250;
Account account = new Account();
account.setBalance(balance);
account.withdraw(amount);

assert(getBalance() == balance - amount);
}

2http://www.seleniumhq.org

4 Extracting Runtime Monitors from Gherkin Specifications

The resulting monitor would match sequences of setBalance and withdraw method calls (and binding
the parameters) and execute the assertion.

We note that while in this case the assertion is valid for any values of balance and amount, in real-life
execution traces, it is probably unlikely to find sequences where withdraw is preceded by setBalance.
Furthermore, while the approach just described could generate generic assertions for the above example
and similar ones where the assertion does not refer directly to literals, due to the implicit assumption
within typical unit tests, we could not find a way of avoiding posing the following questions needed to
testers:

Parameter generality: Is the parameter fixed for the assertion to hold? This question deals with
whether the test assertion requires that the parameter used in the test is fixed. If answered in the
affirmative, the monitor would be constrained to match (at runtime) the method calls leading up to
the assertion only if the parameter is the same as the one used in the test.

Transition generality: Do the steps leading to the assertion need to happen strictly in the order as
they appear in the test? When there are a number of method calls leading to the assertion, the
sequence adopted in the test is sometimes crucial for the success of the assertion. In cases when
this holds, the monitor has to ensure that the pattern matching requires the same method sequence.

State generality: Does the assertion only hold if starting from an initial system state? Unit tests gen-
erally assume a tear-down and setup after a previous test, giving the illusion that each test starts at
the initial system state. If the assertion takes this into consideration, then the monitor should only
perform the assertion if the pattern is matched starting from the initial system state.

Clearly, requiring testers to answer such questions would not make the approach too popular. Even
worse is the fact that unit tests are typically very specific by design. Therefore one would expect that the
answers to the questions above would typically be in the negative, meaning that the resulting monitors
would not be very useful as they would rarely match with actual runtime executions.

In what follows, we consider higher level tests which are implicitly more generic.

4 Converting Gherkin Tests into Monitors

As in the case with unit tests, the first concern when extracting monitors from tests is to identify the
pattern where the test assertion is applicable. In the case of unit tests, which are specified directly in
Java, the options are limited. However, in the case of Gherkin, we have additional options at our disposal
since the steps leading to the assertion are specified in terms of browser interactions. These interactions
are then forwarded as network requests to the backend, where these requests are finally serviced in terms
of a sequence of Java method calls. The advantage is that these three layers provide us with different
options through which we can identify the pattern leading to the assertion:

Browser interactions At this level, monitors will be concerned with the user’s direct interaction with
the web application including user actions such as button clicks and text entry.

Network interactions Monitoring network interactions deals with network requests such as HTTP re-
quests which are triggered as a result of user browser interactions.

Backend operations Finally, network requests trigger operations in the backend which deal with the
requests.

C. Colombo, M. Micallef & K. Spiteri 5

We note that the different points of observation constitute different levels of abstraction since for
example there might be various browser interactions which would trigger the same network request
(such as a login which might be triggered by going through the homepage or a sidebar). Similarly, there
might be different network requests which are handled by overlapping backend operations. (However, in
this work we only focus on the client-side rather than the backend, leaving the latter for future work.)

Example 3 Consider the following Gherkin scenario being executed and recorded:

Scenario: Navigate to lab results page
Given I am on the "doctors landing page"
And I have pending lab results
When I click on laboratory results
Then I should go to the "lab results page"
And I should see my pending lab results

Recording the scenario at the browser level results in something like the following:

GIVEN step
- Observed navigation to: ‘https://myhealth.gov.mt/doctors-landing-page’
AND step
- No recorded activity
WHEN step
- Observed click on: id=‘lab-results-button’
- Observed navigation to: ‘https://myhealth.gov.mt/results-page’
THEN step
- No recorded activity
AND step
- No recorded activity

Converting the above observation into a monitor would result in listening for navigation to the doc-
tors’ landing page, checking that there are pending lab results using the code written in the step definition
and subsequently, any click on the lab results should lead to the results page, once more executing the
corresponding code in the step definition.

If instead of looking at browser interactions, we look at network requests, we get the following
observations:

GIVEN step
- Observed request to: ‘https://myhealth.gov.mt/doctors-landing-page’
AND step
- Observed request to: ‘https://myhealth.gov.mt/search-lab-results?doctor=
"Borg"’
WHEN step
- Observed navigation to: ‘https://myhealth.gov.mt/results-page’
THEN step
- No recorded activity
AND step
- No recorded activity

We note that now certain observations are missing — the button click in this example — but on
the other hand other observations become visible, namely the search request to retrieve the lab results
from the server. Therefore, the monitor which is synthesised in this case, first observes navigation to

6 Extracting Runtime Monitors from Gherkin Specifications

the doctors’ landing page. When this is followed by a search request, then this means that the monitor
should check that the search results are next displayed on the following page.

Discussion
We note that while in this example the resulting monitor was useful, in other cases where the assertion is
more specific, the generated monitor might not be useful. For example consider the example:

Scenario: Given I am on any page in the domain
When I click on the login button
And I provide correct login credentials
Then I should be logged in
And I should be able to see my username

If the checking of the login credentials in the test assertion is specific to the test case, then the test-
to-monitor conversion cannot be fully automated.

5 Empirical Evaluation

To compare the two levels of abstraction in terms of the runtime overhead of the resulting monitors, we
carried out an empirical investigation.

The overheads incurred as a consequence of using a listener alongside the SUT were measured. The
measurements taken focused on two resources, memory usage and execution time latency. Memory
usage was calculated as the average memory used over a fixed span of time. This measuring technique
is considered to be typical in RV [8].

Table 1: Average Listener Memory Usage
Level Memory (MB)

Browser - Selenium IDE 3.5
Network - Firebug 5.5

On the other hand, in order to measure latency, an automated setup had to be used such that depen-
dencies on user input are eliminated (For example, time taken to hover mouse over button and clicking
it). The automated Cucumber scenarios used in the initial stages of monitor generation were considered
to be ideal, as they offer a fixed set of steps which can be easily timed. Furthermore, it was decided that
the initial launch of both the local server and the respective plugin (Selenium IDE and Firebug) were not
to be included in the resultant latency, as they can be considered as a one-time process, and hence do not
hinder SUT performance. A set of three scenarios were used involving navigation to a different page,
user log in, and adding an item to the shopping cart.

First, the scenarios were executed without launching the listener, thus producing a control execution
time. The process was repeated, this time launching the listener at the start of each scenario. The latency
is the difference in the time taken for the two different setups to finish execution, taking the average of
three runs for every test case. The results show that the Browser level listener corresponded to higher
latency. This can be attributed to the increased amount of captured events at this level of abstraction, thus
requiring more messages to be sent over the web sockets.

When observing the resultant overheads, one notes that for most web applications these would not
be detrimental to the overall system performance. Albeit reasonably low overheads, they may still be

C. Colombo, M. Micallef & K. Spiteri 7

Table 2: Execution Time Latency
Level Time Taken (s) Time Taken w/ Listener (s) Latency (s)

Browser - Selenium IDE 44.335 45.241 0.906
Network - Firebug 44.297 44.928 0.631

problematic in cases of web applications which require very specific response time thresholds. In such
cases, every millisecond might push the system over the specified limits, and thus the latency factor
should be treated with great care.

6 Related Work

Testing and runtime verification are intimately linked — the main difference being that tests drive the
system under test as well as give a verdict on the behaviour correctness, while runtime verification
observes and checks user behaviour. As such, assertions in tests can be as specific as the test cases are,
while in runtime monitor the assertion has to cater for all the possible user inputs. Therefore, in general
it is not possible to generate runtime verification monitors from tests. However, a subset of testing which
relies on a model to generate more varied test cases, known as model-based testing, is closer to runtime
verification due to it being more abstract.

The idea of translating tests into test models is not new: Arts et al. [2] attempt to generate QuickCheck
automata from EUnit tests, while in previous work [4], the authors show how to generate QuickCheck
automata from Gherkin specifications. Furthermore, work also exists which translates test models into
runtime verification: in particular, Pace and Falzon [9] show how QuickCheck automata can be converted
into runtime verification monitors.

This work connects the dots and attempts to bridge the gap between Gherkin specifications and
runtime monitors. However, while the end result sounds as if the two approaches might be piped together,
the approach presented in this paper goes directly from Gherkin to monitors by recording the test during
its execution.

7 Conclusions and Future Work

This paper presents and discusses the idea of generating monitors from tests. While the two are linked
since both check runtime behaviour, the checks available in tests might be too specific for the particular
test case. Following an initial exploration of generating monitors from unit tests, we turned our attention
to system-level tests — Gherkin tests in particular — which are generally more abstract. To convert
the test steps into the observable events, we recorded the test execution at different points: browser
interactions and network requests, and reported on the empirical results of both approaches.

We conclude the paper by noting a number of limitations and discuss possible solutions for future
exploration:

Privacy and encryption While recording browser interactions in a test environment, this might in prac-
tise not be possible to do when the system is used by a real system. A similar problem occurs when
monitoring network requests, particularly so since requests would be encrypted. Our comments
on this is that having monitors is not only useful for monitoring actual user traffic, but actually be
more useful during the exploratory testing phase when usually the tests carried out are still mostly
checked by hand.

8 Extracting Runtime Monitors from Gherkin Specifications

Test specificity As noted earlier, it might be impossible to generate useful monitors from some tests
simply because the logic in the test is too specific. There are a number of ways in which we are
trying to address this.

Domain specific language One way of having better tests is to ask/help the tester to write more
generic tests in the first place. Another way of looking at it would be to create help the testers
create monitors first, i.e., the checking part of the test, and then create a test for the monitor
using existing test generation techniques [1]. Later, upon deployment, the driving part of the
test would be discarded and only the monitoring part would be kept. However, we do not
wish to go down this route so that our approach is more easily taken up by industry.

Machine learning Another avenue we are exploring in this regard is to use existing language
inference techniques so that we attempt to generalise assertions automatically. In particular,
we are currently exploring tools such as Daikon [7] to extract invariants from test runs. The
challenge would then be to filter out invariants which are not likely to be interesting, or filter
out the results when such invariants are monitored.

We hope that through this work, we can bring about the advantages of monitoring systems without
the disadvantages of having to learn and use technologies which are not currently mainstream.

References

[1] Saswat Anand, Edmund K. Burke, Tsong Yueh Chen, John Clark, Myra B. Cohen, Wolfgang Grieskamp,
Mark Harman, Mary Jean Harrold & Phil Mcminn (2013): An Orchestrated Survey of Methodologies for Au-
tomated Software Test Case Generation. J. Syst. Softw. 86(8), pp. 1978–2001, doi:10.1016/j.jss.2013.02.061.
Available at http://dx.doi.org/10.1016/j.jss.2013.02.061.

[2] Thomas Arts, Pablo Lamela Seijas & Simon Thompson (2011): Extracting QuickCheck Specifications from
EUnit Test Cases. In: Proceedings of the 10th ACM SIGPLAN Workshop on Erlang, Erlang ’11, ACM, pp.
62–71, doi:10.1145/2034654.2034666. Available at http://doi.acm.org/10.1145/2034654.2034666.

[3] Séverine Colin & Leonardo Mariani (2005): Run-Time Verification. In: Model-Based Testing of Reactive
Systems, LNCS 3472, Springer, pp. 525–555.

[4] Christian Colombo, Mark Micallef & Mark Scerri (2014): Verifying Web Applications: From Business Level
Specifications to Automated Model-Based Testing. In: Proceedings Ninth Workshop on Model-Based Testing,
MBT 2014, Grenoble, France, 6 April 2014., EPTCS 141, pp. 14–28, doi:10.4204/EPTCS.141.2. Available
at http://dx.doi.org/10.4204/EPTCS.141.2.

[5] Christian Colombo, Gordon J. Pace & Gerardo Schneider (2009): LARVA — Safer Monitoring of Real-Time
Java Programs (Tool Paper). In: Software Engineering and Formal Methods (SEFM), IEEE, pp. 33–37.

[6] Ian Dees, Matt Wynne & Aslak Hellesoy (2013): Cucumber Recipes: Automate Anything with BDD Tools
and Techniques. Pragmatic Bookshelf.

[7] Michael D. Ernst, Jeff H. Perkins, Philip J. Guo, Stephen McCamant, Carlos Pacheco, Matthew S. Tschantz
& Chen Xiao (2007): The Daikon System for Dynamic Detection of Likely Invariants. Sci. Comput. Pro-
gram. 69(1-3), pp. 35–45, doi:10.1016/j.scico.2007.01.015. Available at http://dx.doi.org/10.1016/
j.scico.2007.01.015.

[8] Yliès Falcone, Klaus Havelung & Giles Reger (2013): A Tutorial on Runtime Verification. In Georg Kalus
Manfred Broy, Doron Peled, editor: Engineering Dependable Software Systems, NATO Science for Peace
and Security Series - D: Information and Communication Security 34, IOS Press, pp. 141–175. Available at
https://hal.inria.fr/hal-00853727. Summer School Marktoberdorf 2012.

http://dx.doi.org/10.1016/j.jss.2013.02.061
http://dx.doi.org/10.1016/j.jss.2013.02.061
http://dx.doi.org/10.1145/2034654.2034666
http://doi.acm.org/10.1145/2034654.2034666
http://dx.doi.org/10.4204/EPTCS.141.2
http://dx.doi.org/10.4204/EPTCS.141.2
http://dx.doi.org/10.1016/j.scico.2007.01.015
http://dx.doi.org/10.1016/j.scico.2007.01.015
http://dx.doi.org/10.1016/j.scico.2007.01.015
https://hal.inria.fr/hal-00853727

C. Colombo, M. Micallef & K. Spiteri 9

[9] Kevin Falzon & Gordon J. Pace (2013): Combining Testing and Runtime Verification Techniques. In: Model-
Based Methodologies for Pervasive and Embedded Software, Lecture Notes in Computer Science 7706,
Springer, pp. 38–57.

[10] Gherkin: Gherkin Wiki. Available at http://github.com/cucumber/cucumber/wiki/Gherkin.
[11] Gregor Kiczales (2005): Aspect-oriented programming. In: Software Engineering (ICSE), ACM, p. 313.
[12] Martin Leucker & Christian Schallhart (2009): A brief account of runtime verification. The Journal of Logic

and Algebraic Programming 78, pp. 293 – 303.
[13] Patrick O’Neil Meredith, Dongyun Jin, Dennis Griffith, Feng Chen & Grigore Roşu (2012): An Overview

of the MOP Runtime Verification Framework. International Journal on Software Techniques for Technology
Transfer 14, pp. 249–289.

http://github.com/cucumber/cucumber/wiki/Gherkin

	Introduction
	Background
	Converting Unit Tests into Monitors
	Converting Gherkin Tests into Monitors
	Empirical Evaluation
	Related Work
	Conclusions and Future Work

