
Runtime Verification for
Stream Processing Applications

Christian Colombo1, Gordon J. Pace1,
Luke Camilleri2, Claire Dimech1, Reuben Farrugia3, Jean Paul Grech1,

Alessio Magro4, Andrew C. Sammut3, and Kristian Zarb Adami4

1 Department of Computer Science, University of Malta
2 Ixaris System Ltd, Malta

3 Department of Communications & Computer Engineering, University of Malta
4 Institute of Space Sciences and Astronomy, University of Malta

Abstract. Runtime verification (RV) has long been applied beyond its strict de-
lineation of verification, through the notion of monitor-oriented programming. In
this paper we present a portfolio of real-life case studies where RV is used to
program stream-processing systems directly— where all the logic of the imple-
mented system is defined in terms of monitors. The systems include the process-
ing of Facebook events for business intelligence, analysing users’ activity log for
detecting UI usability issues, video frame analysis for human movement detec-
tion, and telescope signals processing for pulsar identification.

1 Introduction

Runtime verification (RV) [1] is a lightweight formal methods technique which allows
users to specify formal properties and through instrumentation and automatically syn-
thesised monitors, check that a system’s behaviour adheres to the properties. However,
RV has long been applied beyond this strict definition. In particular, the notion of veri-
fication is not the sole application of monitoring, especially with the rise of the notion
of Monitor-Oriented Programming (MOP) [9] which takes the approach further — ad-
vocating how a system’s functionality can be extended through the use of monitors.
The architecture of a system built in such a manner is shown in Fig. 1(a): The system,

Processor

Specification

Monitor System

Specification

Stream

Fig. 1. (a) MOP architecture; (b) Stream-processing architecture



2 C. Colombo et al.

interacting with the real world, generates events which are captured by the specification-
synthesised monitor, which in turn reacts to particular traces of events according to the
specification. However, the use of runtime monitoring techniques and tools has been
pushed even further by programming stream processing systems directly as monitors,
thus having the monitors generated from the specifications interact directly with events
generated from a real-world event sensor or event generator (which might also be a
computer system). The architecture of such a system is shown in Fig. 1(b), with the
monitor processing the stream of events directly. The key feature of this approach is
that if we see a stream as a total function from the discrete time domain N to the type
of values carried on the stream, a stream processing system is one which takes an in-
put stream, and produces an output stream5. In general, while the output stream does
not need to be produced in sync with the input stream, we expect that the values are
produced in sequence and not out of order6.

While RV can be seen as providing a convenient layer of abstraction for stream
processing applications, stream processing techniques can provide support in two chal-
lenging aspects of RV: reactivity and efficient computability.
Reactivity. Stream processing applications, such as sound or video processing, fre-
quently tolerate little delay between the input stream and the corresponding points in
the output stream. This is also a desirable property in several RV applications. The
problem, however, is that not all stream processors can have the output corresponding
to a particular point in time to be produced at that same time instant. Consider a pro-
cessor which encodes: o(t) = i(t + 2) — the output at time t is the input at time t + 2.
Clearly, without some form of temporal look-ahead, the output can only be produced
two time units late. This is an issue when future time logics are used to specify prop-
erties or behaviour of stream processors. For example, the interpretation of the LTL
formula XXa on a stream starting at time t, can only be known when the value of a
at time t + 2 is known. Similarly, when matching a pattern such as a fraudulent set of
transactions, the pattern may only be detectable after a significant part of fraudulent
action has been observed. This is the case with the intelligent video surveillance as well
as the radio telescope signal processing applications presented in the paper (Sec. 4 and
5). Conversely in the Facebook event processing application (Sec. 2), we consciously
choose a specification language which enables reactivity, since we would like to have
notifications triggered immediately.

Even if the specification language or logic allows for full reactivity (being able to
calculate the value of o(t) knowing the values of i(0) till i(t)), one may still adopt an
implementation which is not reactive. For instance, if we are given the specification
o(t) = E(i(t)), where E is a calculation increasingly expensive as the input parameter
grows, and also that large values of the input are statistically rare, we might adopt a
solution which, upon receiving a large input, will continue reading inputs while com-
puting the output in the background. This would result in a non-reactive implementation

5 A tuple of streams can be converted into a stream of tuples, which allows this view to cater for
multiple inputs and outputs.

6 Out of order generation can still be catered for, by caching the calculated outputs but out-
putting them only once their turn comes. Needless to say, this might induce additional space
requirements, though.



Runtime Verification for Stream Processing Applications 3

even if a reactive one was possible — with the advantage of allowing a more frequent
input sampling rate.

Finally, in the case of outputs whose calculation is an approximation which can be
refined as more inputs are received, the loss of reactivity corresponds directly to the
level of accuracy one desires.

In view of these issues, non-reactive stream processing can range from ones which
(a) compute their output as soon as possible (‘best effort’ systems), e.g., video surveil-
lance (Sec. 4) benefits from reporting matched patterns as soon as it is possible; and
ones which (b) can take even longer than strictly required by the specification language
(‘late’ systems) e.g., telescope signal processing and user profiling (Sec. 3) do not re-
quire the verdict with particular urgency.
Efficient computability. In the context of stream processing, we say an application is
efficiently computable if computing the output stream never requires more than a fixed
length of history to be recorded. Contrast the stream processor o(t) = i(t − 1) + i(t)
which requires a history buffer of size 1, with the stream processor o(t) = i(t div 2)
which requires increasing memory as time progresses. This is crucial given the amount
of data one would expect to process in the applications presented below, particularly if
reactivity is required without slowing down input reading rates. In the case of the tele-
scope signal processing system (Sec. 5), we used statistical methods which do not need
to store history. For the Facebook event processing application (Sec. 2), the length of
the history depends on the user-defined properties being monitored, but with the guar-
antee that for any given property, one can statically decide the (maximum) buffer size
required. Finally, in the case of the video surveillance system (Sec. 4), the history bound
depends on the maximum size of a continuous video sequence. In our implementation,
the video sequence resets whenever no persons are observed for a number of frames,
or if the number of frames exceed a user-specified bound. While ideal, efficient com-
putability might not be necessary for a number of RV applications: e.g., the user web
interface profiling system (Sec. 3). This is particularly so, given that it is effectively
creating a statistics database based on the observed input.

2 Facebook Events Processing

With ever increasing information available in social networks, the number of businesses
attempting to exploit it is on the rise, particularly by keeping track of their customers’
posts and likes on social media sites like Facebook. Whilst APIs can be used to auto-
mate the tracking process, writing scripts to extract information and processing it re-
quires considerable technical skill and is thus not an option for non-technical business
analysts. On the other hand, off-the-shelf business intelligence solutions do not provide
the desired flexibility for the specific needs of particular businesses.

One way of allowing a high degree of flexibility while providing an off-the-shelf
solution would be to present a simple interface based on a controlled natural language
(CNL) [8] which would allow a business intelligence analyst the flexibility to express
the desired events for notification. These would in turn be automatically compiled into
Facebook monitors without further human intervention.



4 C. Colombo et al.

Based on interviews with two business analysts, such a CNL should allow the user
to specify patterns such as: (i) Create an alert when the service page has a post and the
post contains the keywords fridge, heater, or freezer. (ii) Create an alert when my page
has a post and the post is negative and the post has 10 likes.

Once a prototype CNL was designed, it could have potentially been compiled into
any executable programming language. With the aim of keeping the translation as sim-
ple as possible, we translated the CNL into an intermediary specification from the RV
domain. Translating our CNL into the formal specification accepted by the RV tool
Larva [5] and using a simple adapter to present relevant Facebook events as method
calls in the control flow of a program, we were able to detect Facebook behaviour
through RV software. Results [4] suggest that users indeed found the CNL manageable
although UI support could facilitate writing CNL sentences further.

3 Profiling User Web Interfaces

User interface designers try their best to improve the user experience to facilitate user
productivity. However, the ways in which users end up using the product (e.g., the se-
quence in which a number of features are used) might be difficult to predict in practice.
Furthermore, new features are regularly deployed with the possibility of unforeseen ef-
fects such as performance degradation. Adding profiling logic within the system code
to gather such statistics would typically lead to cluttered code. In such a scenario, RV
was convenient due to its separation of concerns: having the profiling logic handled by
the monitor without affecting the live system.

This approach has been successfully used in the context of Ixaris System Ltd7, a
transaction processing software company, where the effectiveness with which the users
were able to use the interface needed to be evaluated. A database was available with
several months of logs of user activity: which users are logged in, which activities are
being carried out, which currency is being used, whether the user is a first time visitor
(and if so whether through a referral or a particular campaign), etc. Subsequently, we
defined the possible paths of user activities in terms of a finite state machine (FSM)
and by running the FSM over the logs, statistics and information could be gathered that
otherwise would have had to be implemented into the production code.

The statistics gathered through RV help us identify paths in the system that need
performance improvements before clients do and RV reports serve as proof that service
level agreements are met. In the future, we aim to investigate ways of processing and
presenting statistics in real-time without compromising performance.

4 Intelligent Video Surveillance

Video analytics has become an important feature in security systems particularly in
public areas or buildings with controlled entry or exit, or where disturbances can be
caused. For example motion tracking of a crowd in a football stadium may detect the
start of a commotion, enabling the security personnel to act fast.

7 http://www.ixaris.com



Runtime Verification for Stream Processing Applications 5

For these purposes, image processing and computer vision techniques [11, 2] have
been developed with success, typically starting by identifying human body parts such
as the head, the hands, the legs and so on, then tracking these parts, and subsequently
attempting to identify human activity based on the movement of the individual parts.
However, these techniques do not perform well in low frame rate which is the case in
our case study — a prominent public building in Malta (which cannot be named). In
this context, we are employing RV to specify high-level rules complementing the infor-
mation provided by low-level features to suppress false positives: In the area of image
processing, it is well known that it is virtually impossible to correctly identify body parts
at 100% accuracy — particularly, if images are taken from poor-quality videos. RV has
thus been used to specify high level rules which consider multiple subsequent frames at
a time: filtering out any detections which are not found in more than one frame or prop-
agating detections within a frame which would otherwise have been missed. This has
been achieved by specifying a number of rules such as “humans can only start or stop
appearing near one of the doors” or a “human can only move a limited distance from
one frame to the next” and applying them on frames through an RV-synthesised monitor.

The work is still ongoing but the results achieved so far are promising: when apply-
ing the monitor to remove false positives, we obtained a 100% recall and 91% precision.
In the future we hope to specify a domain-specific language to enable non-technical end
users to express custom surveillance rules.

5 Radio Telescope Signal Processing

Whilst for many years the visible light was the only source of information used to
discover the universe through optic telescopes, the discovery of the electromagnetic
spectrum has provided a wide range of waves which can shed more light about our
universe. Amongst these are the radio waves, which through the use of radio telescopes
have enabled us to learn more about the universe.

The LOw Frequency ARay (LOFAR) is a radio telescope built and operated by the
Netherlands Institute for Radio Astronomy (ASTRON) able to deliver around 3Gb/s
of data. To detect pulsars8 within this data on-the-fly, we have employed RV to process
radio telescope signals. Due to the pulsars’ periodic nature, we could detect the beam of
light by keeping track of the standard deviation of the signal. The monitoring tool used
was LarvaStat [3], since it provides direct support for gathering statistics. In particular,
we made extensive use of LarvaStat’s notion of point statistics to provide a context,
maintain the running standard deviation while simultaneously evaluating the next value.

To evaluate the precision of our approach, we compared our results to those of a
standard Fast Fourier Transform (FFT) [10] technique. We observed that our approach
is not as precise: 1.01% error as opposed to 0.02%. However, the advantage of us-
ing the runtime monitoring technique is that while the time complexity of the FFT is
O(n · log2(n)), ours is O(n). Furthermore, the FFT processes data in chunks, requiring a
suitably-sized buffer and a corresponding delay for detection. This is not the case with
our approach which is able to process the data on-the-fly. In terms of performance, the

8 Pulsars are rapidly spinning neutron stars which emit regular electromagnetic radiation beams.



6 C. Colombo et al.

monitoring approach did one order of magnitude worse than the FFT but this may be
mainly due to the fact that the former is implemented in Java while the latter is in C.

6 Conclusion

This is not the first time that the connection between stream processing and RV has been
shown with tools such as LOLA [7] and a Larva flavour [6] which accepts Lustre as a
property specification language. The contribution of this paper is to highlight different
case studies in which RV has proved useful in alleviating the challenges of the domain
through the abstraction it provides. Returning to the stream processing categories intro-
duced in Sec. 1, the presented applications are categorised below:

Reactivity Non-reactive
best effort late

Efficient Facebook Surveillance Telescope

Non-efficient Profiling

We note that with the exception of profiling where the monitor is used to essentially
populate a database, efficiency is a common property of monitoring applications dealing
with large volumes of data. Another observation is that if monitoring is to be reactive,
then it would be undesirable to have non-efficiency. Therefore, one would not typically
expect to have applications which fall in the bottom-left quadrant.

We hope that this study serves as an inspiration to the wide ranging usefulness of
RV techniques and, consequently, further take-up in industrial settings.

References

1. Runtime Verification conference, yearly LNCS proceedings since 2010
2. Benfold, B., Reid, I.: Stable multi-target tracking in real-time surveillance video. In: Com-

puter Vision and Pattern Recognition (CVPR). pp. 3457–3464. IEEE (2011)
3. Colombo, C., Gauci, A., Pace, G.J.: Larvastat: Monitoring of statistical properties. In: RV.

LNCS, vol. 6418, pp. 480–484. Springer (2010)
4. Colombo, C., Grech, J.P., Pace, G.: A controlled natural language for business intelligence

monitoring. In: NLDB (2015), to appear
5. Colombo, C., Pace, G.J., Schneider, G.: Larva — safer monitoring of real-time java pro-

grams (tool paper). In: Seventh IEEE International Conference on Software Engineering and
Formal Methods (SEFM). pp. 33–37. IEEE (2009)

6. Colombo, C., Pace, G.J., Schneider, G.: Resource-bounded runtime verification of java pro-
grams with real-time properties. Tech. Rep. CS2009-01, Department of Computer Science,
University of Malta (2009), available from http://www.cs.um.edu.mt/~reports

7. D’Angelo, B., Sankaranarayanan, S., Sánchez, C., Robinson, W., Finkbeiner, B., Sipma,
H.B., Mehrotra, S., Manna, Z.: LOLA: runtime monitoring of synchronous systems. In:
TIME. pp. 166–174. IEEE (2005)

8. Kuhn, T.: A survey and classification of controlled natural languages. Computational Lin-
guistics 40(1), 121–170 (2014)



Runtime Verification for Stream Processing Applications 7

9. Meredith, P.O., Jin, D., Griffith, D., Chen, F., Roşu, G.: An overview of the MOP runtime
verification framework. STTT 14, 249–289 (2012)

10. Rao, K.R., Kim, D.N., Hwang, J.J.: Fast Fourier Transform - Algorithms and Applications.
Springer, 1st edn. (2010)

11. Rodriguez, M., Laptev, I., Sivic, J., Audibert, J.Y.: Density-aware person detection and track-
ing in crowds. In: Computer Vision (ICCV). pp. 2423–2430. IEEE (2011)


