
Interest beyond Violation: On Points-of-Interest
in Runtime Verification

Christian Colombo1, Gordon J. Pace1, and Gerardo Schneider2

1 Department of Computer Science, University of Malta
{christian.colombo | gordon.pace}@um.edu.mt

2 Department of Computer Science and Engineering,
Chalmers and the University of Gothenburg

gerardo.schneider@gu.se

Abstract. Many formal verification techniques are concerned with com-
paring system behaviours with formal specifications. Although runtime
verification has followed this path (comparing observed traces against for-
mal properties), it has traditionally been burdened with another task —
that of raising a flag when a violation is detected. Different approaches
can be found in the literature: identifying the earliest such instance,
identifying all instances, identifying instances where (potentially future)
violations are inevitable, etc. We argue that the lack of a clear distinc-
tion between the notion of system correctness and the hard-wired means
of identification of points when violation is somehow detected, conflates
the notions of points-of-detection and points-of-violation. Frequently, the
point at which a point-of-violation may be detected is independent of the
point of interest itself, and also independent of the point-of-reaction if a
corrective measure is needed. We observe that this distinction becomes
more salient in some cases, such as deontic specification languages, which
may identify notions such as permission, and in the case of multi-agent
systems, where the notion of blame is essential. Using practical and var-
ied examples we motivate why these limitations are significant for the
field of runtime verification.

1 Introduction

Traditionally, runtime verification has emerged from verification as a technique
which checks a single trace against a specification, rather than all possible be-
haviours of a system for potential violation of the specification. The question
that verification asks is: “Does a system behaviour satisfy/violate a given speci-
fication?” Transposed to runtime verification, the question changed to: “Does a
particular finite system trace satisfy/violate a given specification?” (e.g., [12]).

It was not only the meta-level question that the area of runtime verification
inherited from model checking, but also the specification language, i.e., LTL,
whose semantics focused on infinite traces rather than finite ones. This was fine
if the meta-level question was a simply one of yes/no. However, as the field of
runtime verification developed, researchers became also interested in answering

2 C. Colombo, G. J. Pace and G. Schneider

the satisfaction/violation question as early as possible. This is when various
finite prefix and past semantics (and verification algorithms) of LTL started to
emerge (e.g., [1]). Given that LTL was not born with finite traces in mind, the
new semantics had to deal with awkward situations such as how to deal with
formula fragments which refer to future, yet unseen, parts of a trace (resulting in
weak and strong versions of the same operators). While there have been several
competing proposals in this respect (see [2] for a comprehensive comparison
of LTL semantics used for runtime verification), what is common across all of
them, is that they try to answer the basic yes/no question as early as possible in
the trace, with some interpretations also including the earliest detection of the
possibility of a violation.

In parallel, one also saw a number of finite-trace-based specification languages
using past (as opposed to future) time modalities. Being trace-based ensured a
direct mapping between the specification and the verification code, and being
past-oriented enabled more efficient and incremental algorithms which processed
events as they came in with no need for taking into account look-ahead or ad-
ditional memory. Eventually, stream-native specification languages started to
emerge (e.g., [7]), avoiding the need to have stream-based interpretations retro-
fitted onto trace-based logics.

The above came with the added benefit that rather than doing the best ef-
fort to answer the yes/no question as early as possible, the point in the trace at
which this becomes possible is clearly defined. This eventually made possible a
new runtime verification meta-question: “Which is the point in the trace at which
we can answer yes/no?” Note that this is a major departure from the original
question expecting a boolean answer because the answer now is a precise trace
position. Another subtle difference is that while the earlier question was han-
dled in terms of a three(or more)-valued logic to handle satisfaction/violation,
this new question inherently ignores this distinction and simply raises a flag at
a particular point in time. It is then up to the runtime verification engineer to
interpret this as a satisfaction or violation depending on the context. This is how
monitor-oriented programming (MOP) [4] came to be: having access to precisely
identifiable points in the trace enables the programmer to use them to trigger
custom routines. Note that this was not possible without precise semantics fo-
cusing on the when rather than the yes/no. These precise points in the trace
which answer the when meta-question is what we call points-of-interest.

Once runtime verification becomes about identifying points-of-interest, the
question of what such points represent is pushed to a higher level of abstrac-
tion. Traditionally, when talking about runtime verification, points-of-interest
has been mainly points-of-violation or points-of-satisfaction. However, the idea
behind MOP is to use points-of-interest as points-of-trigger whatever that trig-
ger signifies to the system engineer. We believe that this idea has not yet been
explored to its full potential for the area of runtime verification.

Note that the when question, seen from the new perspective we are arguing
here, is not only relevant for the (dynamic) verification of the specification, but it
also affects the specification itself. Indeed, to handle the above question, we may

Identifying Points of Interest 3

need richer specification languages than LTL. Moreover, what is to be specified
also changes: we may now be more explicit about what we want to specify,
to detect different points-of-interest as the ones we mentioned, and beyond (as
explained below).

Why is the notion of points-of-interest beneficial in the context of system
specifications and their verification at runtime? First, doing away with the vio-
lation/satisfaction question and focusing on points-of-interest opens the door to
several other specification languages such as finite state machines and regular
expressions which are just as adequate to identify points-of-interest in a trace.3
Second (and more importantly for this paper), this approach enables us to cre-
ate another layer on top of points-of-interest to handle specification complexities
that would otherwise be difficult to manage. Consider the following specification
from a financial transaction system: “No money transfers can be carried out
by a blacklisted user” and its corrective action: “During the daily reconciliation
process, illegal transfers should be undone”. Note that the first statement identi-
fies points-of-interest (which we could call the points-of-violation) where illegal
transfers occur. However, the points-of-interest where this is handled comes later
during reconciliation (we could call those points the points-of-reaction).

Specifying points-of-interest (whether to signify violation, satisfaction, reac-
tion, or something else) can be done with any specification language of choice
as long as it can answer the question of when to raise a flag when monitoring
a trace. Naturally, this brings up the issue that the point-of-interest might not
be detectable exactly at the same time as it occurs (depending on the under-
lying semantics of the chosen specification language, the monitoring algorithm,
etc). In many cases the two coincide as in the previous example where the vio-
lation is detected as it occurs, i.e., upon the first transfer carried out after the
user is blacklisted (unless the user can be blacklisted retroactively!). However,
the point-of-detection may occur after the point-of-violation. For example con-
sider the statements: “If more than 10 transfers are attempted in 5 minutes,
these should be considered fraudulent” and “No fraudulent transfers should be al-
lowed.” To detect the first transfer as fraudulent, one would need to observe the
following nine. Therefore, the point of a pattern-based fraud detection usually
occurs much later than the initial actions of the fraud itself. Note that both
points are relevant, particularly if in response to the fraud one would need to
undo the transfers, i.e., all the transfers between the point-of-violation and the
point-of-detection.4

The point-of-detection may also occur before the point-of-violation. Consider
the statements: “A blacklisted user must remain blacklisted for at least one day”
and “A user must pay transfer fees within an hour.” In this case, the detection
of violation can be detected before it happens, i.e., the moment a user is black-
listed (and as a consequence is not allowed to perform payments) with pending
transfer fees. This idea has been well studied as runtime enforcement (e.g., [8]),

3 Also note that with this approach, a single trace can have any number of matches.
4 Reactions which undo—literally or in some abstract sense—previous system actions

due to late monitor detection have been studied in terms of compensations [5].

4 C. Colombo, G. J. Pace and G. Schneider

possibly enabling timely intervention (automatic or not) to avert a violation,
e.g., processing fee payment automatically on behalf of the user.

Bringing the above together, by detaching runtime verification from thinking
simply in terms of satisfaction and violation, we open up possibilities of dealing
more easily with real-world complex specifications: While the point-of-reaction
must necessarily occur at the same time or after the point-of-detection, the
timing of the occurrence of the point-of-violation is independent of these two
(it can occur before, at the same time, or after any of the above). All these
ingredients can help manage system specifications and their interaction with
runtime verification engineering. This shall be further elaborated and exemplified
in the rest of the paper.

In Section 2 we discuss how, in various runtime verification contexts, if we
need to react to a specification being violated, we may need to separately specify
the corresponding point-of-reaction. In Section 3 we discuss how this requirement
is particularly salient for certain logics, particularly deontic ones. We provide two
case studies to corroborate our points in Section 4; we conclude in Section 5.5

2 Point and Temporal Properties

To help illustrate the distinction between different types of points-of-interest, we
will show the way the specification language may impact the analysis. Through-
out this section, we will model an observed trace of a monitored system over an
alphabet as a finite sequence of boolean valuations of the alphabet, representing
which states hold at each point in time.

Point Properties. Property languages which exclusively care about a single
point in time (the present) do not typically make any distinction between the
point-of-violation and the point-of-detection.6 Such point properties, typically
encoded as inline assertions, do not look into the history or the future parts of
the trace but simply considers the current snapshot of the system. For example,
consider the property: “If a user is logged in, then they may not be blacklisted”.
Then, access to the valuations of states logged-in and blacklisted (respectively
true if the user: (i) is logged in and, (ii) is blacklisted at that point in time)
suffices to check that the latter is never true when the former is false. In this
way, a violation is detected at the same point in time it occurs, i.e., the point-
of-violation and the point-of-detection coincide.

5 We will not use any formal (syntax-specific) notation in the rest of the paper with
the exception of regular expressions and Boolean logic connectors. So, we will for
instance write globally and finally when referring to LTL formulae; similarly we will
write obligation and forbidden instead of using the deontic logic modalities.

6 In fairness, one can consider situations in which the detection computation may be
deferred for later, e.g., during periods of high load on the system. However, we will
only assume online and synchronous runtime verification here.

Identifying Points of Interest 5

Regular Expressions. Regular expressions have been used as a specification
language for runtime verification [14, 13], for instance by specifying when a vio-
lation occurs. Consider the following example specification:7

(login
∗
; login; logout

∗
; logout)∗; login

∗
;write

This property matches any trace which ends with write outside of a login-
logout cycle. By definition, the semantics of such a regular expression would
match any finite trace of past observations, i.e., it does not make references to
the future (unseen) parts of the trace. Where the point-of-detection occurs in this
case is obviously when the write occurs. However, where the point-of-violation
occurs is debatable, e.g., one can equally argue that it is the write at the end that
should not have appeared, as one can argue that the previous event should have
been a login. The regular expression simply states the inadequacy of the trace
as a whole, rather than identifying the point in which the cause of the violation
occurred. Even more so, when the point-of-reaction should trigger would depend
on how the violation will be addressed, e.g., by suppressing the write (in which
case the point would be the last event in the trace) or by returning an error the
next time a read takes place (assuming that the out of order write would have
corrupted the file).

One can handle these issues by writing separate regular expressions for the
different points-of-interest, or by annotating the regular expression in a manner
to mark where the different points-of-interest would have occurred. Unless we
limit the regular expression specification to match only with the shortest pre-
fix, these solutions would need further information since the different points-of-
interest specifications may match multiple times, thus making it unclear which
point-of-detection would correspond to which point-of-violation and point-of-
reaction.

Linear Temporal Logic (LTL). Over the years, LTL has been studied exten-
sively in the context of runtime verification and for this reason several fragments
have been considered along with different runtime verification algorithms. It is
worth noting that the standard LTL semantics on infinite traces require engi-
neering finite prefix trace matching against an LTL property. Some properties
are not monitorable (i.e., either violation, satisfaction or both are not decidable
against any finite prefix of a behavioural trace—see for instance [9, 11, 15] and
references therein). However, even limiting oneself to a decidable fragment of the
logic, one runs into the need for verification algorithms to monitor and verify an
LTL formula.

Given the standard semantics of LTL are over an infinite trace, issues of
points-of-violation become even more problematic. For a simple safety formula
such as globally(¬(login∧blacklist)) many would agree that the points-of-violation
are the points in time in which the invariant does not hold. However, even
if we only consider safety formulae, a property such as globally(blacklist ⇒

7 We use a to match any event other than a.

6 C. Colombo, G. J. Pace and G. Schneider

¬next(transfer)) (“A blacklist event is never immediately followed by a trans-
fer”) may have different interpretations, as explained in what follows.

On one hand, one may argue that the point-of-violation occurs when black-
list happens, to be followed afterwards with a transfer, even if the moment of
transfer would be the point-of-detection. However, one can argue that this for-
mula is logically equivalent (using past time operators) to globally(transfer ⇒
¬previous(blacklist)) (“A transfer event is never immediately preceded by a black-
listing”), and a natural interpretation of this formula is that the point-of-violation
is the moment when transfer occurs, despite the fact that blacklist had just hap-
pened. With this interpretation, the point-of-detection would coincide with the
point-of-violation. This highlights the failure of LTL to clearly delineate where
violations occurred. An appropriate point-of-reaction would be equally unclear
if we were to base our analysis simply on the correctness specification.

In this example, the first interpretation results in a delay of one time unit
before detecting that a violation occurred. However, LTL allows for properties
with arbitrarily long delays, including unbounded ones: globally(delete-user ⇒
¬finally(transfer)) (“After deleting a user, no transfers are possible”). Under an
interpretation that takes the moment of delete-user to be the point-of-violation
(if there is a transfer some time in the future), the runtime verification algorithm
may have to wait arbitrarily long before being able to detect this.

Such formulae make certain violation rectification reactions potentially un-
feasible. For instance, the use of compensations [5] to ‘undo’ actions between the
point-of-detection and the point-of-violation may result in a memory leak as the
accumulated compensation action grows as the delay increases. This highlights
the frequent need for explicit annotation of points-of-interest when runtime ver-
ifying LTL formulae.

3 On Norms

After reviewing two traditionally common specification formalisms, in this sec-
tion we turn our attention to deontic logic. This brings two significant differ-
ences: firstly, deontic specifications natively include reactive clauses, i.e., what
happens when a specification is violated; secondly, such specifications are fre-
quently multi-party and/or multi-locality, such that the question of when the
violation happened is enriched to also include by whom and possibly even where.
These additions serve to further highlight the decoupling of points-of-interest,
not only temporally but also in terms of responsibility and locality, i.e., the vio-
lation might occur in country C by party P at time t, but is detected by party
Q in country D at time t′ while the reaction is carried out by party R in country
E at time t′′. Indeed, such scenarios are typical in applications such as smart
contracts.

Identifying Points of Interest 7

For the intent of this paper, a normative specification (or contract8) will be
taken to mean a specification of a system consisting of a set of clauses, rules,
norms, regulations, or any kind of statement that could be understood as having
a prescriptive meaning, that is to stipulate obligations, permissions and prohi-
bitions of the different parties involved as well as penalties to be paid in case
of violations. We will use the term normative system (or regulatory system) to
refer to a system formed by a set of parties (or agents) whose behaviour, and
interaction, should satisfy (or be compliant with) a normative specification.

One standard way to formalise normative systems is by using deontic logics
[10, 16]. Many variants exist, but what is common in all those logics is that they
are able to represent obligations, permissions (rights) and prohibitions. Many
have argued that a deontic logic should be able to talk about potential violation
of a normative specification, and thus be able to represent concepts such as
contrary-to-duty clauses (CTDs) and contrary-to-prohibition clauses (CTPs)—
what new norms come into force when an obligation or a prohibition is violated.

An important aspect of normative systems is the presence of many parties
(or agents), being directly affected by the underlying normative specification.
Those parties are then engaged in an interaction which is regulated by the nor-
mative system, meaning that each party has its own obligations, permissions
and prohibitions, as well as stipulated penalties in case of violations.

It is worth noting that permissions (rights) cannot be violated by the party
who can exercise them, but only by the other party if the latter stops the first
party from doing so. Indeed, the right of one of the parties of the contractual
agreement almost invariably introduces an implicit obligation on the other party
to allow the first one to exercise their right. For instance, a (naïve) clause between
a bank and a client might stipulate that “The client has the right to withdraw
money at any time from any ATM in the city”. The client’s right would be
violated by the bank in case at a given time the client tries to withdraw money
when an ATM is out of cash. As the clause was phrased, the bank would thus
be liable for the client’s unsuccessful attempt to exercise her right.

At face value, obligations and prohibitions act in a manner similar to normal
requirements in a logic, e.g., a prohibition from ever performing a particular
action x is similar to the LTL formula globally(¬x). However, there are a number
of caveats to this: (i) given the participation of agents, the notion of blame is
important in deontic logics; and (ii) in the presence of CTDs and CTPs, violation
of an obligation or prohibition may trigger new norms (despite the fact that not
violating the top level norm would still be preferable). In view of these notions,
the idea of point-of-violation (or contract breach) and point-of-detection become
even more crucial.

Consider the following deontic requirement:

globally(john:transfer ⇒ next(forbidden(peter:deny-service)))

8 The term contract has been extensively abused to mean different things in computer
science, few of which share much with the legal sense of the term. In contrast, here
it is being used very much in the sense used in law.

8 C. Colombo, G. J. Pace and G. Schneider

(“Whenever John performs a transfer, Peter is then prohibited from denying the
service”). Unlike the similar LTL formula we saw in the previous section, it is
clear that the point-of-violation now lies at the moment Peter denies the service.
The past-time dual would be interpreted differently:

globally(peter:deny-service ⇒ ¬previous(permitted(john:transfer)))

(“Whenever Peter denies the use of the service, John would have previously not
been permitted to perform a transfer”). Although the two requirements may ap-
pear to be equivalent in terms of allowed/permitted/denied actions, there is a
difference concerning blame. Indeed, in the latter, the blame seems to be on John
for transferring before Peter denied the service, and the point-of-violation and
detection are now unclear.

The traditional equivalence (duality) between past and future time logics also
breaks down in the context of contracts which may, upon agreement between the
parties, be cancelled. Consider the two statements below:9

Contract 1: “If John uses the service, then he is obliged to pay in 7 days”:

globally(john:use-service ⇒ next7(obligation(john:pay)))

Contract 2: “John is obliged to pay if he used the service 7 days ago”:

globally(previous7(john:use-service) ⇒ obligation(john:pay))

The two appear to be identical from a temporal logic perspective. However,
consider a situation in which (i) John uses the service on day 1; but (ii) the
parties decide to call off the contract on day 2. In the case of contract 1, it
can be argued that on day 1, an obligation to pay was enacted for day 8, and
since the action which led to this took place while the contract was in force,
then the obligation remains active. In contrast, in contract 2, the obligation is
never enacted since the predicate: “John used the service seven days ago” never
held during the lifetime of the contract. Clearly, the two have different points-
of-interest, and would require different points-of-reaction (and different actions
triggered at such points).

Let us consider a more complete example to highlight points-of-interest dur-
ing execution traces of contracts. Let us assume a scenario in which participants
can associate into pools to download music from a repository, with a global
contract governing the repository provider and the participants:

1. Every member of the client pool has the right to download up to 3 songs per
week.

2. A client pool may not download more than 7 songs per week.
3. Any individual song can only be downloaded up to twice per week.
4. If any of the above are violated, any other download from any member of

the pool would incur a payment which must be performed within 3 days by
the individual downloading the song.

9 We assume a time unit granularity of one day.

Identifying Points of Interest 9

If John downloads a particular song on Monday, and again on Tuesday, no-
body else can download the song for the rest of the week, and any further
download may trigger a point-of-violation (and detection). However, the final
clause of the contract identifies a contrary-to-prohibition clause, which effec-
tively allows for such a download, except that for the rest of the week, further
downloads would come at a cost. A point-of-reaction could thus be triggered
if another download is performed within a week, enacting an obligation to pay
within three days. Failing to pay would then trigger a point-of-violation.

The same would happen if John downloads more than three songs in a single
week. In this case, the repository owner may decide to limit the penalty solely
to John (since he is single-handedly responsible for breaking the first clause), in
which case, the point-of-reaction would be activated if John tries to download
additional songs within a week’s time, but not when Mary (also a member of the
pool) does so. As this example illustrates, machine-identified points-of-reaction
(and reactions) are not easy (or in some cases even possible) to create, and would
require decisions taken by the system designers.

4 Use Cases

In this section, we look at two use cases in which different types of points-of-
interest arise, and would require appropriate handling by the monitoring system.

4.1 Underwater Robots

We present here a scenario concerning underwater robots.10

Let us consider the property in a mission (for an underwater robot) that
indicates that the robot should maintain a safe distance of d meters from another
one. In case of violation, the robots should restore the safety property, with
conformance being required within x seconds. We consider the following action
when the robots approach the safe distance between them: the back robot will
stop its propellers for x seconds, after which, if property satisfaction is restored
(the distance is deemed to be safe, possibly including a safety margin) then the
robots will continue with their expected tasks. However, if property satisfaction
is not restored, then the back robot sends a signal to the front robot asking it
to accelerate and wait y seconds before checking the situation once more.11

Monitoring such property requires getting sensor data and observing whether
the safe distance has been violated. A question is how often do we need to sample
or read data. We would like to minimise the amount of sampling while not miss-
ing any critical point (moments of violations). This is a relevant question given
the restricted memory and computation capacity of such robots since reducing

10 A description of this underwater robot scenario is taken from “Monitoring Safety
and Reliability of Underwater Robots: A Case Study”, appearing in AISOLA’24
proceedings (through personal communication with the authors).

11 This is a simplified version of the specification, with the aim of illustrating our point.

10 C. Colombo, G. J. Pace and G. Schneider

the required number of sampling (sensor reads) can have a positive effect on the
energy consumption.

In principle, if a violation happens, what we care about is that the robot goes
back to conformance within x seconds. So if a violation is detected at time t, the
next read can happen at t+ x (under certain restricted assumptions concerning
the speed of the robot and other environmental conditions).

The frequency of the sampling may obviously result in the point-of-detection
happening later than the point-of-violation. However, if we leave issues arising
from sampling out and focus on the points-of-violation, points-of-detection, and
points-of-reaction, a number of interesting observations are to be made. A clear
point of violation is when the distance between the two robots is strictly less
than d at a given time t. The point-of-detection, however, may happen a bit
later (due to a delay in the sensor or in the sampling), let us say at time t + δ
(for a small time δ) which might mean the distance is thus d+ ϵ, for a relatively
small ϵ.

A point-of-reaction triggers at time t + δ + x to check the validity of the
property then; if the safety distance is still not restored, a message should be
sent to the robot ahead, possibly triggering another point-of-reaction at time
t+ δ + x+ y (to check the property later once again).

This example highlights the existence of many points of interest, which may
trigger different conditions and actions from a runtime monitor (even the need
of some kind of hierarchical monitor to “activate” other monitors). We do not,
however, further explore here how a solution based on monitors would look like.

The complexity of such situations increases as other agents (e.g., a third robot
that may cause the first robot’s corrective action to put it in a new violation)
and specifying such points-of-reaction and points-of-interest becomes ever more
important.

4.2 Fraud detection

Properties describing a violation, typically start off by describing expected be-
haviour followed by a characterisation of when things go wrong. For example,
consider once again the following property:

(login
∗
; login; logout

∗
; logout)∗; login

∗
;write

This property states that a write cannot occur outside a login-logout pair. There-
fore, any such write event would constitute the point-of-violation and also point-
of-detection. One could then define the corresponding point-of-reaction to hap-
pen later—when the next login occurs (e.g., triggering limitations to the rights
of the user):

(login; logout
∗
; logout)∗; login

∗
;write; login

∗
; login

The above example looks simple enough, but when attempting to characterise
a fraudulent pattern of events, this usually involves a significantly more complex
combination of events. For example consider a simple fraud check related to

Identifying Points of Interest 11

card payments: “If more than three user accounts are simultaneously logged into
from the same IP address, then the associated bank cards should be considered
suspicious”. Note that the focus here is to describe a suspicious pattern of events.

Similarly, taking a real-life example from tax fraud detection in Malta [3]:

Load the identity card number of employees over 30 years of age and
who, for three sequential years, either declared a total income of less
than €3000, or there has been a year-on-year decrease in their declared
income.

Once again, the whole specification describes a pattern which can only emerge
after three years of observation. These kind of specifications present an inter-
esting case where as soon as a complete pattern emerges, the point-of-violation
would be already way in the past. In the first example, the point-of-detection
occurs when a user logs in from the same IP into the fourth account. In the
second case, the point-of-detection occurs upon the tax return submission of the
third year which falls into the pattern. In both cases, the point-of-violation is
the start of the pattern: In the first example, the first login from the IP address
in question; in the second case, the first of the three consecutive years of tax
return submissions.

The point-of-reaction could also present interesting options. In the first ex-
ample, one could simply mark the accounts involved as suspicious and trigger an
action whenever such accounts attempt to perform payments. This could serve
useful for the Money Laundering Reporting Officer to collect more information
and possibly incriminating evidence. It could also be useful to consider reversing
past successful payments originating from the suspicious accounts. In the case of
the tax fraud detection, a reaction could be to trigger a manual investigation and
write further specifications to monitor the situation more closely, e.g., trigger an
alarm if the person with the same identity card number acquires an asset which
costs more the €10,000.

5 Conclusions

Past work in the area of runtime verification indirectly acknowledges that points-
of-interest do not necessarily occur at the same time: The body of work on
runtime enforcement [8] is based on the premise that points-of-detection can
occur before points-of-violation. On the other hand, the work on compensation-
based monitoring [5] tackles cases where the point-of-detection occurs after the
point-of-violation. In previous work [6], we have classified stream monitoring case
studies on whether they are reactive, meaning that a violation is never detected
late, i.e., the point-of-detection never comes after the point-of-violation.

Notwithstanding these works, to the best of our knowledge, the distinction
between various points-of-interest has never been laid out, highlighting in par-
ticular the complete decoupling of the timing of the point-of-violation from that
of the point-of-detection.

12 C. Colombo, G. J. Pace and G. Schneider

In this paper we have presented the need for richer specifications in the
context of runtime verification which not only identify when a full trace is a
violation, but also identify the point-of-violation, allows us to reason about the
point-of-detection, and identify points-of-reaction to act upon the observations.
We do not purport to have solutions to this challenge, but we are currently
looking at a number of different dimensions of this problem.

Our observation is that the view that specifications are solely meant for
system correctness and verification has been accepted as the norm. However,
specifications can play other roles, and in this paper we have argued how spec-
ifying points-of-interest can help with triggering additional behaviour, invoking
corrective action, etc. The contribution is more along the line of advocating the
widening of the view of the role of specifications (in keeping with the theme of
SpecifyThis) rather than a technical one.

Depending on the context, we see various ways forward as a continuation of
this work. In the area of deontic logics, there are also other points-of-interest
which could be interesting to look at, e.g., the points-of-failure, referring to the
point where the consequences of a property violation have side-effects observable
by third parties such as users. Note that points-of-failures can of course coincide
with points-of-violations.

From a formal perspective, we see the possibility of developing a model to
concretely reason about points-of-interest in different specification languages,
enabling more straightforward analysis of specifications for different runtime
verification applications.

More generally, we aim at a framework with hierarchical monitors to iden-
tify/treat different points-of-interest, increasing modularity of the design follow-
ing the separation-of-concern principle.

References

1. Barringer, H., Goldberg, A., Havelund, K., Sen, K.: Rule-based runtime veri-
fication. In: VMCAI’04. LNCS, vol. 2937, pp. 44–57. Springer (2004), https:
//doi.org/10.1007/978-3-540-24622-0_5

2. Bauer, A., Leucker, M., Schallhart, C.: Comparing LTL semantics for runtime
verification. J. Log. Comput. 20(3), 651–674 (2010), https://doi.org/10.1093/
logcom/exn075

3. Calafato, A., Colombo, C., Pace, G.J.: A controlled natural language for tax fraud
detection. In: CNL’16. LNCS, vol. 9767, pp. 1–12. Springer (2016), https://doi.
org/10.1007/978-3-319-41498-0_1

4. Chen, F., Rosu, G.: Mop: an efficient and generic runtime verification framework.
In: OOPSLA’07. pp. 569–588. ACM (2007), https://doi.org/10.1145/1297027.
1297069

5. Colombo, C., Pace, G.J., Abela, P.: Safer asynchronous runtime monitoring using
compensations. Formal Methods Syst. Des. 41(3), 269–294 (2012), https://doi.
org/10.1007/s10703-012-0142-8

6. Colombo, C., Pace, G.J., Camilleri, L., Dimech, C., Farrugia, R.A., Grech, J.,
Magro, A., Sammut, A.C., Adami, K.Z.: Runtime verification for stream processing

Identifying Points of Interest 13

applications. In: ISoLA’16. LNCS, vol. 9953, pp. 400–406 (2016), https://doi.
org/10.1007/978-3-319-47169-3_32

7. D’Angelo, B., Sankaranarayanan, S., Sánchez, C., Robinson, W., Finkbeiner, B.,
Sipma, H.B., Mehrotra, S., Manna, Z.: LOLA: runtime monitoring of synchronous
systems. In: TIME’05. pp. 166–174. IEEE Computer Society (2005), https://doi.
org/10.1109/TIME.2005.26

8. Falcone, Y., Mounier, L., Fernandez, J., Richier, J.: Runtime enforcement moni-
tors: composition, synthesis, and enforcement abilities. Formal Methods Syst. Des.
38(3), 223–262 (2011), https://doi.org/10.1007/s10703-011-0114-4

9. Havelund, K., Peled, D.: Runtime verification: From propositional to first-order
temporal logic. In: RV’18. LNCS, vol. 11237, pp. 90–112. Springer (2018), https:
//doi.org/10.1007/978-3-030-03769-7_7

10. Mally, E.: Grundgesetze des Sollens. Elemente fer Logik des Willens. Graz:
Leuschner & Lubensky (1926)

11. Pnueli, A., Zaks, A.: PSL model checking and run-time verification via testers.
In: FM’06. LNCS, vol. 4085, pp. 573–586. Springer (2006), https://doi.org/10.
1007/11813040_38

12. Rosu, G., Havelund, K.: Rewriting-based techniques for runtime verifica-
tion. Autom. Softw. Eng. 12(2), 151–197 (2005), https://doi.org/10.1007/
s10515-005-6205-y

13. Sammapun, U., Easwaran, A., Lee, I., Sokolsky, O.: Simulation of simultaneous
events in regular expressions for run-time verification. In: RV’04. ENTCS, vol. 113,
pp. 123–143. Elsevier (2004), https://doi.org/10.1016/J.ENTCS.2004.01.030

14. Sen, K., Rosu, G.: Generating optimal monitors for extended regular expressions.
In: RV’03. ENTCS, vol. 89, pp. 226–245. Elsevier (2003), https://doi.org/10.
1016/S1571-0661(04)81051-X

15. Stucki, S., Sánchez, C., Schneider, G., Bonakdarpour, B.: Gray-box monitoring
of hyperproperties. In: FM’19. LNCS, vol. 11800, pp. 406–424. Springer (2019),
https://doi.org/10.1007/978-3-030-30942-8_25

16. Wright, G.H.V.: Deontic logic. Mind 60, 1–15 (1951), https://doi.org/10.1093/
mind/LX.237.1

