Tutorial 3 Cyclic Codes

1. Consider a binary cyclic Hamming $(7,4)$ code. Show that there are 2 versions possible for this code. For each version work out the weight distribution of the code.
2. Let C be the code generated from $x^{7}+1$ using $g(X)=x^{4}+x^{3}+x^{2}+1$
(i) Show that $\mathrm{W}(\mathrm{C})$ is $[1,0,0,0,7,0,0,0]$.
(ii) Suppose that $r(X)=x^{5}+x=1$. Find the most likely code polynomial $\mathrm{v}(\mathrm{X})$ for transmission over a BSC channel.
3. For C generated using a $g(X)=x^{3}+x^{2}+1$ for a $(7,4)$ code, design a syndrome and Meggitt decoder.
Hence show the operation of the Meggitt decoder when an $r(X)=x^{5}+x^{2}$ vector is received.
4. Devise an encoder shift register circuit, and a decoder circuit, for the $(15,11)$ code generated by $g(X)=X^{4}+X+1$.
5. Shorten the $(15,11)$ cyclic Hamming code by deleting the seven leading high order digits. The resultant code is an $(8,4)$ code. Design a decoder for this shortened cyclic code.
