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Abstract

Proponents of Agile development processes claim that adhering to Agile principles leads to the delivery of
high quality code in evolutionary increments. Confidence in resulting systems is mostly gained through
the use of unit test suites, entrusted to catch regressions as soon as they occur. Consequently, the system
can only be as trustworthy as its tests, meaning that measurements of the tests’ quality is crucial. Whilst
mutation testing has been proposed as a means of uncovering test suite defects, it has not been widely
adopted in the industry; mainly due to its computational expense and manual effort required by developers
investigating unkilled mutants. To make mutation testing affordable, we propose incremental mutation
testing — a variation of mutation testing which leverages the iterative nature of agile development by
limiting the scope of mutant generation to sections of code which have changed since the last mutation run.
Preliminary results show that the number of mutants generated is drastically reduced along with the time
required to generate mutants and execute tests against them.
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1 Introduction

Software engineering firms find themselves developing systems for customers whose

need to compete often leads to situations whereby requirements are vague and

prone to change. One of the prevalent ways with which the industry deals with this

situation is through the adoption of so-called Agile development processes. Such

processes enable the evolutionary delivery of software systems in small increments,

frequent customer feedback, and, ultimately, software which continuously adapts

to changing requirements. In this fluid scenario, developers rely on automated

unit tests to gain confidence that any regressions resulting from code changes will

be detected. Consequently, trust in the software system can only follow from the

perceived quality of the tests. Unfortunately, the industry tends to rely on tools
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that calculate primitive measures such as statement coverage; a measure which has

been shown to provide a false sense of security [1].

Mutation testing [2] is an analysis technique which systematically creates faulty

versions of a program (called mutants) and checks whether the program’s test suite

detects the fault. If a particular mutant goes undetected, i.e. no tests fail against

the mutant, it is said to be unkilled and flagged for investigation by a developer.

Although mutation testing is an effective technique for measuring a test suite’s

thoroughness, it has not found its place in the industry. Two main reasons for this

is due to (1) the computational expense incurred when generating/killing mutants

—meaning that significant amount of time and resources would have to be dedicated

to mutation testing, and (2) the length of time elapsed from the development time

till the developers receive feedback — meaning that the developers would find it

more difficult to act upon it.

The contribution of this paper is a technique which we term as incremental

mutation testing. The technique leverages the evolutionary nature of Agile devel-

opment whereby developers are committed to ongoing improvement of a product in

small regular increments throughout its lifetime. Our technique leverages this by

applying mutation testing in a similar manner as a system evolves. If we start with

a fully-tested codebase (initially an empty codebase), then mutation testing need

only be carried out on sections of the code which are affected by changes as the

system evolves. We prove the soundness of this approach and show that if mutation

testing is performed incrementally, the computational expense can be drastically

reduced and as a result developers would benefit from short feedback loops, facili-

tating their analysis. Consequently, the main hurdles of mutation testing adoption

in industry would be significantly reduced.

The rest of this paper is organised as follows. Section 2 briefly covers the princi-

ples behind mutation testing and discusses problems preventing its wider adoption.

This is followed by Section 3 which provides an overview of incremental mutation

testing and formally shows the sanity of the approach. Next, in Section 4, we give an

instantiation of incremental mutation testing and present a preliminary evaluation

of the idea. Finally, Section 5 provides an overview of related work in the literature

whilst Section 6 draws conclusions and discusses our future plans in this area.

2 Background

Mutation testing [2] (depicted in Figure 1[top]) is a technique which analyses the

thoroughness of a test suite using fault injection. In essence, given a program P

and a test suite T which tests P , the approach involves generating faulty variations

of P (called mutants) and checking whether for every mutant, there is at least one

test case in T which fails. We write T (P ) to denote a successful run of test suite T

on program P and ¬T (P ) to denote that at least one of the tests in the test suite

has failed on P .

Mutation testing begins by generating a set of programs P1, P2, . . . , Pn using

a set of mutation operators represented by the function M on the program P ,
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M(P ) = {P1, P2, . . . , Pn}. These programs are usually syntactically similar to

P but never (syntactically) equivalent to it. That is to say ∀i : 1..n · Pi �≡ P .

Although there are an infinite number of possible mutants, mutation operators found

in the literature usually produce mutants by applying deterministic transformation

rules such as ‘+’ → {‘−’,‘×’ ,‘÷’ }. In this case, for every instance of ‘+’ in a

program, three mutants will be generated, each with ‘+’ replaced by ‘−’,‘×’ and

‘÷’ respectively. This results in a quadratic computational complexity based on the

number of operations involved in the mutation operators and their frequency in the

source code [2].

T is said to cover P , i.e. T adequately tests P , if executing T against any

Pi ∈ M(P ) results in at least one failing test. In such cases we say that the mutant

Pi is killed by T . If on the other hand, no test failures occur, we state that Pi is

an unkilled mutant which might indicate that T does not in fact cover P . In such

cases, a manual investigation is required to establish why Pi was not killed.

Definition 2.1 A test suite T is said to cover a program P , denoted T � P if and

only if P satisfies T , T (P ), while any Pi∈M(P ) fails the test suite, ¬T (Pi):

T � P
def
= T (P ) ∧ ∀Pi∈M(P ) · ¬T (Pi)

The ratio of killed mutants to total mutants is known as the mutation score and

provides a measure of test suite coverage in the context of the generated mutants.

Mutation operators are usually designed to change P in a way that corresponds

to a fault which could be introduced by a developer. Consequently, in compari-

son to techniques such as statement coverage analysis, mutation testing provides

a significantly more reliable measure of test suite thoroughness [3, 4]. Despite its

effectiveness, mutation testing suffers from three recognised problems [2]. Firstly,

whilst the polynomial computational complexity of mutation testing does not seem

prohibitive, in a typical commercial system the large amount of potential mutation

points would make the computational expense considerably high. Secondly, once

mutants have been generated, each one needs to be tested against the original pro-

gram’s test suite. Considering that test suites on large systems will optimistically

take a few minutes to execute, the time required for this task would be considerable.

The third cited problem with mutation testing is the so-called equivalent mutant

problem whereby syntactically different mutants turn out to be semantically identi-

cal, thus wasting time and effort. Besides these three cited problems, we also argue

that there is a fourth problem, one concerned with the time and effort required to

investigate and address unkilled mutants — each unkilled mutant requires a devel-

oper to understand the mutant’s semantics, determine if a change to the test suite

is required and finally modify the test suite to kill the mutant. We argue that this

effort can be a deterrent to the wider uptake of mutation testing because the time

and cognitive effort required to carry out the task may not be perceived as being

worth the potential benefits gained.

In this work, we focus on the first two problems — both contributing to the

computational expensiveness of mutation testing — by presenting an incremental

approach to mutation testing. This approach generates mutants only for the points
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Fig. 1. Comparing traditional mutation testing with incremental mutation testing

in the program which have changed since the last application of mutation testing

— tackling the first problem. Furthermore, it only invokes the part of the test suite

which tests the changed part — tackling the second problem. Indirectly, this also

improves the feedback loop to the developers since the feedback they get is focused

on the parts which they have been working on recently.

3 Incremental Mutation Testing

Incremental mutation testing attempts to alleviate problems associated with mu-

tation testing by leveraging the evolutionary and test-driven nature of Agile devel-

opment. The underpinning idea is that of limiting the scope of mutation testing

to code that has changed 5 within the context of two particular versions of code.

By applying mutation testing on each change across successive versions of the code,

over the entire evolutionary process, one would have effectively applied mutation

testing over the whole system, incrementally. More precisely, incremental mutation

testing assumes two programs P1 and P2 where P2 is an evolution of P1 such that P2

consists of two parts: a changed part (P2
δ) which has evolved from a corresponding

part of P1 (P1
δ), and an unchanged part (P1

� δ = P2
� δ = P � δ) with respect to P1. We

therefore represent P1 and P2 as P1 = P1
δ + P � δ and P2 = P2

δ+P � δ. In this context,

the composition operator + assumes that there is a way of splitting a program up

into two parts such that the parts can be tested independently 6 . Similarly, we

assume that there is a way of splitting the test suite into (potentially overlapping)

parts which test the corresponding program parts. Formally, we assume that for

5 Unless otherwise specified, references to code changes in this paper refer to syntactic changes.
6 In practise, this can be generally realised through the use of static analysis.
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any program P = P δ + P � δ and test suite T = T δ + T � δ:
T (P ) ⇐⇒ T δ(P δ) ∧ T � δ(P � δ) (†)

Furthermore, we assume that given the composition of two programs, the mu-

tation operator applies itself on each part in turn, i.e. it is never the case that the

change spans across the two parts. This assumption enables us to reason about

the sub-parts independently in the proofs which follow. Note that simple mutants,

i.e. mutants which change the program through one mutation operator at a time,

naturally satisfy this assumption. More formally:

M(P + P ′) = {∀Pi∈M(P ) · Pi + P ′} ∪ {∀P ′
i ∈M(P ′) · P + P ′

i} (‡)
Proposition 3.1 If a test suite T covers P where T can be split into T δ + T � δ and

correspondingly P = P δ +P � δ, then the split parts of the test suite cover P δ and P � δ

individually:

T � P ⇐⇒ T δ � P δ ∧ T � δ � P � δ

Proof.

T � (P δ + P � δ)

{By definition of �}
⇐⇒ T (P δ + P � δ) ∧ ∀Pi∈M(P δ + P � δ) · ¬T (Pi)

{By definition of ‡}
⇐⇒ T (P δ + P � δ) ∧ (∀Pi

δ∈M(P δ) · ¬T (Pi
δ + P � δ))

∧ (∀Pi
� δ∈M(P � δ) · ¬T (P δ + Pi

� δ))

{By † trice and de Morgan’s Law}
⇐⇒ T δ(P δ) ∧ T � δ(P � δ) ∧ (∀Pi

δ∈M(P δ) · ¬T δ(Pi
δ) ∨ ¬T � δ(P � δ))

∧ (∀Pi
� δ∈M(P � δ) · ¬T δ(P δ) ∨ ¬T � δ(Pi

� δ))

{By predicate logic}
⇐⇒ T δ(P δ) ∧ T � δ(P � δ) ∧ (∀Pi

δ∈M(P δ) · ¬T δ(Pi
δ))

∧ (∀Pi
� δ∈M(P � δ) · ¬T � δ(Pi

� δ))

{By definition of �}
⇐⇒ T δ � P δ ∧ T � δ � P � δ �

Given that a test suite has been shown to adequately cover a system under test,

in the following evolution of the code this information can be used to minimise the

number of mutations required to check the test suite. Intuitively, this is achieved by

eliminating the unchanged part of the system from mutation testing: if the second

version of the code can be split into the changed part and the unchanged part,

incremental mutation testing assumes that tests relating to the unchanged part

do not need to be analysed for thoroughness because this would have been done in

previous evolutions of the code. More formally, this idea is captured in the following
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theorem.

Theorem 3.2 If the system code P1 = P1
δ + P � δ has been shown to be adequately

covered by a test suite T1, T1 � (P1
δ +P � δ), then to show that the new version is also

adequately covered, T2 � (P2
δ + P � δ), it suffices to check that T2

δ � P2
δ:

T1 � (P1
δ + P � δ) ∧ T2

δ � P2
δ =⇒ T2 � (P2

δ + P � δ)

Proof.

T1 � (P1
δ + P � δ) ∧ T2

δ � P2
δ

{By Proposition 3.1}
=⇒ T1

δ � P1
δ ∧ T1

� δ � P � δ ∧ T2
δ � P2

δ

{By propositional logic, Proposition 3.1 and T1
� δ = T2

� δ}
=⇒ T2 � (P2

δ + P � δ) �

In the next section we present an instantiation of incremental mutation testing

based on the above theory and show its applicability to a real-life case study.

4 Instantiation

Any implementation of incremental mutation testing assumes two fundamental

properties of the underlying framework: (1) that the code can be split into the

changed and the unchanged parts; and (2) that the test suite can also be split

into a part which tests the changed part and a part which tests its counterpart.

To facilitate this process, in our instantiation of incremental mutation testing, we

choose methods as our smallest unit of consideration. This particularly makes sense

in the context of unit testing where typically a unit test tests a method (rather

than for example a single statement). Thus, as regards to splitting the system into

changed and unchanged parts, we consider any method with a change (even if it is

just for a single statement) to be part of the changed part of the system and vice-

versa. Once we identify all the changed methods, using static analysis we delineate

all the unit tests which invoke any of the changed methods (similar to Schuller and

Zeller’s [5] work in Javalanche). Together, these two aspects give us an instantiation

of incremental mutation testing (depicted in Figure 1).

Admittedly, this instantiation is näıve since it does not consider the intercon-

nections across methods with two consequences: (1) methods which depend on the

changed methods are not included for mutation generation, and consequently (2)

tests which check methods affected by the change are not included for killing mu-

tations. Notwithstanding these limitations, we applied our approach to a real-life

case study with promising results.

4.1 Evaluation Process

In order to observe the technique in different scenarios, the evaluation took the form

of an experiment on three scenarios pulled of a candidate codebase. Each scenario
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consisted of executing a purposely build mutation testing tool 7 on two versions of

the source code which were purposely selected to represent an archetype of a de-

velopment cycle. The archetypes represented development cycles which contained

high, medium and low code churn. These scenarios are outlined in Table 1. Besides

the level of code churn, two variables were identified as having the potential of in-

fluencing the experiment, the first of which was the selection of mutation operators.

The decision in this regard was based on the Mutation Coupling Effect Hypothesis

which states that complex mutants are coupled to simple mutants in such a way

that a test data set that detects all simple mutants in a program will also detect

a large percentage of the complex mutants [6]. As a result, it was decided that

only seventeen commonly used simple mutant operators would be used during the

experiment. The second variable considered was the choice of a candidate codebase.

Due to this being only a preliminary evaluation, the Apache Commons CLI Library,

consisting of a modest yet non-trivial 5 KLOC, was selected for the task. Apart

from being open-source, the CLI library makes limited use of object-oriented con-

structs and thus fits our selection of simple mutation operators. Furthermore, the

codebase comes with a unit test suite that boasts 97% statement coverage signifying

a mature test suite for which one does not expect to find an excessive number of

unkilled mutants.

The experiment involved carrying out traditional mutation testing and incremental

mutation testing on all three scenarios. Considering that each scenario consisted of

two versions of the code v1 and v2, with v2 occurring chronologically after v1, then

traditional mutation testing was carried out on v2 for each scenario while incremen-

tal mutation testing was applied on the the differences between v1 and v2. In each

case, we collected data about the total number of generated mutants, the number

of killed mutants and the execution time of the end-to-end process including static

analysis to select which tests to execute.

4.2 Results

The data collected during the experiment allowed us to compare and contrast the

characteristics of incremental mutation testing to traditional mutation testing. The

results, which are summarised in Table 2, confirm that incremental mutation test-

ing significantly reduces the amount of mutants generated since in Scenarios 1, 2,

and 3 incremental mutation testing generated 91%, 62% and 46% less mutants re-

spectively. The results also indicate that the smaller the code churn between the

two versions of code being compared, the less mutants are generated — resulting in

faster execution time. In fact, execution time is significantly decreased through the

use of incremental mutation testing such that speed improvements of between 88%

and 91% were observed.

While these results are encouraging from the point of view of computational

expense and the consequent timely feedback, the results are less clearcut when it

comes to the number of unkilled mutants. As expected the kill rate drops from

7 The tool can be downloaded from http://www.um.edu.mt/__data/assets/file/0007/175957/
IncrementalMutation_v0_1.zip
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# Scenario LOC Affected # Methods Affected

1 Low code churn 12 1

2 Medium code churn 60 4

3 High code churn 720 24

Table 1
The three scenarios considered during evaluation

Scenario
Total

Δ
Unkilled Kill Time

Δ
Mutants Mutants Rate (s)

1 - MT 349
91%

35 90% 58
91%

1 - IMT 30 5 83% 5

2 - MT 253
62%

15 94% 42
88%

2 - IMT 95 51 46% 5

3 - MT 340
46%

97 71% 79
89%

3 - IMT 183 126 31% 9

Table 2
Comparison of mutant generation, mutant killing and execution time using both traditional (MT) and

incremental (IMT) mutation testing for each scenario

mutation testing to incremental mutation testing since we are focusing on the part

which typically has more problems in the test suite. However, the number of un-

killed mutants increases in Scenarios 2 and 3 because of the näıve way in which

we are selecting the tests to execute — further experimentation (not shown in the

table below) showed that executing more tests results in more mutants being killed.

Another notable phenomenon which occurred in Scenario 1 is that the number of

generated mutants in the incremental approach is less than the number of unkilled

mutants of traditional mutation testing. This means that a significant number of

unkilled mutants lie outside of the code section delineated by our approach. We

believe that this is due to the simplistic approach in delineating the code which has

been affected by the code changes but we leave this issue for future investigation.

5 Related Work

Within the field of mutation testing, various attempts have been made to optimise

and reduce the computational cost of the technique including: selective mutation

whereby mutation operators are strategically selected [7], higher order mutation in

which multiple mutations are combined into individual mutants [8], and Schuller

and Zeller’s [5] approach to only execute tests which exercise mutated sections of

the code. While these techniques are complementary to ours (indeed we include

concepts from Schuller and Zeller’s work in incremental mutation and can easily
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integrate other cited optimisations with our technique), we mainly draw our inspi-

ration for incremental mutation testing from other areas in software engineering —

to the best of our knowledge an incremental approach has never been proposed for

mutation testing.

JUnitMax 8 is a unit test runner which was designed with the goal of providing

ongoing feedback to developers while they work. As a developer writes code and

saves it, JUnitMax automatically checks which part of the code has changed and

non-intrusively executes relevant test cases in the background. If there are any fail-

ures, the developer is notified. This significantly shortens feedback loops and also

leads to faster fix times because failures are likely to be related to something which

the developer has just done. This is similar to incremental mutation testing in that

the aim is to provide regular bite-sized feedback about the quality of a test suite

as code evolves. Symbolic execution [9] and automated static code analysis [10]

are both useful techniques which like mutation testing suffer from scalability issues.

Attempts to address this problem have leveraged the incremental nature of software

development to perform symbolic execution efficiently [11,12] and to selectively dis-

play results of automated static code which developers are likely to be interested

in [10]. While incremental mutation testing is not directly related to these fields,

we combine these ideas to optimise the computational efficiency of mutation testing

and shorten the feedback loop to the developers.

6 Conclusion and Future Work

Evolutionary-based software development processes highly depend on their support-

ing test suites to ensure no regressions occur from one evolution to the next. With

this reliance on tests to ensure the reliability of software systems, one cannot help

but find means of ensuring the quality of the tests — their coverage. Whilst mu-

tation testing has been shown to be effective in discovering defects in test suites,

it has still not been widely adopted mainly due to the overhead it represents in

computation as well as the time it takes for feedback to reach developers.

In this paper we introduced incremental mutation testing, a variation of mu-

tation testing which is applied incrementally across the evolutions of a software

development life cycle. We have formally defined the concept and shown it to be

sound. Moreover, we have instantiated incremental mutation testing and applied it

to a modest case study whose preliminary evaluation indicates that the technique

alleviates the problems of prohibitive computational expense and timely feedback

to the developers. Although the results are promising, the evidence shows that

our current instantiation of incremental mutation testing is simplistic in the way

it localises mutation testing. In the future we aim to apply more intelligent ap-

proaches for test case selection so as to take into account the relationships across

system units. Furthermore, we also plan to continue towards reducing the cogni-

tive overload issue by integrating incremental mutation testing within the software

development process (á la JUnitMax) providing even more timely feedback to de-

8 http://www.junitmax.org
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velopers while also automatically eliminating any unkilled mutants which point to

a defect in the test suite which has just been fixed.

This work fits within our overarching aim of making mutation testing feasible in

industrial settings. It is hoped that this line of work will lead to a situation where

mutation testing will indeed become commonplace in commercial development sce-

narios, thus allowing companies to reap the benefits of this powerful analysis tech-

nique.

References

[1] Sean A. Irvine, Tin Pavlinic, Leonard Trigg, John G. Cleary, Stuart Inglis, and Mark Utting. Jumble
java byte code to measure the effectiveness of unit tests. In Proceedings of the Testing: Academic and
Industrial Conference Practice and Research Techniques - MUTATION, TAICPART-MUTATION ’07,
pages 169–175, Washington, DC, USA, 2007. IEEE Computer Society.

[2] Harman M Jia Y. An analysis and survey of the development of mutation testing. ACM SIGSOFT
Software Engineering Notes, 1993.

[3] J. H. Andrews, L. C. Briand, and Y. Labiche. Is mutation an appropriate tool for testing experiments?
In Proceedings of the 27th international conference on Software engineering, ICSE ’05, pages 402–411,
New York, NY, USA, 2005. ACM.
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