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Abstract. The deployment of AI-driven solutions to increasingly com-
plex tasks with real-world impact raises various challenges in the area of
verification. Using the case study of an AI-assisted litter detection being
developed for rural areas in Malta, this paper highlights the multi-faceted
nature of the risks involved concerning: data issues, functionality correct-
ness, safety concerns, and legal considerations. We place particular focus
on the last of these: regulatory challenges.
Drawing inspiration from related works, considering applicable Maltese
technology guidelines and EU legislation, against the backdrop of the
challenges presented in the case study, the proposed runtime verification
architecture brings the pieces together in a comprehensive and pragmatic
manner.

Keywords: Runtime Verification · Artificial Intelligence · Regulatory
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1 Introduction

The histories of formal verification techniques and artificial intelligence show a
surprising degree of confluence — from Turing’s first tentative steps in both ar-
eas3 to the highs of the breakthroughs separated by frugal winters. And although
one cannot truly say that now, in the 2020s, verification has become ubiquitous
in software design and development to the same extent that the application of
AI has become pervasive, one cannot but note that the importance of software
functional correctness has increasingly been recognised as a requirement both in
economic terms (i.e. measured in financial return, or as mitigation against po-
tential loss) but also from a regulatory perspective, especially for systems used
in critical settings.

In this paper, we look at opportunities for formal verification given the cur-
rent regulatory landscape, particularly those evolving around the use of AI. We
argue, that the regulatory recognition of the need for functional correctness for
3 Turing’s 1949 paper on algorithmic verification [32] and his 1950 paper on machines

and intelligence [33] are frequently cited as the starting points of the two fields.
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AI solutions (particularly high-risk ones) can prove to be an opportunity for
the integration of formal verification techniques as part of these compliance pro-
cesses.

From a regulatory perspective, we focus on the European Union’s AI Act [8]
and the related regulatory guidelines set up in Malta [20] — as two early models
of regulatory requirements addressing AI. In order to illustrate the adoption of
formal verification techniques, we consider a real-world AI application currently
under development for more efficient litter detection in varying terrain through
the use of drones [30, 28].

The application of verification techniques to AI is relatively much younger
than either of the two fields. One major challenge encountered in the combination
is that much of formal verification is intimately tied to the control structure
and flow of the system-under-scrutiny. In human designed systems, such a flow
contains much of the abstraction present in the system architects’, designers’
and developers’ mind ensuring correctness (or at least making the system more
likely to be correct). In contrast, the unstructured artefacts generated through
the more widespread machine learning and statistical techniques (and which
have been shown to be most effective over the past years) fail to provide such
a handle for verification. In contrast to most verification techniques, runtime
verification excels at formal verification of black-box artefacts, acting more on
their outputs and less on their internals. This has been recognised in recent
work combining runtime verification and AI. As we will argue, based primarily on
regulatory requirements (but also pragmatic ones), the use of runtime monitoring
is a perfect marriage with compliance and AI.

The paper is organised as follows: we present background and related work
in the next section, followed by an overview of the case study on AI-assisted
litter detection in Section 3. In Section 4, we review the regulatory landscape
surrounding AI in Malta and the EU. Next, we present our proposal in Section 5
which brings together the three strands of this paper: RV, AI, and legislative
concerns. Finally, Section 6 concludes the paper.

2 Background and Related Word

The study of enhancing the reliability of complex systems through runtime as-
surance is far from new e.g. the Simplex architecture proposed in 2001 allows
a simpler but safer module to replace a more complex badly-behaving one at
runtime [31]. Typical AI systems used for sensitive and non-trivial tasks fit the
description of a complex system, while RV explores a wide range of techniques
to provide on-the-fly detection and reaction to unexpected behaviour. In this
sense, the relationship between RV and AI has already been studied for some
time. However, there are aspects of AI systems which can be specifically explored
from the RV point of view, depending on whether verification takes a black or
white box approach.

Naturally, apart from using RV to monitor AI, RV can also benefit from
AI techniques in its quest for pattern recognition (e.g. using anomaly detection
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techniques to monitor system execution [15]). Furthermore, correspondence in
approach between the two areas has also been highlighted from the point of view
of rule-based production systems [11]. However, this paper doesn’t focus on the
combination of the two fields from this direction.

Training/Live
AI system

Training/Live data

RV
component

Feedback

Data/event stream

Fig. 1. Architecture of state of the art RV of AI systems.

RV to Monitor AI To catalogue the various ways in which RV has been used
to monitor AI, we loosely depict the basic components of AI in Fig. 1 where
training data is fed into the AI components during the training phase, involving
a feedback loop for learning. Following the training phase, the system receives
live data and outputs its verdict. This whole process is usually overseen by the
human expert in the field who selects the data, sets the algorithm’s parameters,
and validates the output of the AI component, particularly during the training
phase.

There are several ways in which RV has been employed within this picture
(see [29, 14] for comprehensive surveys). Perhaps the most obvious but restricted
way to employ RV is to focus on the AI output, i.e., treat the whole process as a
black box and check whether the output is within the expected bounds [17]. Also
known as shielding, this is particularly useful when AI is used within critical
applications where wrong output can have serious consequences. Apart from
suppressing wrong AI output, shields may also give rewards or punishments to
the AI component to learn from the past [1].

Moving a little away from the black box approach, some RV approaches take
the training data into consideration when deciding whether the output can be
trusted or not. If the live data is significantly different from any of the data the AI
was trained on, the RV component can flag the output as dubious [4] or switch
to a fallback component [12]. A related approach, involves the human expert
(“authority”) in the RV process to handle previously unseen input classes [16].
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Taking a white box approach, other RV approaches e.g. [4, 13] look directly
at the internals of the AI component by also monitoring the hidden layers of the
neural network for outside the box behaviour.

RV of Legal Concerns The study of legally-binding texts within the context of
specification and verification is not new [25], with the focus recently also looking
into smart contracts [26]. While the approaches have much in common with
typical runtime verification, contracts have their own particularities especially
because of the multiple parties usually involved, and due to the complexity of the
deontic operators often necessitating conflict analysis. Smart contracts, on the
other hand, come with their own set of challenges, particularly because of their
immutability and the costs associated with execution (gas) which monitoring
contributes to.

The adoption of RV to monitor for adherence to normative texts, has been
applied in a wide range of areas: legislation of financial services [3], privacy poli-
cies within social networks [27], and airport passenger rights [9]. More recently,
the area of normative systems has also been combined with RV and AI by syn-
thesising supervisory modules which enforce “ethical norms” on reinforcement
learning agents at runtime [24].

3 Case Study: AI-Assisted Litter Detection

Manual litter collection can be a costly process involving a number of steps:
litter needs to be visually located (possibly from some distance) by having per-
sonnel searching for it within an area under consideration; after which, the litter
needs to be precisely located (possibly requiring a vehicle), picked up, and sorted
according to type (paper, plastic, glass, etc).

From such a traditional perspective that assumes no use of technology, efforts
in litter collection are typically focused and optimised for urban contexts for a
number of practical reasons emanating from the fact that rural areas are typically
unstructured, variable, and spread over a relatively large area: (i) visual detection
is easier when litter lies on a uniform surface, such as roads or pavements; (ii)
infrastructure typically found in an urban context limits the areas where litter
might be, thus providing a smaller search space; (iii) litter collection is harder
when access to particular areas is limited, particularly for vehicles.

Novel and recent developments in AI provide an opportunity to address the
challenges described above to carry out sustainable, efficient, and large-scale
litter collection in rural areas. Aerial images captured from different altitudes
can be used to automate the search and geolocation process for litter in a vast
area. Subsequently, the unmanned aerial vehicle (UAV) can also be used to
collect and sort the litter by type.

While our vision for a fully automated process of litter collection is not yet
a reality, previous works [30, 28] have demonstrated how parts of the process
can be automated, namely the litter searching and detection mechanism from
images captured by a human-piloted UAV. As we continue working towards the
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full automation of the litter collection process, we are aware that this brings
along various technical, safety, and regulatory risks and challenges.

Data risk: Object detection accuracy. The AI model’s effectiveness may be
limited due to misclassification errors, particularly when analysing images
captured from higher altitudes. Accuracy in prediction over multiple classes
can be a challenge. This is split into two aspects: the first being errors in
classification between classes of litter, and the second is the precision and re-
call when detecting litter. The performance is directly related to the training
and evaluation dataset. It follows that the more diverse and well-annotated a
dataset is, the better the performance of the object detector and mitigation
of this risk.

Functionality risk: Limited accuracy of GPS prediction. To locate litter
via drone observations, the coordinates of detected litter need to be approx-
imated as a relationship between the drone’s GPS coordinate, including its
altitude, and the object’s location in the acquired image. This prediction
is subject to precision errors, potentially affecting the efficacy of litter de-
tection and collection. Alternative or complementary geolocation techniques
should be investigated to optimise precision and mitigate this risk. Rigorous
field trials should determine the optimal drone altitude for maximising GPS
accuracy in litter identification.

Regulatory risk: UAV regulations. Deployment of AI-assisted drone-based
litter detection systems may be hindered by evolving regulatory landscapes4.
Additional limitations imposed on drone operations in the ‘open’ category
could significantly impact what is permissible for manually and automati-
cally operated drones. Currently, drones in Malta are mainly restricted by
their geolocation, as shown in red in Fig. 2. The two largest restriction areas
are the airport and its landing zones, together with the training grounds of
the Armed Forces of Malta. There are also other specific sensitive areas, such
as governmental executive offices and presidential grounds.

Regulatory risk: Privacy concerns. Real-time image or video analysis by
the onboard AI model might capture identifiable data of individuals or vehi-
cles within the drone’s field of view. The system should incorporate runtime
verification safeguards to mitigate this risk and ensure compliance with reg-
ulations such as GDPR. This may be due to storing of data for logging or
offline analysis reasons, or to additional functionality that one may eventu-
ally add to the basic requirements of a litter-collection system. These safe-
guards may involve real-time anonymisation techniques, such as blurring or
masking detected people or vehicles with solid colour boxes.

Safety risk: Damages to third parties. Drone operations require favourable
weather conditions and cannot be conducted on rainy days or days with
winds exceeding operational limits. For drones operating in the open cate-
gory (maximum of 25kg) the wind resistance of the drone is around 28 km/h

4 In the European Union, the provisions applicable to drone operations in the ‘open’
and ‘specific’ categories are described in EU Regulation 2019/945 and EU Regulation
2019/947.
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(16 knots). Moreover, (EU)2019/947 stipulates that the drone operator has
to provide a statement confirming they comply with the respective national
insurance requirements for liability. This risk also includes the guidance by
the system of human litter pickers who might be directed to approach dan-
gerous terrain such as proximity to the edge of cliffs.

Fig. 2. Geographical Zones across the Maltese Islands. The zones indicate areas where
drone operations are restricted due to general/commercial aviation. (Source: Drones
Geographical Zones — Transport Malta (gov.mt) https://tmcad.idronect.com/map)

4 The Regulatory Landscape

Over the past years, we have seen an increased awareness of the need for having
regulation address technological risks leading to potential operational compli-
ance failure. Whereas before, such risks were typically tied to particular service
or production industries (e.g. medical devices, aviation, automobile-industry,
financial transactions, privacy), we are starting to see technology-specific regu-
lation being enacted both at a national and an international level, such as the
Innovative Technology Arrangement Act set up in Malta [18, 5], which addressed
distributed ledger technologies and later widened to cover the whole class of crit-
ical systems, the EU Cybersecurity Act [7] and more recently, the EU AI Act [8].
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The approach taken by such technology-centric legislation has typically been a
risk-based and risk-proportionate approach, identifying the degree of technolog-
ical due diligence required to minimise these risks (both in terms of the actual
technology but also of the surrounding operations supporting the technology,
such as incident response).

The EU AI Act takes a wide definition of AI: “machine-based system designed
to operate with varying levels of autonomy and that may exhibit adaptiveness af-
ter deployment and that, for explicit or implicit objectives, infers, from the input
it receives, how to generate outputs such as predictions, content, recommenda-
tions, or decisions that can influence physical or virtual environments” [8]. The
focus on the act is that of trustworthy AI, shaped to regulate based on the
risk level of the AI use: prohibited artificial intelligence practices as identified
in the Act5; high-risk AI systems and their operators regulated under specific
stringent requirements and obligations; and certain AI systems being subject
to rules covering transparency, market placement, monitoring, surveillance and
enforcement.

Obligations include ones with a data-focus, particularly addressing risk of
under-representation of classes of persons and resulting bias, ones with a focus on
functional correctness (particularly for safety components), and ones addressing
the need for legal and regulatory compliance.

The Act also requires the setting up of national AI regulatory sandboxes, in
which systems may be deployed through “the development of tools and infras-
tructure for testing, benchmarking, assessing and explaining dimensions of AI
systems relevant for regulatory learning, such as accuracy, robustness and cyber-
security as well as measures to mitigate risks to fundamental rights, environment
and the society at large” [8].6

Concrete control objectives and measures to be used in conformity assess-
ments and audits in relation to the EU AI Act, are still to be designed and
published. In order to enable us to concretely discuss and propose the use of
formal methods in such a regulatory environment, we will be focussing and illus-
trating our proposed approach with reference to the AI regulatory guidelines set
up in Malta in 2019 [20], where concrete control objectives were proposed [22]
and a technical assurance sandbox was also launched [23].

The approach is much aligned with that of the EU AI Act, focusing on the
trustworthiness of AI solutions through regulatory processes and obligations and
technical audits or assessments against Control Objectives defined in the official
5 These include systems using subliminal techniques, ones which distort the behaviour

of persons on the basis of their age, disability or a specific social or economic situa-
tion, use of biometric data to categorise individuals, inferring personal information
such as race, political opinions, etc., some uses of real-time remote biometric identi-
fication systems in publicly accessible spaces and AI systems to infer emotions of a
natural person in the areas of workplace.

6 It is worth highlighting that this is a regulatory, not technological sandbox i.e. it is
meant to address and mitigate regulatory risks through the residency period in the
sandbox, rather than being a technical solution to limit the interaction of a system
with its environment.
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guidelines covering different facets, including: (i) auditing of design and devel-
opment processes; (ii) appropriate measures in place to address risks such as
cybersecurity and the handling of personal data; (iii) design components in-
tended to support assessment of live systems, including the forensic node and
system harness (more on these later); (iv) measures mitigating data and bias risk
including ones potentially arising post deployment; (v) functional correctness;
and (vi) regulatory compliance.

Assessment for functional correctness (which is particularly interesting in the
context of this paper) is addressed through requirements for: (i) the provision of
a well-defined blueprint documenting the system in question; (ii) an English lan-
guage description for consumer protection reasons (which is considered to prevail
over what the system actually does). Both approaches use informal requirements,
against which audits and assessments are performed, but pragmatically, from a
regulatory perspective, it is crucial that obligations and requirements are not
over-onerous, and, given that even from a theoretical perspective, there will al-
ways be a documented-specification vs. actual-requirements gap, the question is
where to place the bar of specification writing to balance reasonable obligations
against increased-trustworthiness returns [10].

A more thorough overview of the approach adopted by Malta can be found
in [6], but we will hereby highlight three aspects which are very relevant to the
rest of this paper:

System harness: The guidelines make it a requirement that an AI system
should include an ITA Harness7 [21]. The harness must surround the under-
lying system (see Fig. 3), thus providing a safety net (i) enabling the moni-
toring environmental interaction to ensure compliance with the documented
expected behaviour; (ii) enabling identification of anomalies it detects e.g.
out-of-bounds inputs and outputs. Note that the harness encompasses, not
only the core system (the dotted box and the bottom box), but also the
data collection and processing engines (the top two boxes), as well as the
training process (if applicable). This enables its use, not only to enable as-
sessment of the system, but also to collect information and detect anomalies
elsewhere e.g. detecting potential bias during the data collection phase. It is
worth adding that the Control Objectives require the technical auditors to
review that the implementation of the harness is as specified in the regulatory
guidelines i.e. collects all relevant information and events faithfully.

Forensic node: The Forensic Node is intended to be a data repository to store
all relevant events and information during the runtime of the AI-ITA in real-
time, and in a secure tamper-proof manner. In conjunction with the system
harness, this enables offline assessment of the system’s operating effectiveness
of the controls during an audit and would support legal compliance inves-
tigations. Although the official guidelines architectural diagram (Fig. 3) do

7 Innovative Technology Arrangement (ITA) is the general term for the digital systems
generally covered by the legislation, of which AI systems applied to critical areas
pertain.



Runtime Verification and AI: Addressing Pragmatic Regulatory Challenges 9

Fig. 3. ITA Harness around an AI system (taken from [21]).

not show the forensic node, it is mentioned that it would typically feed off
the system harness or be an integral part of it.

Data-focused requirements: The guidelines place requirements on the doc-
umentation (as part of the system blueprint and the terms-of-service, and
hence taken to be part of the specification to be audited) to report risks
and mitigation measures on addressing bias, anonymisation and explainabil-
ity [19]. This links in with the harness (which is also monitoring the data
collection) to enable active assessment and reporting of such risks.

5 Runtime Verification and AI: A Proposal

In order to address the challenges in achieving trustworthy AI in a regulated
setting, we are looking into combining different types and levels of monitors
and runtime verifiers to deal with different risks arising from the deployment of
such AI solutions. We will be using examples from the UAV system outlined in
Section 3 in order to illustrate how different types of requirements and obligations
will be mapped onto the proposed monitoring framework. We identify four roles
of runtime verification in such a setting, as discussed in the sections below.
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5.1 Monitoring Data Flow
Typical systems which verification has been applied to in the past rely deeply on
the control flow of the system under scrutiny. They piggy-back on the abstraction
notions designed and applied by the engineers, thus allowing a compositional
approach to specification and verification. In contrast, much of the logic inherent
in a solution reliant on AI and machine learning techniques is typically the result
of a data-driven process, leaving unstructured logic not easily amenable to this
compositional approach.

We have identified various types of such properties to monitor in order to
address this:

Statistical properties of training data The nature of collected training and
test data is that it will contain less representative instances and even errors.
However, one would expect a degree of statistical evenness of the training
data over a number of metrics and balance in the representation of different
classes in the dataset. Such properties we include in our specifications include
the likes of ‘Wind force values received during training will never exceed 50
knots’ (which identify hard-limits on the training data), and ‘Once enough
training data has been received, monitor whether wind values in new training
data lies within 2 deviations of the previously received values’ (which focuses
on the distribution of the data).

Data bias A second set of properties can monitor for known and documented
undesirable data biases in the litter (and objects) being detected by the
system. The process doubles up as a means of identifying, reporting and
reviewing for such biases. Misclassification of litter or objects might send
litter pickers to incorrect locations or incorrectly direct them to collect false
positives, such as a rock being classified as a paper carton.

Verdict confidence Finally, drawing inspiration from related works reviewed
above, post-deployment data monitors can also be used to ensure that the
real-world scenarios being encountered are within the scope of the training
class of data originally used. For instance, we envisage adding properties
regarding the size, location and orientation of litter items identified at run-
time to indicate how well represented these were in the original training set.
Similarly, one can monitor to ensure that low-confidence predictions are not
considered, and are omitted from the main system control.

The main challenges we see runtime verification techniques face here are
those of efficient, data- and statistic-intensive monitoring. Techniques to per-
form parts of such monitoring synchronously, but delegating some parts to be
performed asynchronously or offline is crucial. Still, this is not a trivial task, since
even offline monitoring has its own challenge of potentially large data storage
requirements in these cases.

5.2 Specification Adherence and Functional Correctness
The second class of properties is one for which runtime verification has been
widely used: functional correctness. The key difference is that we are missing
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the internal control logic flow within the model, information that is frequently
used in expressing code-aware properties in traditional systems. For example, in
traditional use cases such as [3], we had included properties such as ‘As long as
the system is executing the method verifyTransactionOrigin, the value of the
transaction may not be changed.’ In use cases such as the one being considered in
this paper, such control delineation is not always available, and one would have
to depend more heavily on events visible outside the black box offered by the
model. Properties which depend on such events include ‘Once the drone starts
accelerating in a direction and as long as it has been doing so for more than 5
seconds, it will not reorient the camera direction,’ and ‘Once the battery is lower
than 10%, no acceleration away from the base will be applied for more than 5s.’

One type of functional behaviour properties are ones addressing the proper
functioning of the underlying AI model. Monitoring for effectiveness of the out-
come against information gathered at runtime (or potentially later e.g. whether
an identified object was, in fact, litter) can prove to provide an effective means
of feedback into the system.

5.3 Safety Protection

Following the idea of the shield in related work, there are instances where AI
output can pose a safety risk. While this can be considered as part of functional
correctness, it could be useful to treat separately when the stakes are high.
Furthermore, a strict enforcement approach could be taken with safety concerns,
leaving ‘softer’ monitor reactions focused on punishment and reward to more
flexible functional requirements. In our case study, there is a substantial list
of safety concerns that need to be considered. Here are a few examples: (i)
Damaging drone and/or third party property: the monitor should ensure that if
the drone is about to hit an obstacle, it diverts its course on time. Furthermore,
if the battery power goes below a certain threshold, the monitor should ensure
that the drone returns to base in time to avoid falling down. Similarly, if the
drone loses contact with its control point, the monitor should guide it back to
safety. (ii) Danger to human litter pickers: Initially, we see the system will be
used to guide human litter pickers to locations where litter is detected. A set
of properties can monitor these recommendations before they are presented to
humans on mobile devices to ensure they are not guided to unsafe areas such as
the edges of cliffs.

5.4 Regulatory Compliance

We finally move to the fourth role of runtime verification in these settings-
regulatory compliance. We separate compliance into two parts: operational and
technological compliance:

Operational compliance: As with all systems operating in a domain where
real-world effects are regulated, compliance is a crucial element of the un-
derlying system. The two facets of (i) building a solution to comply; vs (ii)
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ensuring that the system complies, is the implementation vs. specification
separation-of-concerns issue that runtime verification plays an important
role in. In addition, in many cases, providing evidence of compliance is part
of the compliance requirements themselves e.g. one may have to report fi-
nancial transactions beyond a certain threshold to show that they were all
appropriately handled. This separation is even more crucial in the case of
regulation (when compared to requirements documents) since regulations
frequently change independently of the underlying system.
We have investigated the use of runtime verification for regulatory compli-
ance in the context of payment services [3, 2], building risk-based solutions
to monitor and report for compliance requirements. We envisage a similar
approach here, with regulation pertaining to drone operations, privacy, per-
sonal data, model prediction etc. For instance, one can add rules governing
flight over third-party property due to privacy concerns.

Technological compliance: The second aspect is that of compliance not due
to the real-world impact of the system, but rather compliance with regulation
arising from the nature of the technology being used. Since AI is being
regulated as a technology itself, these regulations have to be adhered to
directly. We see the use of runtime monitoring and verification ideal here,
especially when one finds requirements such as the forensic node and ITA
harness discussed in Section 4.

5.5 Architecture

Following the overview of the various kinds of properties outlined in the previous
subsections, we delve into more practical design decisions.

Alert/Action/Enforce: The dilemma of how intrusive a monitor should be is
a palpable one in the area of runtime verification, particularly in the context
of real-world systems. When it comes to monitoring of statistical properties
of training data, we are not envisaging a runtime enforcement approach (in
that data not satisfying these constraints is not used), but rather an oppor-
tunity to tag and quantify the frequency of instances. Although one can go
further and have different levels of risk associated with the properties and
have different appropriate actions in place. We have used this approach in
the past on risk-based monitoring of financial transaction systems [2] where,
depending on the severity of the violation caught (e.g. how late a refund
occurs), a transaction is either simply reported (low-risk), tagged for com-
pliance review (medium-risk) or stopped altogether (high-risk). Similarly,
here, one can have such properties indicating a high risk of undesirable data,
in which case it can be removed altogether e.g. ‘Wind force values received
during training will never exceed 100 knots’ may indicate data which is
clearly wrong.
Other properties concerning safety and legislation might require a more in-
trusive approach, possibly enforcing properties to some extent, e.g. to avoid
potentially serious repercussions such as fines or damages incurred due to
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drone behaviour. This resonates with the idea of the shield introduced in the
related work section and the harness proposed in the technology guidelines
adopted by Malta8.

Online/Asynchronous/Offline monitoring: A closely related issue is decid-
ing whether to run the monitor in an online or offline fashion. Taking the
latter option is preferred from the point of view of the computational and
memory overheads that might be introduced. Properties concerning statis-
tical analysis of data could be particularly prone to this issue. However, as
explained above, properties which will not be enforced, can be performed
asynchronously (or completely offline) from the training process. The other
properties which require instant action and/or enforcement (e.g. concerning
the drone’s battery level) do not afford this luxury and the overhead concern
would need particular attention.

Pre/Post deployment monitoring: An important choice in runtime verifica-
tion of AI systems is what to monitor during training and what to monitor
beyond deployment. Given enough resources, training-time properties could
be useful to monitor post-deployment, particularly if live data is also used
for training (e.g. by obtaining feedback from a human authority). In our
use case, this will be applicable to the post-deployment litter identification
model by monitoring information from identified and retrieved items to en-
sure that the use is within the constraints identified before. Moreover, should
litter be misclassified, the imagery and the desired outcome could be used
to update the model.

Black/White-box approach: While as reviewed in the related works, some
data monitoring approaches could benefit from a white-box approach (e.g.
statistical properties of training data), other monitoring concerns (e.g. check-
ing that the drone doesn’t reach geographically-prohibited zones) might best
be kept completely separate as explained in the legal compliance section
above. Such monitors do not differ much from what is traditionally performed
in runtime verification solutions where the monitoring and verification en-
gine are not interwoven with the underlying system, but kept architecturally
apart.

The proposed monitoring and verification architecture is shown in Fig. 4. It
is worth noting that the harness and forensic node are monitoring components
(in the traditional sense) themselves.

6 Conclusions

AI-based solutions are being used to automate more complex and critical pro-
cesses, requiring, on the one hand, more autonomy but increasing safety and
8 Although related, they are not equivalent: the notion of a shield is a component of

the harness because the former is mostly concerned with enforcing safety properties
while the latter is also interested in other aspects such as collecting and analysing
data more generally.
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Fig. 4. The monitoring, verification and compliance layers.

legal stakes on the other. In this context, runtime verification which has a legacy
of supporting improved system reliability post deployment, is increasingly being
used to monitor AI systems.

In the regulatory scene, emerging legislation and guidelines are putting higher
expectations on AI systems, such as the need for a harness and forensic node
in the Maltese context when the risks are considered high. These developments
have led us to explore further how all the pieces can fit together for a pragmatic
runtime verification solution.

The AI-assisted litter detection and collection system being developed in
Malta is an example of the various elements that need consideration before
deploying such a system in real-life. In particular, we have organised the various
concerns under four headings: data, functional, safety, and legal. These elements
have been combined in a pragmatic architecture which also brings on board the
Maltese regulatory guidelines on ITAs to include a harness and a forensic node.

We hope that through the comprehensive architecture proposed in this paper,
the identified risks of complex and autonomous AI systems can be managed more
effectively, opening up more possibilities, not least for an efficient way of cleaning
rural Malta.
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