CCE3013 — Computer Architecture

Assignment 2012-2013

Use of SMPCache software for modelling Cache in a multiprocessor environment.

Requirements: The SMPCache software is available at the Computer Lab. Together with installing
this software there is a need for multiprocessor traces. These traces are also available at the lab.
The manual “Getting strarted with SMPCache 2.0 is also necessary to understand the installation,

operation, experimental settings and analysis of the results.

Purpose: The work is a demonstration of how the theoretical concepts associated with cache, cache

coherence, multiprocessor bus sharing operates.

Demo 1: To get acquainted with the operation I am suggesting that you look at the step by step trace
of one application. The basic information is in Section 6.4.2 of the Manual. I am highlighting

certain necessary steps.
1. Firstly you must configure the system. See page 3

[nformation
tultiproceszor
Fain memary

Caches

Mumber of processars:
3
Coherence pratocal:
MESI
Bus arbitration:
LRU
wiord wide;
E4 bitz
Block size:
1Kb
M ain memary size;
A12Kb
Cache size:
B4 kb
Mapping:
Sethssociative
Replacement palicy:
LRU

v X &

configuration files.

2. Set up the configuration as in Figure 1 at the side. This
uses 3 processors, MESI for cache coherence, and bocks of
size 1 kB, on words that are 8 bytes wide.
3. Use from the sample traces — from FILE, Open Memory
Traces — and the appropriate subdirectory - the trace

Cexp.prg.

4. From the View Menu set the Cache evolution, and use the
text button in the subsequent window. Eventually you should

get Figure 2 below
#” View cache evolution in text format gj
Current access
A
Access number |7
Access bppe: ?
Address: 2
Block: 7
‘wiord i1
Bus ransactions: (1 e
Curent 2 ‘ Tokal
Mumber of block transfers: 0 tdemony accesses [0 in i
State transitions: 0 E T 0 0
D ata readings 1] 1] Tines
Diata varit 0 0 -
From . To [M E 5 | =
M 1] 1] 0 Stop
E 0 a a]
5) a [0 Hits Miszes § J
|) a [0 Humber 1] =
Rate [%] i} i} Esit
Figure 2

Note that initially none of the subwindows have any entries. At this point, use execute to start the
first instruction from the Cexp.prg trace. You should have a text copy of the Cexp.prg file via

Wordpad.

The first few instructions are reproduced here.

00000170
00003600
00000174
00000178
0000017c
00000180
00008d84

WooooNo

Note that the first digit is 0 for instruction, 2 for memory read, 3 for memory write (see page 5 of
tutorial). At this point view the changes after EACH execution to the MESI table and to the
percentage rate. Continue with the step-by-step for twenty five entries of the trace.

From the results obtained in seeing the change in the MESI table for EACH instruction execution,
deduce how the cache coherence protocol is working.

Demo 2. Repeat using the same trace program, but this time looking at the Memory Block
evolution.

Repeat looking at the Multiprocessor evolution .

Again look at the changes at EACH step and comment on how the different memory usage impacts
on the bus.

At this point you will do two of the Projects involving Multiprocessor Traces. These traces are
(FFT, Simple, Speech and Weather — again available from the laboratory. The two projects are :

Influence of the Cache Size on the Miss Rate
Influence of the cache size on the Bus Traffic.

The two projects are reproduced below, taken from “Student Projects using SMPCache2.0” -
Projects 7 and 8.

The projects are self explanatory. In your report you should show some of the results using sinfle
step and breakpoints or using full execution, depending on what you want to highlight.

Student Projects using SMPCache 2.0

Name | References | Language | Comments ‘
FFT 7,451,717 Fortran | Parallel application that simulates the fluid dynamics with FFT

Simple | 27,030,092 | Fortran | Parallel version of the SIMPLE application

Speech | 11,771,664 i fKirk :Iohnson and David Kranz (both at MIT) are responsible
or this trace

Parallel version of the WEATHER application, which is used

Weather | 31,764,036 Fortran | for weather forecasting. The serial version is from NASA

Space Flight Center, Greenbelt, Md.

Table 2: Multiprocessor traces.

3.1. Project 7: Influence of the Cache Size on the Miss Rate

Purpose

Study the influence of the cache size on the miss rate during the execution of a parallel
program in a SMP (symmetric multiprocessor). This project also allows us to show that all the
previous uniprocessor projects can be performed in a similar way for multiprocessor systems
(multiprocessor traces).

Development
Configure a system with the following architectural characteristics:

Processors in SMP = 8.

Cache coherence protocol = MESI.

Scheme for bus arbitration = LRU.

Word wide (bits) = 16.

Words by block = 32 (block size = 64 bytes).

Blocks in main memory = 524288 (main memory size = 32 MB).

Mapping = Set-Associative.

Cache sets = They will vary depending on the number of blocks in cache, but you
must always have four-way set associative caches (remember: Number_of ways =
Number_of blocks_in_cache / Number_of_cache_sets).

e Replacement policy = LRU.

Configure the blocks in cache using the following configurations: 16 (cache size = 1
KB), 32, 64, 128, 256, 512, 1024, and 2048 (cache size = 128 KB). For each of the
configurations, obtain the global miss rate for the system using the trace files: FFT, Simple,
Speech and Weather. :

Does the global miss rate increase or decrease as the cache size increases? Why? Does
this increment or decrement happen for all the benchmarks or does it depend on the different
locality grades? What does it happen with the capacity and conflict (collision) misses when
you enlarge the caches? And, what does it happen with the compulsory and coherence misses
when you enlarge the caches? Are there conflict misses in these experiments? Why?

In these experiments, it may be observed that for great cache sizes, the miss rate is
stabilized. Why? We can also see great differences of miss rate for a concrete increment of
cache size. What do these great differences indicate? Do these great differences of miss rate
appear at the same point for all the programs? Why?

7/12

Student Projects using SMPCache 2.0

Compare these results with the results obtained in the project 2 (section 2.2). You can
observe that the miss rates are higher for multiprocessor traces than for uniprocessor traces.
Do you think that, in general, parallel programs exhibit more or less spatial and temporal
locality than serial programs? Why? Is it due to the shared data?

In conclusion, does the increase of cache size improve the multiprocessor system
performance?

3.2. Project 8: Influence of the Cache Size on the Bus Traffic

Purpose

Show the influence of the cache size on the bus traffic during the execution of a parallel
program in a SMP.

Development
Configure a system with the following architectural characteristics:

Processors in SMP = 8.

Cache coherence protocol = MESI.

Scheme for bus arbitration = LRU.

Word wide (bits) = 16.

Words by block = 32 (block size = 64 bytes).

Blocks in main memory = 524288 (main memory size = 32 MB).

Mapping = Set-Associative.

Cache sets = They will vary depending on the number of blocks in cache, but you
must always have four-way set associative caches (remember: Number_of ways =
Number of blocks_in_cache / Number_of cache_sets).

e Replacement policy = LRU.

Configure the blocks in cache using the following configurations: 16 (cache size = 1
KB), 32, 64, 128, 256, 512, 1024, and 2048 (cache size = 128 KB). For each of the
configurations, obtain the bus traffic (in bytes per memory access) for the system using the
trace files: FFT, Simple, Speech and Weather. In order to compute the bus traffic, assume that
cache block transfers move 64 bytes (the block size) on the bus data lines, and that each bus
transaction involves six bytes of command and address on the bus address lines. Therefore,
you can compute the address traffic (including command) by multiplying the obtained bus
transactions by the traffic per transaction (6 bytes). In the same way, you can compute the
data traffic by multiplying the number of block transfers by the traffic per transfer (64 bytes).
The total bus traffic, in bytes per memory access, will be the addition of these two quantities
divided by the number of memory accesses (references) in the trace (see Table 2).

Does the global bus traffic increase or decrease as the cache size increases? Why (give
two reasons, one for the data traffic and another for the address+command bus traffic)? Does
this increment or decrement happen for all the benchmarks?

In these experiments, it may be observed that for great cache sizes, the bus traffic is
stabilized. Why? We can also see great differences of bus traffic for a concrete increment of
cache size. What do these great differences indicate? Do these great differences of bus traffic
appear at the same point for all the programs? Why?

8/12

In conclusion, does the increase in the cache size improve the multiprocessor system performance?
Are the conclusions you obtain similar to the previous ones for the miss rate project?

