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Abstract. Addressing tax fraud has been taken increasingly seriously, but most
attempts to uncover it involve the use of human fraud experts to identify and
audit suspicious cases. To identify such cases, they come up with patterns which
an IT team then implements to extract matching instances. The process, starting
from the communication of the patterns to the developers, the debugging of the
implemented code, and the refining of the rules, results in a lengthy and error-
prone iterative methodology. In this paper, we present a framework where the
fraud expert is empowered to independently design tax fraud patterns through
a controlled natural language implemented in GF, enabling immediate feedback
reported back to the fraud expert. This allows multiple refinements of the rules
until optimised, all within a timely manner. The approach has been evaluated by
a number of fraud experts working with the Maltese Inland Revenue Department.

1 Introduction

Fraud is a critical aspect in any financial system, not least of which in the area of
taxation. In general, fraud can be addressed by identifying rules which can either be
automatically discovered or specifically defined. Much work has gone into statisti-
cal and machine learning techniques to identify rules or patterns automatically e.g.
[MTVM93,TD99], however to date they have proved to be of limited effectiveness.
Our focus has been to aid fraud experts in the definition of rules. This process typically
consists of (i) human fraud experts identifying patterns of income and/or expenditure
which might indicate fraud; (ii) these patterns are explained to an IT team, who im-
plements the necessary code to identify matching individuals and companies from a
database; (iii) based on which, the fraud expert may refine the pattern, resubmitting it
each time to the IT team. This process, illustrated in Fig. 1 typically goes through many
iterations until effective patterns are identified by the fraud expert to extract suspicious
cases with acceptable rates of false positives and negatives. The most challenging prob-
lem is that there are many points of failure in such a workflow, and when a fraud expert
gets results from a submitted pattern which are not as desired, it could be for one (or
more) of various reasons, from the developer misunderstanding the informal descrip-
tion of the pattern to implement, to the pattern not being an effective one, or even due
to a bug in the implementation.

Consider, for instance, the following rule which can be written by a fraud expert
to identify taxpayers who declared low income for a number of years, which may be
deemed to be suspicious:



Fig. 1. Fraud detection process

Get taxpayer IDs for individuals who declared total income of less than 3000 Euro for
any three years of assessment.

Some issues which may arise when applying the rule to extract reports from ex-
isting data are the following: Firstly, since the rule is expressed in plain English, it
may be written imprecisely by the fraud expert, or be misinterpreted by the developer
who might, for instance, interpret “total income” to refer to income from employment
sources, and leave out other incomes such as pensions and bank interests. Furthermore,
the manual development process is prone to coding errors, especially when dealing with
multiple alterations of rules which require a number of changes.

Unexpected results due to these issues would require iterating through the process
to ensure that the right reports are issued. However, these patterns identified by fraud
experts are typically intelligent guesses, and it is desirable that they experiment with
different rules, trying to identify ones which work better than others. Furthermore, con-
stants such as the “3000 Euro” and the “three years” in this rule would be initial guesses
intended to be refined interactively by the fraud expert. Would 3500 Euro be a better
threshold in order to capture more potential fraud, or would 2500 Euro be better to get
less candidate fraud cases thus affording more time to look at them more closely? For
the fraud expert it is practically impossible to differentiate between the case when un-
expected results are due to misinterpretation or a bug in the code, and when it is due to
setting too high a threshold.

In this paper, we present an alternative approach to fraud detection, following the
same methodology as currently in use, but by-passing the development process, thus
reducing the points of failure. By having the fraud experts script their requests them-
selves, a correct compiler would allow them to focus directly on the development and
refinement of fraud patterns. Since these experts are typically non-technical, the first
challenge was to develop a controlled natural language (CNL) [Kuh14] for the domain
of tax fraud rules, which allows them to write and execute rules directly. Another chal-
lenge is how to go from rule specifications written in the fraud CNL to executable code
to process income information about entities and filter cases satisfying the rule. In order



to perform this, we have used runtime monitoring [LS09] techniques to compile CNL
statements compositionally into stream processors which flag matching cases.

The approach has been implemented based on the actual data submitted in the
Maltese Inland Revenue Department (IRD) system using the Grammatical Framework
[AR10], and the tool and language were evaluated by involving tax fraud experts. Al-
though the test population is small (due to the small number of tax fraud experts avail-
able), indications are that the level of abstraction of our language was appropriate to
enable non-technical experts to understand and write rules and execute them to obtain
fraud reports. The main contribution of the paper is the investigation of the application
of a controlled natural language in a real-life setting, and the use of the language by
non-technical experts to define runtime monitors.

The paper is organised as follows. In Section 2 we describe the framework we have
developed. Section 3 describes the CNL we are proposing as well as its evaluation. The
translation from rules written in the CNL to executable report generators is discussed in
Section 4, in which we also examine the efficiency of the executable rules. We discuss
similar work in Section 5, and finally conclude in Section 6.

2 A Fraud Monitoring Architecture

The main challenge we have addressed is that of empowering the non-technical fraud
expert to write and experiment with fraud identification rules. Furthermore, the system
enables the automatic extraction of information from a large database storing data about
legal entities which is regularly updated with the submission of new tax documents.
We have built a solution tailored to real-life data from the Maltese Inland Revenue
Department (IRD) system. The challenge can be split into two sub-problems: (i) the
design of an appropriate CNL to enable the writing of rules, and (ii) how such rules
can be processed on a growing database of entries to check which taxpayers match
particular rules.

The former problem has been addressed by developing a CNL focused on the actual
needed concepts and grammar to address tax fraud patterns and which was discussed
with a fraud expert working at the IRD during meetings held prior to the design of the
system. The language has been implemented in GF [AR10] and allows non-technical
users to input rules avoiding syntax errors. The latter problem, that of rule processing, is
that the underlying rule execution engine has to embody the semantics of the CNL, but
also ensure efficient processing of data — thus the semantics of the CNL would need to
be interpretable in a serial manner, allowing for incremental analysis as new data and
documents are received, requiring global re-evaluation only when new rules are set up.

With an ever changing dataset, another challenge for fraud experts is that of assess-
ing the effectiveness of their new rules. We have adopted a tagged control dataset which
can be used by the experts when experimenting with new rules. The limited size of the
dataset ensures fast response, and the tagging (whether an entity is known to have been
responsible for fraud) allows the system to report the percentage of false positives or
negatives.

The resulting framework is shown in Fig. 2. This approach avoids going through a
software developer every time a rule is added or modified, since the underlying concepts



Fig. 2. Automated flow using a Controlled Natural Language

are hard coded into the system. The final result allows the fraud expert to refine the rules
in a “what-if” manner where the feedback would indicate the accuracy of the rule. After
analysing the rule on sample data, the fraud expert can target the full set of cases to be
checked obtaining an accurate list of taxpayers which can be audited.

3 A CNL For The Specification Of Fraud Rules

The design of the CNL was crucial to ensure that fraud experts can identify fraud cases
by querying a system using known patterns. These patterns involve the querying of tax
submissions including patterns between different years of assessment. The language
vocabulary and grammar were based on a corpus of queries identified through consul-
tations with fraud experts from the Maltese IRD.

Apart from a basic ontology of terms related to financial and fraud concepts (such
as employee, tax payer, income, expenses, tax credits and deductions) and relations
between them (e.g. an employee is a tax payer, and an employee has an income), the
language had to include (i) temporal notions, to be able to refer to time points and
intervals in expressions (e.g. “the income for the current year” or “the average income
for the previous 3 years”); and (ii) mathematical expressions in the form of arithmetic
operators and numeric comparisons (e.g. “income + 3000 Euro”). Furthermore, the
language had to include means of referring to aggregated values (e.g. “the income for
the current year is less than the income of each of the previous three years”).

3.1 The Language

The fraud rule language uses a number of four basic concepts: (i) taxpayer filters, (ii)
time-based sets, (iii) conditions, and (iv) reports. These are then combined at the top
level to obtain full rules. The basic concepts are:

Taxpayer Filters. A key element of fraud rules is the choice of a subset of taxpayers
on which a check is to be made. This includes categories of taxpayers, such as em-
ployee, pensioner and company, but also filters on data properties of the taxpayers
as in the greyed out phrase in the following example:



Load the ID, where for any year, an employee of age more than 30 declared an in-
come less than 3000 Euro.

These filters match the following grammar snippet:

Taxpayer ::= taxpayer | Individual | Company | Employer
Individual ::= IndividualType

| IndividualType workAs Job
| IndividualType age ComparisonOperator n

IndividualType ::= individual | director | employee
Company ::= CompanyType | CompanyType operatingIn Industry | . . .

CompanyType ::= company | SME | partnership | . . .

Time-Based Sets. Another commonly occurring sentence component is that of tem-
poral constraints and intervals. These are used in two distinct ways in the queries
(i) specifying which years the rule is to be applied on e.g. “Load ID where for any 3
years . . . ”, and (ii) give context to a field e.g. “. . . the income of each year is lower
than the previous”. The grammar has been defined to enable the identification of
sets of years which are (i) sequential e.g. any 5 sequential years but also relative to
a point in time as in “the previous 4 years”; (ii) open intervals of years e.g. “the
year 2009 onwards”; (iii) arbitrary sets e.g. “any 2 years”; and (iv) singleton sets
e.g. “the current year” and “the year 2015”. Furthermore, these can be combined
as in “for any 3 years from the year 2009 onwards”, which intersects two year-set
selectors.

Conditions. The conditions part of the language contains the checks to be met for a
case to be flagged for auditing, typically using (i) a number of fields holding values
such as total income and profits; (ii) aggregation operators such as average, total
and minimum; and (iii) value comparison relations such as less than; (iv) trends
on values or their change in availability such as increase in income and stopped
declaring profits. These can be combined with year-sets to constrain aggregation
operators e.g. “the average income for years after 2009 is less than 2000 Euro”.
In general, when the values throughout the rule refer to the current year of assess-
ment, we give the option of leaving out the time reference e.g. “income is less than
expenses” would be considered equivalent to “income for the current year is less
than expenses for the current year”. In order to avoid ambiguity, we only allow this
omission if there are no other references to years throughout the rule.
Finally, conditions can be combined using Boolean connectives as in:

Load the ID, where for any 3 sequential years from year 2009 onwards, an
employee of age more than 30 declared a total income less than 3000 Euro or

declared a decrease in employment income.

Reports. Another important element of the language is the ability to identify which
fields are to appear in the fraud report using regular natural language construction:

Load the ID, age and total income for the last three years, where for any 3 sequential
years from year 2009 onwards, an employee of age more than 30 declared a total in-
come less than 3000 Euro or declared a decrease in employment income.



These language elements have been combined to obtain the fraud rule specifica-
tion language, which takes a reporting clause, taxpayer identification clause, year-set
constraint and filtering condition. Although the general structure of a rule is rather con-
strained, the freedom in the individual components allows for a wide range of rules
covered by the language.

The language has been built within the Grammatical Framework (GF) [Ran11]. GF
is a framework designed to address the translation of multiple languages by provid-
ing a number of CNLs in different languages. Furthermore, GF provides a number of
morphological paradigms which aid in making the language more readable. GF was
suitable since it has allowed us to create a custom-made language and apply these mor-
phological inflictions on the language. The custom-made language was needed since
the domain was too specific to use available generic CNLs.

The grammar contains around 160 rules, with approximately 1,000 lines of code.
Most of the language has been built from scratch since there are too main domain spe-
cific concepts, but reusing morphological rules from the GF framework.

GF also offers a number of authoring tools, one of which is the Minibar1 on-line
editor. This has been used to display the grammar in a more suitable format. Using a
predictive parser, the tool allows only valid entries, which was vital to make sure that
all the rules are grammatically correct.

3.2 CNL Evaluation

The effectiveness of the fraud rule CNL we developed has been evaluated with six
fraud experts working with the Maltese IRD and two accountants working in the private
sector. Although the number of persons evaluating the system is low, it is worth noting
that this includes practically all fraud experts working in the field with the IRD in Malta.
Full details of the evaluation can be found in [Cal16].

The use of the language was evaluated during individual meetings, with each fraud
expert being presented with the language in a one-hour session. The users were given a
short demonstration of the language which was followed with four exercises assessing
different aspects of how effective the language is: (i) ability to read and understand the
language; (ii) completeness of the terminology and concepts covered by the language;
(iii) ability to write rules.

For the first exercise, we took advantage of the fact that users were bilingual and
were asked to explain a number of rules written using the CNL in Maltese, thus avoiding
simple paraphrasing of the sentence. The second exercise consisted of two parts (a) they
were asked to translate a number of fraud rules written in Maltese into English to assess
whether the vocabulary and underlying concepts used were included in the CNL; and
(b) they were asked to come up with three tax fraud rules and write them in natural
language to assess whether the grammatical constructs used were allowed in the CNL.
For the final test, the users were asked to pick one of the rules identified in the previous
exercise and write it using the authoring tool in our CNL.

1 http://cloud.grammaticalframework.org/gfse/



The users managed to understand almost all the rules presented to them, with only
one rule which was not fully understood by two fraud experts. The rule used two in-
stances of year selections which can lead to potential ambiguity in interpretation:

Load ID where for any 3 years, an individual declared average total chargeable income
for the previous 3 years less than 2000 Euro.

Individual differences in preferences with regards to the language were minimal,
and could easily be catered for by extending the vocabulary, for instance, to include the
word times as an alternative to the mathematical symbol ∗ as preferred by one user.

When asked to identify fraud rules, and to implement one of them using the CNL,
all users identified rules which were covered by the language, and were correctly ex-
pressed. However, there were cases were fraud experts wanted to refer to fields which
were not available in the proof-of-concept tool developed. For the final version of the
tool, this would have to be extended to the full set of fields available from the IRD
database — something which can be done in a straightforward manner.

The evaluators were also asked questions regarding the use of such a language to
query information as opposed to using spreadsheets (as they usually do). Only one user
preferred using a spreadsheet, but adding that this preference came from years of being
accustomed to using spreadsheets due to an accounting background. It was clear that
while all the users became familiar with the language during the one-hour evaluation
session, a longer session would be necessary in order to cover further detail and, for
instance, discuss which possible rules can be written, while also giving the users more
information regarding the tool. This is needed since the language can become complex
when using time-based logic.

4 Monitoring Fraud Rules

One way of giving an executable semantics to the Tax Fraud CNL is to see the database
of taxpayers’ information as a large repository of time-stamped data, and the rules cor-
responding to database queries. However, such an approach requires that it is rerun
whenever new data is added to the database, and when one considers that the IRD
database can be rather large, this can result in hours of processing for each complex set
of rules. Since the data typically arrives in temporal order, however, one can adopt a
more incremental approach, processing the data as it comes in, and keeping a state to
avoid recalculating things repeatedly. To contrast the approaches, consider a rule which
states:

Load the ID, age and income for the current year, where for any three sequential years,
a taxpayer declared an income less than 3000 Euro.

Whenever new information about some taxpayers appears, the former global ap-
proach queries the database for data from any three sequential years about a taxpayer,
and processes the rest of the logic on the data collected. Unless concrete logic is added
to store the fact that for some year intervals this analysis has already been done, ear-
lier years will be reprocessed whenever new data becomes available. In contrast, if we
use an incremental approach which stores whether each taxpayer has declared less than



3000 Euro in these past two years, analysis on new data can be performed efficiently by
(i) checking that the threshold has not been exceeded with the data from the new year
and report if the rule is satisfied, and (ii) update the state appropriately.

There has been much work in runtime monitoring [LS09] on building techniques to
address such situations efficiently. It was thus decided that we adopt a standard runtime
verification tool, Larva [CPS09], to process the data efficiently, using techniques from
[CP13,CPA09]. Larva allows for specifications to be written in a guarded command lan-
guage format, possibly structured using automata — although for the sake of encoding
the semantics of our CNL, the guarded command rules sufficed.

Rules take the form of: event | condition 7→ action, indicating that whenever the
event (document being submitted, data becoming available, etc.) happens, and the con-
dition is satisfied, the action is executed. For instance, consider a rule which states that
“[some condition holds] for three consecutive years”. This can be encoded by introduc-
ing a variable count which keeps count of the number of past consecutive years (up to
3) in which the condition held. The count is initialised to zero, and the three following
rules (i) increase the count when the condition is satisfied; (ii) resets the count when it
is not; and (iii) reports a match when the count has reached 32 with the greyed out parts
to be replaced by appropriate code depending on the rest of the rule:

some condition holds | count < 3 7→ count + +

some condition holds | count = 3 7→ matches
¬ some condition holds | true 7→ count = 0

Furthermore, Larva allows for replication of rules for different instances of the same
object, thus allowing us to structure the rules above to be run for each possible taxpayer:

foreach p : TaxPayer
some condition holds | p.count < 3 7→ p.count + +

some condition holds | p.count = 3 7→ matches
¬ some condition holds | true 7→ p.count = 0

In order to take appropriate action depending whether an instance matches, Larva
allows for communication channels to be used between rules. Whenever a match oc-
curs, we can send a message with the taxpayer’s information on a particular channel:
matches(p)!, which is consumed by a reporting rule. For instance, a rule starting “Load
the ID, age and income for the current year. . . ”, would be encoded as the follows:

matches(p)? | true 7→ load(p.ID, p.Age, p.income(currentYear))

In order to implement time-based checks such as “average income for the previous
three years is less than 3000 Euro”, the system stores information from one year to
another. In order to avoid storing all the available data, the conditions need to address
two aspects: (i) the respective condition to be implemented as a rule, and (ii) to store the
yearly information of the field in question. These two aspects are addressed in different

2 The semantics of the rules is such that the conditions are all checked before any actions have
taken place, thus avoiding race conditions.



sets of rules, therefore the structure available in GF was crucial for this to be possible.
By using a template-based approach to generate Larva code, with generic solutions such
as monitors to keep track of counters and frequencies, and which are specialised to deal
with the objects referred to in the CNL specification.

Using GF, we have encoded these translations in a compositional manner on the
grammatical structure of the rules, encoding the monitors as a different language into
which the rules are translated. Clearly, for the monitoring language, GF support for
morphological inflections was not required, keeping the number of language structures
in Larva smaller.

In the performance evaluation, our approach was deemed to perform well, and in
fact, a sample of 53,000 records were checked in less than four seconds. This ensures
that the fraud expert is given the report in a timely manner which is one of our aims.
Furthermore, checking 3.2 million records, the system took around 3 minutes and this
meant that rules can be executed on large sets of data and still retrieve feedback in a
reasonable amount of time. When comparing these performance measures to traditional
database queries, we found that unless carefully optimised, such queries are signifi-
cantly less efficient as they would have to be reapplied globally every time new data
becomes available. Optimising such queries involves non-straightforward manipulation
of the querying code to introduce indexes and tables with intermediate results, thus
potentially being error prone and as such undesirable in our context.

5 Related Work

Jones et al. [JES00] have shown that with careful choice of syntax, even low-level (as
opposed to natural) domain-specific languages can achieve a high-level of readability
by non-technical experts — in their case, they present a combinator library to construct
financial contracts defined by financial engineers. In contrast, despite the end-users’
similar backgrounds in finance, in our initial meetings with fraud experts, the use of
such low-level notation was frowned upon, which led us to go for a more natural, albeit
controlled, syntax.

For similar reasons, we avoided the use of a template-based approach e.g. [PSE98],
in order to allow for a more granular and compositional grammar. The approach used in
our work combines the grammar-based and template-based approaches by presenting
a high-level template to the users to make it more understandable, whilst still using a
pool of underlying core concepts.

The use of controlled natural languages as a means of providing a flexible input
format for non-technical experts to be able to express instructions is rather widespread
e.g. [CGP15]. The natural aspect of the language, especially if used with an appropri-
ate user interface supporting syntactically correct-by-design input, allows for end-user
development within specific domains. GF itself has been used for various such case
studies e.g. [DRE13,RED10]. What distinguishes our approach from most other similar
work is the semantic interpretation of the language, and the use of a runtime monitoring
approach to allow for stream-based data analysis derived from natural language queries.
For instance, Dannéls et al. [DRE13], build a CNL tackling museum system queries. As
in our case, theirs is focused on a particular domain, that of identifying paintings in a



system. In contrast, however, our language is more controlled and technical and less
natural than theirs, which was required to be able to give a semantic interpretation of
the terms into a stream processing monitor.

We have already explored the use of monitoring techniques as a backend for a CNL
in [CGP15]. However, the fraud language we present in this paper is substantially more
extensive and expressive, even if backend techniques are similar.

6 Conclusions

In this paper, we have presented a controlled-natural-language-driven framework aimed
at supporting fraud experts to be able to, in an autonomous manner, explore different
fraud rules and apply them to a live set of taxpayer data. The backend of the framework
has been developed as an incremental monitor, enabling sufficiently efficient analysis
of large datasets — experiments show that running a number of rules on the data from
53,000 documents takes less than four seconds, an improvement on simple database
queries. This limited dataset, however, is used just to enable fraud experts to assess
their rules, before running them on the whole dataset with over 3.2 million documents
and which were processed in approximately three minutes.

The CNL we have developed has been evaluated by a number of fraud experts cur-
rently working on real-life tax fraud detection, which showed that the language was
effective both in enabling them to write rules, but also to correctly understand and in-
terpret rules written by others. The language currently contains the basic concepts of
numeric and monetary values in order to enable fraud experts to use it, however, we
plan to extend the language to (i) the full set of fields found in the taxation documents;
and (ii) include richer operations e.g. extend the predicate “increase in income” to be
able to access a finer grained “percentage increase in income”.

One interesting aspect in our use of GF is the multi-lingual support it provides
which can be harnessed to present the CNL in multiple languages while keeping the
same monitoring system. Since many taxation concepts are common across countries,
we envisage that this should be feasible with only minor localisation issues. Although
we have not addressed this in our work, we have instead treated our compilation into
monitors as a GF translation. Although our approach is very constrained, it might be
worth investigating further the use of translation support for compilation into executable
code as a means of semantic analysis or inspection.
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