Code Attestation for Monitor Compromise
Detection

Matthew Mifsud and Christian Colombo[0000—0002—2844—5728]

Department of Computer Science, University of Malta, Malta
{matthew.mifsud.22,christian.colombo}@um.edu.mt

Abstract. Runtime monitors detect deviations from expected behaviour,
making them effective in detecting malicious activity. Their effectiveness,

however, assumes the monitor itself remains uncompromised. This work

addresses the threat of in-memory code tampering by proposing a detec-

tion mechanism based on remote code attestation.
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1 Introduction

Protecting systems from malicious behaviour requires detecting unexpected be-
haviour during execution. This can be achieved using online runtime monitors.
However, because monitors run alongside the systems they observe, they become
attractive targets for adversaries. A common method of compromise involves
modifying code in memory, allowing an attacker to tamper with the monitor
and suppress detection. Maintaining the monitor’s integrity during execution
therefore requires a mechanism capable of continuously verifying its code state.

The threat of monitor compromise is becoming increasingly significant, as
runtime monitors are now deployed across a wide range of environments. These
include cloud platforms [1], mobile operating systems [2], industrial control sys-
tems [3], financial transaction systems [4], and other environments where trust
in the monitor’s behaviour is essential. Compromising a monitor can allow mali-
cious behaviour to go undetected, leading to data breaches, service disruption, or
unsafe operation in critical systems. Despite their importance, securing monitors
themselves seems not to be so well studied [5].

Among the various threats to monitor integrity, a particularly concerning
class is in-memory code tampering. Documented techniques show that attackers
can disable or bypass programs by directly modifying their code during execu-
tion. These attacks include code injection [6-8], where new code is introduced
at runtime, and code manipulation [9-11], where existing instructions are al-
tered. Such attacks are especially effective in environments that allow writable
memory or support runtime code inspection and modification. These include,
for example, native applications where low-level techniques such as inline hook-
ing [12] can overwrite function entry points to redirect execution, and managed
runtimes like the Java Virtual Machine, which allow programs to inspect their
own classes and dynamically load new code during execution.
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Verifying the state of a runtime monitor’s code during execution is particu-
larly challenging in adversarial environments. An attacker with sufficient privi-
leges may not only tamper with the monitoring logic to suppress detection but
also interfere with any local mechanism responsible for ensuring its integrity. In
such cases, the system can no longer be trusted to perform verification reliably.
To provide meaningful assurance, verification must be performed by an external
entity that remains beyond the attacker’s control and can independently assess
the monitor’s code state. This requires generating runtime proofs that accurately
reflect the executing code. However, this process is inherently difficult, as code
in memory is subject to dynamic behaviours such as compiler optimisations,
platform-specific representations, and deliberate changes introduced by trusted
instrumentation tools. These factors introduce variability in how code appears
at runtime, complicating the task of distinguishing legitimate modifications from
malicious ones.

2 Proposed Solution

To address the challenge of detecting when a runtime monitor has been tampered
with during execution, this work proposes a remote code attestation mechanism.
Remote attestation [13] is a cryptographic technique in which proofs of a pro-
gram’s code state are periodically generated and sent to an external verifier.
In our approach, the verifier issues unpredictable challenges, and the monitor
responds with a proof based on a measurement of its in-memory code.

While the proposed mechanism is applicable to various runtime environ-
ments, this work targets the Java Virtual Machine (JVM) for both design and
implementation. The JVM is widely adopted and supports dynamic code mod-
ification, making it a representative platform for demonstrating the technique.
Instead of measuring native machine code, whose format and location can vary
across platforms, this work focuses on Java bytecode, which remains structured,
accessible, and consistently resident in memory throughout execution. Bytecode
also serves as the authoritative representation from which all execution in the
JVM is derived, including just-in-time compiled machine code. These charac-
teristics make it particularly susceptible to tampering through standard JVM
capabilities such as dynamic class loading and bytecode instrumentation.

This work presents a practical design and implementation of a remote code
attestation mechanism for detecting in-memory tampering of runtime monitors
within the JVM. The mechanism detects a range of attacks, from subtle code
modifications to the complete disabling of monitoring logic or the attestation
process itself, as well as network-level threats such as proof forgery. We also
evaluated an optimisation inspired by the pseudorandom memory traversal tech-
nique used in the SWATT attestation scheme [14]. In our approach, we reduce
overhead by attesting a pseudorandom subset of in-memory code, introducing
a tunable trade-off between performance and security. Overall, this work lays
a foundation for securing runtime monitors against in-memory tampering and
presents an approach that can be adapted to other platforms.
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