Modularity

m The idea behind modularity is that of
splitting up the problem into a series of
self-contained modules.

m In practice it is advised that a module
should not exceed 100 or so lines and
preferably be short enough to fit on a
single page.

© Charlie Abela - Edited by Systems Development 59
Riccardo Flask

Advantages of modularity

= Some modules may be defined by standard procedures
which are used and reused in different programs or parts
of the same program.

= A module is small enough to be understandable as a unit
of code. Thus also easily debuggable

= Program maintenance is easier

m Several programmers may work on different modules
concurrently

= Modules can be tested independently
m Large projects become easier to monitor and control

© Charlie Abela - Edited by Systems Development 60
Riccardo Flask

Jackson Structured Programming

m This design methodology is ideally suited to
problems that can be expressed as a hierarchy of
data structures.

= In particular those described by a top-down
approach

m Operations include:
o Sequence: represents a sequence of operations
o Iteration: or loop as in while..do
o Selection: conditional selection as in if..then..else

© Charlie Abela - Edited by Systems Development 61
Riccardo Flask

Sequence

® In a structured diagram,
the levels are important
since an operation can
be made up of a
sequence of other
operations

= Aismadeupof B,D
and E and in turn B is

made up of C and E is
made up of F
© Charlie Abela - Edited by Systems Development 62

Riccardo Flask

31

Iteration

m The notation for a loop is an
“*? which 1s written in the
top right-hand side of a box
which represents the iteration
loop.

® A condition has to be defined
o Normally referenced by a

number

o Number, references actual
condition in a conditions list

© Charlie Abela - Edited by Systems Development
Riccardo Flask

Data

Process

C1

*

Input Age

C1 until end of data TRUE

63

Selection

m Selection is similar to
an if...then...else
statement

= Representation is

Check Credit
Card Limit

similar to an iteration c1 Else

except that the

Bill Card

o

Overlimit

o

selection symbol is a
small ‘o’.

m Branching depends
upon the condition

© Charlie Abela - Edited by Systems Development
Riccardo Flask

C1 IF limit not exceeded

64

32

Complete Example

[[|
Important to note | | |m. -

wvariables
that it is not
. C1 Until end of data true Cl
allowed to mix C2 If age <>-999 oatane
. . C3 If age > max L
different operations
in the same level, 2 Else
‘Work Out ®© Selendnl‘dnaol

i.e. children of the | i | irue

same process | |
should be of the

same type
C3 Else

max = age |

Output Sla!islics|

min = age |

© Charlie Abela - Edited by Systems Development 65
Riccardo Flask

Prototyping

m Refers to the use of tools, such as CASE tools (computer-
aided software engineering), that aid in quickly
developing, testing and evaluating the software. Based on
a spiral model.

= A prototype, which may be created in a few days, allows
users to find out immediately whether the system
represents/solves the customer’s needs.

m The process can be thought of as a build and refine
process. In the end a number of prototypes may have been
created, before the actual system is developed. This is
called throw-away prototyping

= One advantage of such methodology is the fact that the
customer is constantly being consulted during the software
building process

© Charlie Abela - Edited by Systems Development 66
Riccardo Flask

33

Systems flowcharts

= Shows an overview of a complete system,
by representing:
o Tasks to be carried out in the new system,
whether they are manual or computerised

o Devices (disks, terminals etc) that are to be
used in the system

o Media used for input, storage and output
o Files used by the system

© Charlie Abela - Edited by Systems Development 67
Riccardo Flask

Systems flowchart symbols

Process

Any Input

Output

© Charlie Abela - Edited by Systems Development 68
Riccardo Flask

34

Example

m A customer file is held on disk. Receipts are held in a
transaction file and are sorted and are then used to update a
master file, by creating a new master file.

Transaction (> > ‘ Sorted
(Sort Transaction (
Old New
Master File < Update Master File (

© Charlie Abela - Edited by Systems Development 69
Riccardo Flask

User Interface

®= A good interface design is an important
aspect of a successful system. Design
should consider:

o Who: will be using the system, whether the
users are experienced or not etc

o What tasks: will the computer perform,
whether its repetitive, life-critical etc

o Environment: whether this is noisy, hazardous
o What is technologically feasible

© Charlie Abela - Edited by Systems Development 70
Riccardo Flask

35

User Interface [cont]

= Particular attention should be given to the design
of the screens. Especially:

This should not be too cluttered

Use of colouring schemes

Shortcuts

Visibility of important functionality

Logical sequencing of items

o O O O O O

Use of appropriate input validation and error
messaging

© Charlie Abela - Edited by Systems Development 71
Riccardo Flask

Program Coding or Development

m This is a time-consuming stage.

®m Requires a lot of effort (hence expensive)
o Work is measured in man/months

= Aids to save time and money may include:
o using existing library routines, subroutines and
subprograms
o other programming aids such as
® screen painting software,
m report generators,
= application generators,
= RAD (Rapid Application Development) tools.

© Charlie Abela - Edited by Systems Development 72
Riccardo Flask

36

Program testing and debugging

= Program Errors : A program may have any or all of the
following types of errors:
o Syntax Errors: A statement in the program violates a rule of the
language,
o Semantic Errors: Violating rules of language, semantic errors

are concerned with the meaning of language statements
(semantics).

o Logical Errors: The program runs to completion but gives wrong
results or performs wrongly in some way.

o Runtime Errors: Program crashes during execution.

= The translator detects syntax and semantic errors but it
does NOT detect Logical and Run-time errors. These
require rigorous testing for detection and correction.

© Charlie Abela - Edited by Systems Development 73
Riccardo Flask

Program Debugging

= Aids and techniques:

o single stepping through the program: use of
watches

o setting breakpoints

o displaying contents of specified variables in
memory

o dumping and examining the contents of a file

o dumping and examining the entire contents of
memory

© Charlie Abela - Edited by Systems Development 74
Riccardo Flask

37

Stages of Testing

May be quite a lengthy and expensive process.

m Stages of testing:
o Desk—checking /Dry run: programmer follows through code
manually, using test data to check that an algorithm is correct
o Unit testing: testing of each individual subroutine or module, also
referred to as Module testing:
o Integration testing: software testing in which individual software
modules are combined and tested as a group

o System testing: is testing conducted on a complete, integrated
system to evaluate the system's compliance with its specified
requirements

o User acceptance testing
= Alpha testing in the case of bespoke software
= Beta testing in the case of packaged product

© Charlie Abela - Edited by Systems Development 75
Riccardo Flask

Testing Strategies

There are two major testing strategies:

o Black box or Functional Testing: Involves looking at the program
specification and creating a set of test data that covers all the inputs
and outputs of the program functions

o White box or Logical Testing: this depends on the code logic and
derives from the program structure rather than its function. The
code is studied and tests are created to test each possible path at
least once.

Remarks:

o Black box testing is not adequate by itself.

o White box testing by the programmer during program development
is most effective, though it will not detect missing functions.

© Charlie Abela - Edited by Systems Development 76
Riccardo Flask

38

Documentation

= Program Documentation should contain:
o A description of the problem to be solved.

o A program abstract that describes the various tasks
which the program performs (e.g. the files used, etc).

o Difficulties encountered during development and how
these were solved

o Operating instructions on how to run the program.

o A summary of the program controls which are built
into the program.

o A test, plan and data used to test the program for
accuracy. Any changes made during testing should
also be recorded

© Charlie Abela - Edited by Systems Development 77
Riccardo Flask

Types of Documentation

m User manual: aimed at the various end-
users of the system

m Operational: documentation of procedures
necessary to run the system .

m Technical: important to ensure that the
system can be maintained after completion

© Charlie Abela - Edited by Systems Development 78
Riccardo Flask

39

User Manual

m Typical information in a user manual:
Overview of options available

Guidance on the sequence of operations to follow
Screen shots showing screen input forms
Instructions on how to enter data

Sample report layouts

O O O O O O

Error messages that may be displayed and which
action to take

© Charlie Abela - Edited by Systems Development 79
Riccardo Flask

Operational Documentation

m Typical information:

o System setup procedures, including details for each
application, the files required and consumables
requirements

Security procedures
Recovery procedures in the event of system failure

A list of system messages that might appear on the
operator’s console and what action to take

© Charlie Abela - Edited by Systems Development 80
Riccardo Flask

40

‘ Technical Documentation]

m Typical information in a technical manual
include:

©)

Overall system plan

o Data organisation and flow

o Full annotated listing

o Details of test data and results

Charlie Abela - Edited by Systems Development 81
Riccardo Flask

System Implementation,
Evaluation and Maintenance

41

Implementation

= [mplementation phase may include a number of
activities:

o acquisition of new hardware and its installation.

o When installing new hardware, this may involve
extensive re-cabling and changes in office layouts.
Training the users on the new system
Conversion of master files to the new system, or
creation of new master files.

]@i CCQ}::;I;::F./?:ScI:(la - Edited by Systems Development 83
Evaluation

Evaluation will help those responsible of the implementation to judge whether the
expenditure on the new system has been justified.

Evaluation also helps to improve the quality of the future developments by
highlighting what worked well and what caused problems

Some areas to be covered in this evaluation:

o Accuracy: identify whether the output is consistently accurate during day-to-
day operations

o Quality of output: determine the quality of information outputted from system
(is it accurate, reliable, timely)

o User satisfaction: see that the users are comfortable with the new system and
any encountered problems are resolved quickly

o Reliability: this is judged by how often the system breaks down

o Performance: speed of performance evaluated

o Controls and Security: ensure that system is fully protected from
unauthorised access and the integrity of the data used is highly protected

© Charlie Abela - Edited by Systems Development 84

Riccardo Flask

42

System Maintenance

= Maintenance is generally triggered by requests for
changes from system users and or by management

= Maintenance is a very expensive process

m Therefore more cost effective to put time and effort into
the development phases

®= Level of maintenance depends on:
o Environment and type of software: e.g real-time applications
necessarily have to change
o Increased complexity: due to evolution, programs tend to
become more complex, and therefore more maintenance
requires more effort

© Charlie Abela - Edited by Systems Development 85
Riccardo Flask

System Maintenance [cont]

m Perfective maintenance

o This implies that while the system runs satisfactorily,
there is still room for improvement.

®= Adaptive maintenance
o All systems will need to adapt to changing needs within
a company.
m Corrective maintenance

o Problems frequently surface after a system has been in
use for a short time, however thoroughly it was tested.
Any errors must be corrected.

© Charlie Abela - Edited by Systems Development 86
Riccardo Flask

43

[Factors affecting maintainability]

Maintainability depends on:
o Good programming design

o Well structured programs written in a
modular fashion and in line with standards of
best practice

o Use of appropriate high-level language and
good system and program documentation

o The availability of a record of all maintenance
work carried during software evolution

© Charlie Abela - Edited by Systems Development 87
Riccardo Flask

[Systems Development Cycle]
investigation
@ 2. Systems
Maintenance Analysis

5. Systems 3. Systems
Implementation Design
\ 4. Systems
Development

© Charlie Abela - Edited by Systems Development 88
Riccardo Flask

44

