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Abstract. Incorrect cryptographic protocol implementation and mal-
ware attacks targeting its runtime may lead to insecure execution even if
the protocol design has been proven safe. This research focuses on adapt-
ing a runtime-verification-centric trusted execution environment (RV-
TEE) solution to a quantum-future cryptographic protocol deployment.
We aim to show that our approach is practical through an instantiation of
a trusted execution environment supported by runtime verification and
any hardware security module compatible with commodity hardware.
In particular, we provide: (i) A group chat application case study which
uses the quantum-future group key establishment protocol from González
Vasco et al., (ii) An implementation of the protocol from González Vasco
et al. employing a resource-constrained hardware security module, (iii)
The runtime verification setup tailored for the protocol’s properties, (iv)
An empirical evaluation of the setup focusing on the user experience of
the chat application.

Keywords: Runtime verification · Post-quantum cryptography ·
Trustworthy systems

1 Introduction

Group authentication key exchange (GAKE) protocols are essential for con-
structing secure channels of communication between multiple parties over an
insecure infrastructure [25]. Collaborative applications over the Internet, cov-
ering all different kinds of video and web conferencing software, are a prime
example of applications that can benefit from GAKE, allowing symmetric-key
cryptography to be used for both authentication and encryption whenever it is
not possible to agree on shared secrets over the same medium of communication
that requires securing.
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The need for secure collaborative web applications has been emphasised with
the onset of the COVID-19 pandemic. Literally, only a few days into the ensuing
lockdown that forced most employees around the world into remote working,
serious weaknesses in one of the most popular web conferencing applications
were immediately exposed [30]. Issues ranged from insecure key establishment
to inadequate block cipher mode usage. Yet this is only the latest in a string
of high-profile incidents concerning insecure cryptographic protocol implemen-
tation. Root causes span weak randomness [42], insufficient checks on proto-
col compliance in remote party exchanges [23], as well as memory corruption
bugs in code [35]. With malware code injection techniques becoming ever more
sophisticated in bypassing security controls [38], possibly even leveraging micro-
architectural side-channels of commodity hardware [7,26], the secure implemen-
tation of otherwise securely proven cryptography remains a challenge.

Quantum adversaries present one further challenge for GAKE and its appli-
cations. While it is difficult to gauge the level of threat concerned, NIST’s
announcement of the third round finalists of the post-quantum cryptography
standardisation process has set the tone for the level of preparedness expected
of the level of security for sensitive scenarios. In terms of implementation, the
added burden is presented by the even larger operands involved in the lattice
and code-based schemes [4], for example, as compared to those based on discrete-
logarithm and factoring assumptions.

In this paper, we address the problem of securely implementing a quantum-
future GAKE protocol through a Trusted Execution Environment (TEE) [36], in
the setting of a secure group chat application. Specifically, we focus on a proposed
protocol proven to be secure in a quantum-future scenario [22]. In doing so, its
design aims to balance post-quantum security and implementation efficiency.
A quantum-safe key encapsulation mechanism (KEM), e.g., CRYSTALS-Kyber
[12], is only used for protecting the confidentiality of session key material. On the
other hand, authentication is still based on cheaper discrete-log primitives, with
the end result being the protection of message confidentiality from delayed data
attacks using eventual quantum power, but without the ‘unnecessary burden’
of protecting from active quantum adversaries. Finally, user authentication is
password-based.

Secure implementation via a TEE is specifically provided through an instan-
tiation of RV-TEE [41]. RV-TEE combines the use of two components: The
first is Runtime Verification (RV), a dynamic formal verification extension to
static model checking [14,28]. The second component is a Hardware Security
Module (HSM) of choice to provide an isolated execution environment, possibly
equipped with tamper-evident features. Options encompass high-bandwidth net-
work PCI cards with hardware-accelerated encryption [39], down to smaller on-
board micro-controllers and/or smartcards used in resource-constrained devices
that connect to stock hardware over USB or NFC for example [11,20]. The remit
of RV is primarily the verification of correct protocol usage by conferencing/col-
laborative applications, as well as the protocol implementation itself. The HSM
protects the execution of code associated with secret/private keys from malware
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Fig. 1. The RV-TEE setup used for securing conferencing and collaborative applica-
tions based on a quantum-future GAKE.

infection while avoiding stock hardware side-channels. Furthermore, RV is also
tasked with monitoring data flows between the HSM and stock hardware.

Figure 1 shows the overall setup, delineating the scope of the case study pre-
sented in this paper. Most stock hardware nowadays comes equipped with CPUs
having TEE extensions based on encrypted memory to provide software enclaves
[31], and which could also be a suitable choice for the HSM if deemed fit. How-
ever, by adopting the entire RV-TEE setup—i.e., including the RV component—
an elevated level of trust can be achieved through:

– Application and protocol implementation verification using RV;
– Freedom in choosing the trusted HSM of choice to isolate from malware and
stock hardware side-channels; and

– RV securing the HSM/stock hardware boundaries.

Despite providing direction for securely implementing conferencing/collabo-
rative applications, RV-TEE is not prescriptive in the sense that, the RV prop-
erties for verification must be chosen carefully in terms of partial specification
of the GAKE protocol, while protocol implementation must be split between
the stock hardware and the HSM—with the exact delineation depending on the
specific choice of the latter. This paper is about the work undertaken to bridge
this gap, making the following contributions: (i) A group chat application case
study based on a post-quantum protocol that is secure in a quantum-future
scenario; ii) A protocol implementation using the SEcube™ [40], an inexpensive
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yet sufficiently powerful HSM to cater for the requirements of a lattice-based
KEM used by the post-quantum protocol implementation; (iii) The runtime ver-
ification setup tailored for the protocol’s properties using the automata-based
Larva [16] RV tool; (iv) An empirical evaluation of the setup focusing on the
user experience of the chat application demonstrating the practicality of the
RV-TEE setup for securing conferencing/collaborative applications based on a
post-quantum GAKE.

2 Background

2.1 Quantum-Future GAKE Protocol

The cryptographic protocol chosen for our case study is the quantum-future
GAKE protocol by González Vasco et al. [22]. The protocol allows members of
a group to perform an authenticated key exchange. Below, we present a detailed
description of the protocol.

Quantum-Future Security. The protocol is provably secure in a quantum-
future scenario wherein it is assumed that no quantum-adversary is present dur-
ing the execution of the protocol, and the established common secret is supposed
to remain secure even if the adversary gains access to a quantum computer in
the future.

Password-Based Authentication. The protocol uses password-based authen-
tication. It employs a prime order group G in which the Decision-Diffie-Hellman
assumption holds and assumes that the password dictionary D is a subset of G
through some public and efficiently computable injection ι : D ↪→ G.

Tools. The protocol uses the following tools:

– a key encapsulation mechanism (KEM)
– a message authentication code (MAC)
– a deterministic randomness extractor

Next, we describe these tools in more detail.

KEM - the protocol requires a KEM which is IND-CPA secure against fully
quantum adversaries (as defined in [9]). A KEM K consists of the following
three algorithms:

– a probabilistic key generation algorithm K.KeyGen(1l) which takes as input
the security parameter l and outputs a key pair (pk, sk),

– a probabilistic encapsulation algorithm Encaps(pk, 1l) which takes as input a
public key pk and outputs a ciphertext c and a key k ∈ {0, 1}p(l), where p(l)
is a polynomial function of the security parameter,

– a deterministic decapsulation algorithm Decaps(sk, c, 1l) which takes as input
a secret key sk and a ciphertext c and outputs a key k or ⊥.
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MAC - the protocol requires a MAC which is unforgeable under chosen message
and chosen verification queries attack (UF-CMVA) (as defined in [21]). A MAC
M consists of the following three algorithms:

– a probabilistic key generation algorithm M.KeyGen(1l) which takes as input
the security parameter l and outputs a key k,

– a probabilistic authentication algorithm Tag(k,M) which takes as input a key
k and a message M and outputs a tag t,

– a deterministic verification algorithm Vf(k,M, t) which takes as input a key
k, a message M and a tag t and outputs a decision: 1 (accept) or 0 (reject).

Deterministic Randomness Extractor - in the protocol, (uniform random) bit-
strings need to be extracted from (uniform random) elements in the group G.
Given a group element g ∈ G, the authors of the protocol denote by [g] (statis-
tically close to uniform random) bits extracted deterministically from g. When
the authors of the protocol need to extract two independent (half-length) bit-
strings from g, they divide [g] into two halves denoted by [g]L and [g]R such that
[g] = [g]L||[g]R.

Protocol Specification. Let U0, U1, . . . , Un be the users running the protocol.
It is assumed that before the protocol is started, the users share a password pw.
In addition, it is assumed that every user is aware of his index and the indices
of the rest of participants.

The protocol is depicted in Fig. 2. The user U0 has a special role in the pro-
tocol - he generates a key k and transports it to the other users. The key is
transported being masked by an ephemeral key generated from the key encapsu-
lation. To ensure authentication, each pair of users establishes a Diffie-Hellman
secret, with ι(pw) used as a generator of the group G. The resulting Diffie-
Hellman secrets are then used to derive keys for authentication tags on protocol
messages. Once a user verifies all tags, the key k is accepted and is used to derive
a shared session key (ssk) and a session ID (sid).

2.2 RV-TEE

RV-TEE [41] was proposed as a secure execution environment in the context
of a threat model comprising adversaries that target cryptographic protocol
execution at four different levels. The first three levels concern software and
are labelled as high, medium, and low. At the highest level, one finds attacks
exploiting logical bugs causing the protocol implementation to deviate from the
(typically theoretically-verified) design. The exploitation of incorrect verification
of digital certificates or authentication tags, usage of insecure groups to imple-
ment Diffie Hellman-based protocols, as well as weak sources of randomness,
all fall in this category [2]. At the medium level, we find attacks that target the
basic assumption of any cryptographic scheme: the secrecy of symmetric/private
keys, along with the unavailability of plaintext without first breaking encryption.
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Fig. 2. Password-based group-key establishment protocol [22]
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Adversaries at this level comprise stealthy malware that makes use of code-
injection [38] or side-channels [7] to break both.

Vulnerabilities at the lowest level originate from programming bugs, resulting
in the deducibility of secrets via non-constant-time operations [5], or else in mem-
ory leaks via memory corruption [35]. This level is handled differently from the
other levels since information flow-based RV is used during testing, rather than
post-deployment, due to the heavy information-flow analysis involved. Beneath
these threat levels, there is the hardware level, which can pose a threat if the
manufacturer cannot be trusted, say for fear of hardware backdoors, or due to
its susceptibility to side-channel attacks. This can be particularly of concern if
the hardware itself is a primitive for secure execution [44], is widely deployed
and an application’s implementation is specific to it. In this respect, RV-TEE is
designed with HSM flexibility in mind.

Runtime Verification (RV) [14,28] in general provides two primary benefits:
Firstly, monitors are typically automatically synthesised from formal notation
to reduce the possibility of introducing bugs; Secondly, monitoring concerns are
kept separate (at least on a logical level) from the observed system. In our
case study, we make use of Larva [16], where properties are specified using
Larva scripts that capture a textual representation of symbolic timed-automata.
Listing 1.1 shows a simple example property specifying expected user lock-out
scenario following 30min of inactivity or else 3 successive unsuccessful login
attempts (depicted in Fig. 3). Lines 12–16 define the states of the automaton,
identifying the starting, normal and bad ones. Lines 17–23 specify the state
transitions, with each transition also qualified by a guard condition and the
action performed within [] and separated by \\. Lines 2–5 declare the supporting
counter x and a timer t. Lines 6–10 identify the traced method calls that trigger
state transitions and initialise timer objects. While Larva natively supports the
monitoring of Java code through AspectJ instrumentation, it is possible to make
use of an adaptor to link it up with inline hook-based instrumentation at the
binary level as well, as used in previous RV-TEE work [41].

SEcubeTM -powered hardware [40], e.g., the USEcube™ USB token1, is our chosen
HSM for the group chat case study. The chip comprises an MCU, CC EAL5+
-accredited SmartCard, and an ultra-low power FPGA, all on the same chip,
with the latter components being callable through specific MCU instructions.
The MCU is an STM32F4 - ARM 32-bit Cortex-M4 CPU. Its 2 MiB of Flash
memory and 256 KiB of SRAM are required to host all HSM-side of the GAKE
protocol’s implementation, primarily the KEM. Programming the SEcube™ is
facilitated by an openly available SDK2 exposed as a 3-layered API on the host
side. On the device-side, the SDK is a layer on top of an STM32Cube3 MCU
package comprising peripheral drivers and middleware. The overall setup aids in

1 https://www.secube.blu5group.com/products/usecube-bundle-including-5-usecube
-tokens-and-1-devkit/.

2 https://www.secube.blu5group.com/resources/open-sources-sdk/.
3 https://www.st.com/content/st com/en/ecosystems/stm32cube-ecosystem.html.

https://www.secube.blu5group.com/products/usecube-bundle-including-5-usecube-tokens-and-1-devkit/
https://www.secube.blu5group.com/products/usecube-bundle-including-5-usecube-tokens-and-1-devkit/
https://www.secube.blu5group.com/resources/open-sources-sdk/
https://www.st.com/content/st_com/en/ecosystems/stm32cube-ecosystem.html
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1 GLOBAL {

2 VARIABLES {

3 int x = 0;

4 Clock t;

5 }

6 EVENTS {

7 badlogin() = {*.badlogin()}

8 timer30() = {t@30*60}

9 ...

10 }

11 PROPERTY users {

12 STATES {

13 BAD { badlogins inactive }

14 NORMAL { loggedin }

15 STARTING { loggedout }

16 }

17 TRANSITIONS {

18 loggedout -> badlogins [badlogin\x>2\]

19 loggedout -> loggedin [goodlogin\\t.

reset();]

20 ...

21 loggedout -> loggedout [badlogin\\x++;]

22 loggedin -> inactive [timer30\\]

23 }

24 }

25 }

Listing 1.1. Larva script for: There
are no more than 3 successive bad
logins and 30 minutes of inactivity
when logged in [16].

Fig. 3. Diagrammatic representation
of the automaton.

developing robust firmware. For the time being, our case study focuses solely on
executing all firmware on the MCU.

2.3 Related Work

Unlike model checking of cryptographic protocol design [32], literature on the
verification of their software implementations is sparse. As for the available run-
time verification approaches [6,33], none involve instrumentation of compiled
code with the disadvantage of either dealing directly with the source code, or
missing out on internal data and events. Furthermore, up to our knowledge,
RV-TEE [41] is the first to attempt a comprehensive solution at securing cryp-
tographic protocol implementations through a TEE and thereby addressing a
broad threat model. Besides having been studied extensively in the setting of
secure web browsing over TLS 1.3 [17], other work focused on SSH [18].

In our instantiation of RV-TEE, the Larva RV tool, the SEcube™ HSM,
and its Cortex-M4 MCU are critical enablers, and which are all proven to be of
industry-grade. Larva has been used extensively for verifying the correct opera-
tion of high-volume financial transactions systems [15]. As for SEcube™, besides
its integration in various devices, several open-source projects build upon its
Open SDK to demonstrate its employment in academic research [10]. Appli-
cations range from OS-agnostic file systems to securing a network’s link layer,
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secure password wallets, and even secure IoT hubs. As for its Cortex-M4 MCU,
an extensive body of work focusing on optimised cipher implementation cover
both post-quantum cryptography [1,24], as well as standard symmetric encryp-
tion [37].

3 Case Study

For the purpose of this project we need a proof-of-concept application for group
communication secured by quantum-safe cryptography. Therefore, we have cre-
ated a library with the working title ‘GKE library’, and a simple text-based
group chat application based on it.

The GKE library is written in C, exposing a high-level API for running
the GAKE protocol4 from [22], and AES-128 [19] en/decryption functionality
in CCM mode [43] using the shared session key ssk established in the GAKE
protocol. The library can be used in two different configurations: a configuration
which uses both a PC and the SEcube™ chip, or using only a PC.

An example session run of the chat application follows:

1 ps@Diane :~/ Dokumenty/Skola/phd/NATO/gke/GKE$ ./bin/chat --repeater=localhost \\

2 --pin --id 12

3 Secube login with password 4:test

4 GKE|> /help

5 Supported commands:

6 COMMAND ARGUMENTS DESCRIPTION

7 /room new - roomname id... - create new room

8 /room enter - roomname - set active room

9 /room list - - list active rooms and it users

10 /unsecure - msg - write unsecure message to current room

11 /msg - ids... -- msg - send unsecure multicast to ids

12 /sleep - nsec - sleep for nsec seconds

13 /get usage - - print cpu clock value

14 /exit - - exit application

15 /help - - print this help

16 - msg - send secure message to current room

17 GKE|> /room new myRoom 42 43

18 Creating room 'myRoom '
19 Room created

20 GKE|> /room enter myRoom

21 GKE|myRoom > Hello 42

22 [myRoom ]12: Hello 42

23 [myRoom ]42: Hello you!

24 GKE|myRoom > /exit

First, the user with id 12 launches the chat application, in this case connect-
ing to a chat server running on the same machine (lines 1–2). Next, a PIN-based
login to SEcube™ (line 3) is followed by a command dump (lines 5–16). Once a
new chat session is requested (lines 17–18) with users 42 and 43, a full GAKE
protocol run is executed, returning an instance of the shared session key ssk with
the other two users. Successful completion of the GAKE protocol results in the
Room created prompt. Once the user accesses the newly created session (line
20), all subsequently sent messages (lines 21–23) get routed through SEcube™

4 We describe the implementation of the GAKE protocol in more detail in Sect. 4.
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for encryption with the session key. Likewise, the received encrypted messages
get decrypted without ssk ever leaving the HSM. The /exit command (line 24)
terminates the session.

4 Implementation of the GAKE Protocol

In this section, we present some details of our implementation of the GAKE
protocol from [22]. We will focus on the implementation which uses both a PC
and the SEcube™ chip.

As was mentioned in Sect. 2.2, the SEcube™ chip comprises an MCU, a Smart-
Card and an FPGA, supported with an openly available SDK. Our implementa-
tion uses only the MCU (STM32F4 - ARM 32-bit Cortex-M4 CPU). The reason
for this is that we integrated our implementation in the available SDK and the
SDK (version 1.4.1) does not provide functionality to use the FPGA or the
SmartCard.

At present, our implementation does not contain protection against side-
channel attacks beyond the immediate protection derived from stock hardware
isolation, e.g. exploitation of non-constant time operations involving protocol
secrets are still possible. We plan to address the issue of securing the implemen-
tation against side-channel attacks in future work.

4.1 Role of SEcube™

Our implementation utilizes the SEcube™ chip as follows:

– The SEcube™ chip stores the password pw, and the password never leaves the
SEcube™. The password pw is a long-term password shared by members of
the group. During a run of the GAKE protocol members of the group use
this password for authentication.

– The SEcube™ chip generates all secret values used in the GAKE protocol,
and these values never leave SEcube™.

– All computations in the GAKE protocol which involve secret data are per-
formed by the SEcube™ chip.

– The shared session key ssk established in the GAKE protocol is stored on
SEcube™ and never leaves it.

– We note that in this instantiation no RV component is deployed on the
SEcube™. In future implementations this could be considered, bearing in mind
the resource constrained nature of the HSM.

4.2 Protocol Instantiation

Our implementation targets a 128 bit security level. The protocol needs to be
instantiated with proper choices of a key encapsulation mechanism (KEM),
a Diffie-Hellman group G, a deterministic randomness extractor, a message
authentication code (MAC), and a random number generator (RNG). Below,
we describe the instantiation choices which we made in our implementation.
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KEM - for KEM we chose CRYSTALS-Kyber [12], which is IND-CPA secure
against fully quantum adversaries, as required by the protocol. In particular,
we chose the version Kyber512 which aims at security roughly equivalent to
AES-128 [19]. CRYSTALS-Kyber is one of the four KEMs selected as finalists
in Round 3 of the NIST Post-Quantum Cryptography Standardization Process.
It is a lattice-based cryptosystem and has favourable sizes of the key pair and
the ciphertext. We use the implementation of Kyber512 from [3].

Group G - for the group G we chose the elliptic curve Curve25519 [8] which
offers 128 bit security. We use the implementation of Curve25519 from [29].

Deterministic Randomness Extractor - for the deterministic randomness extrac-
tor we chose SHA-256 [34] (available within the SEcube™ API), which provides
128 bit security.

MAC - for MAC we chose HMAC-SHA-256 [27] (available within the SEcube™
API), which provides 128 bit security.

RNG - we use the RNG function provided by the SEcube™ API.

4.3 Protocol Adjustment

We made a small adjustment to the protocol to make it more amenable for
resource-constrained HSM implementation (in our case, the SEcube™ chip). The
adjustment is as follows.

As can be seen in Fig. 2, the protocol requires a user to compute and verify
authentication tags—a computation of a tag is represented by the function Tag
and verification of a tag is represented by the function Vf. Furthermore (referring
once more to the figure), both these functions require M0|| . . . ||Mn as a part of
their input. Since these functions also require the secret value gi,j as an input,
they have to be computed on the SEcube™ chip. This means that after the user
receives values Mj from other users, he needs to transport these values from his
PC to the SEcube™ chip. With our instantiation of the protocol, the size of Mj is
832 bytes if j $= 0 and 32 bytes if j = 0. If the user runs the protocol with n other
users, this means that the user has to transport approximately 32+n×832 bytes
from a PC to SEcube™. Transporting data this large slows down the execution
of the protocol. In addition, once transported, the data occupies a large amount
of memory on SEcube™.

To avoid the above mentioned limitations, we adjusted the protocol as follows:
instead of M0|| . . . ||Mn, the functions Tag and Vf take as part of their input the
hash value ofM0|| . . . ||Mn. This adjustment has no negative effect on the security
of the protocol and reduces the number of transferred and stored bytes to just
the 32 bytes of the hash.
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Figure 4 shows our measurements of the execution time of the protocol, i.e.,
how long it takes a participant to run the protocol depending on: the number of
participants involved in the protocol run; whether the participant is the initiator
or not; and whether the protocol was implemented with our adjustment or not.
Our measurements do not include the time required by participants to exchange
messages (i.e. in our measurements we assumed that a participant receives mes-
sages from other participants instantly). These measurements were executed
using SEcube™ and a PC with the following characteristics: Lenovo Thinkpad
x220, Intel(R) Core(TM) i5-2520M CPU @ 2.50GHz (2 Cores, 4 Threads, with
AES-NI), RAM: 16 GiB (2× 8 GiB) DDR3 Synchronous 1600MHz (0,6 ns),
OS: Linux (Linux kernel version 5.4.0–77-generic, distribution build), Ubuntu
18.04.3 LTS (Bionic Beaver) with i3wm desktop environment. We can see that
for a larger number of participants our adjustment slightly improves the execu-
tion time of the protocol. What is, however, more important, our adjustment
allows the protocol to run for larger sizes of the group of participants. Without
the adjustment, we were not able to execute the protocol for a group of partic-
ipants greater than 44. This was due to memory constraints on SEcube™. The
adjustment solves this limitation.5

5 RV Component Implementation

In this section, we focus on the runtime verification component which checks the
correct implementation of the protocol from the perspective of a chat applica-
tion client. The protocol implementation and its incorporation within the chat
application is organised in terms of a number of layers (Fig. 5): starting from the
primitives and protocol calculations deployed on the HSM (SEcube™), which are
called through the GKE library, which is in turn accessed by the chat application.

5.1 Properties

Runtime verification can be used to monitor a wide range of properties: from
assertions, to temporal properties, to hyper properties [13], where each one can
be considered a special case of the other: assertions as a special case of tempo-
ral properties considering one instant in time, and temporal properties being a
special case of hyper properties considering only one execution of the protocol.

5 Note that although the maximum number of participants in Fig. 4 is 60, this is
not the limit of our implementation with the adjustment. The maximum number of
participants for which we were able to successfully run our implementation was 789.
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Fig. 4. Execution times of the protocol.

Table 1. Identified properties for runtime verification

Property layers Chat app Library All (incl. Primitives)

Assertion Printable decrypted
chars

Sensitive data scrubbed Non-null params,
valid returns

Temporal Chatroom lifecycle,
standard sockets

Correct call
sequence

Hyper Randomness quality

Taking each architectural layer and kind of property, we classify the prop-
erties in terms of a grid as shown in Table 1. This organisation of properties
allows us to consider various aspects of the protocol systematically6. Other works
involving the specification of properties in the case of other protocols [17,18,41]
has shown a number of common properties:

6 Strictly speaking, the chat app properties are not protocol properties and arguably
not part of the RV-TEE. However, checking that the chat app works as expected,
means that it is more likely that the underlying protocol is also being used in a
correct manner.
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Fig. 5. Chat application architecture

Function input/output Check that function inputs are valid (e.g., non-null),
and the output is valid with respect to the inputs.

Data scrubbing It is crucial to ensure that sensitive data is properly destroyed
after use7. For example, in the case of the protocol under consideration, the
generated random exponent beta and the ephemeral Diffie-Hellman keys of
each participant need to be destroyed once secure communication is estab-
lished.

Sequences of actions Protocols involve sequences of permitted actions by the
participants depending on the context. In our case study, the protocol follows
a high level sequence of round one followed by round two, which can be further
split into sequences of actions such as loading the password, generating beta,
and calculating the Diffie-Hellman group generator g, etc.

Randomness To ensure security, protocols depend on high quality random num-
ber generation, e.g., the exponent beta is randomly generated in our case
study.

Together, this description list covers all the protocol properties in Table 1.
The rest of the properties are chat application-specific properties, particularly
properties dealing with the chatroom lifecycle.

5.2 RV Experimentation Setup

Frida, a dynamic instrumentation toolkit, and more specifically frida-trace8 was
used for instrumenting the chat application. This decision came with the advan-
tages of not having to recompile the chat application and allowing for relatively
simple JavaScript code to hook the required functions. During the frida-trace
engine initialisation stage (before the first function handler is called), JavaScript
code defines globally visible functions (e.g., helpers and logging) and a state
object. This object is passed to every event handler to maintain information
across function calls. Adding fields to the state objects allows for sequential

7 This applies to the PC only implementation configuration. In the case of PC + HSM,
the sensitive data never leaves the hardware security module.

8 https://frida.re/docs/frida-trace/.

https://frida.re/docs/frida-trace/
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tracking, monitoring native pointers, keeping shadow copies of data and map-
ping API context to protocol run and eventually to participants.

We extended the chat application to accept scripted session runs and created
two testing scenarios. In each one, the chat client with id=1 was instrumented,
while all the other clients and server were running on the same machine.

– Scenario A: 3 clients involved, with client id=1 creating a room (following the
protocol steps for an initiator participant U0).

– Scenario B: 3 clients involved, with client id=1 joining the room (following
the protocol steps for a non-initiator participant U1≤i≤n).

The scenarios include 20 and 13 s of thread sleeps respectively to mimic a
realistic chat. This will be factored in the results discussion.

5.3 Instrumentation Overhead Results

Starting by looking at the instrumentation (i.e. the introduction of frida-trace),
Table 2 gives an overview of the overhead penalty, ranging from 0.41s to 1.38s
(using the same setup as reported in Sect. 4.3). Given that sleeps are included
in the scenarios, this overhead is substantial. We also try the same experiment
when the implementation uses the HSM vs. when it doesn’t: It is clear that
there is a penalty for using the resource constrained HSM, but to a lesser extent
than instrumentation. Overall, considering the instrumentation and the HSM,
we have an increase of (34.98–33.03) 1.95s over the whole duration of the chat
scenario. The number of experiments is too limited to extrapolate this result
to the general case, however, the indication is that the overheads are within
acceptable bounds, especially considering the case study of a chat application
where a few milliseconds of delay for each command would go unnoticed.

Table 2. Instrumentation overheads measured per scenario, with/out the HSM.

Time (s) Without SEcube™ Using SEcube™

Scenario A B All A B All

Non-instrumented 20.02 13.01 33.03 20.18 13.27 33.45

Instrumented 20.44 14.39 34.83 21.30 13.68 34.98

Increase 0.44 1.38 1.70 1.12 0.41 1.53

5.4 Runtime Verification Empirical Results

Using RV, we checked six properties9: three classified as control flow, and three
as data properties. The control flow properties checked the sequence of actions
9 Our analysis leaves out assertion checks such as non-null arguments. Our reasoning
is that these checks could be implemented as simple assertions in the code and thus
arguably not strictly part of RV.
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for the protocol and chatapp execution, while the third property kept track of
sockets being written to, reporting any suspicious ones. The data flow proper-
ties involved checking data is scrubbed, assessing the quality of the generated
random numbers, and finally, checking that all input characters are printable.
As expected, the scenario involving U0 required more RV effort as it plays a
bigger role in the setting up of the chatroom. Looking at the property cate-
gories (control flow vs. data), there is no substantial difference. However, we
note that randomness checking is rather basic—involving an entropy check, a
monobits test, and a runs test. A complete state-of-the-art randomness check
would certainly push the numbers substantially higher.

The properties were expressed as Larva properties and monitored offline by
parsing the log files on a MacBook Pro with 2.3GHz Quad-Core Intel Core i5
machine with 8Gib 2133MHz LPDDR3RAM. Each experiment was run ten times
and the results shown in Table 3 are the average (excluding log parsing time).

Table 3. RV time taken by property and scenario.

Time (µs) Control Flow Data RV componenta

(ms)

Scenario Protocol Chatapp Socket All Scrub Random Printable All

A (U0) 191 860 892 1943 982 253 298 1532 8.8

B (Ui) 189 448 286 924 110 168 101 378 3.8
a The measurement of each property only captures the time inside the property logic, leav-
ing out other generic RV logic particularly parameter bindings and monitor retrieval; this
explains why the RV component takes significantly more time than the total of all properties.

5.5 Discussion

The empirical results indicate that the overheads introduced by the instrumen-
tation and the HSM are non-negligible. However, in this work, our main aim
was to show the feasibility of the approach rather than to have an optimal solu-
tion. We note several ways in which instrumentation could have been carried
out more efficiently. We use frida-trace at the level of JavaScript not only for
setting up in-line hooks dynamically, but also for the instrumentation code itself
that records the events of interest. Alternatively, it is also possible to make use
of natively-compiled code for this purpose, but this would require more exten-
sive testing to make sure that the application’s robustness is not compromised.
Furthermore, through instrumentation, we gathered all events which could be
useful for RV. This provided us with experimental flexibility at the expense of
higher overheads. We foresee substantial immediate gains if we keep the use of
JavaScript to a minimum and limit the events to those strictly needed.

Compared to the other overheads, the time required for the actual verifica-
tion is small. Therefore this could just as well be done online and in sync with
the chat app execution, i.e., the application waits for the monitor’s go ahead
at every step. However, in case heavier RV is needed (e.g., for more thorough
randomness checking), one could consider splitting the properties into two cate-
gories: those which just involve a state check (if the current monitor state is X,



Secure Implementation of a Quantum-Future GAKE Protocol 119

then A is expected to happen), and those which involve checking data (data is
scrubbed; data is random). The former category of properties can be monitored
synchronously, while the latter can be monitored asynchronously.

6 Conclusion

Insecure execution of theoretically-proven communication protocols is still a
major concern, particularly due to malware attacks ready to exploit any vul-
nerability at the various logical levels of the implementation. Moreover, with
the advancements of quantum computers, coming up with novel quantum-safe
protocols is inevitable. In this work, we have proposed an RV-TEE instantiation
for the quantum-future group key establishment protocol from González Vasco
et al., securing the protocol implementation from the hardware level, up till
the logical level of the application utilising it. Through an empirical evaluation
based on a chat application case study, we show the feasibility of the approach—
involving substantial overhead, yet with minimal to no impact from a usability
perspective.

Future work is to leverage RV-TEE further by hardening the execution envi-
ronment by extending RV to the HSM code and implementing a taint inference-
based RV monitor to fend off code-injection malware targeting the chat applica-
tion’s process memory on the PC.
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