
Runtime Verification:
Passing on the Baton
Workshop on Formal Methods in Outer Space

Rhodes - October 2021

Christian Colombo, Gordon J. Pace, and Gerardo Schneider

Milestones of RV

2021

Today

2014

First RV Competition

2010

First International
Conference

2001

First Workshop on
Runtime Verification

Topics in RV

2021

Enforcement

Automata for RV

LTL + Data

2001

Runtime Verification of
LTL

RV + Other areas

Variations of LTL
semantics

Predictive runtime
analysis

Monitor-oriented
programming

(incl. Stream processing)

Hyperproperties

RV + AI

The Past and the Future
This is what has led us to where we are today

Where do we want to go from here?

How do we pass on the “baton”?

The Past and the Future
This is what has led us to where we are today

Where do we want to go from here?

How do we pass on the “baton”?
More use in

industry?

The Past and the Future
This is what has led us to where we are today

Where do we want to go from here?

How do we pass on the “baton”?

More “mainstream”
courses to students?

Hands-On Course to RV
Aimed to be practical:
● Develop their own “RV tool”
● Apply RV to a “realistic” system

Not aimed to give the full theory
(LTL comes quite late in the course)

Introduction

What is RV?

An introduction to
verification in general,
and runtime
verification more
specifically.

Introduction

What is RV?

An introduction to
verification in general,
and runtime
verification more
specifically.

Manual
monitoring

What is RV at its most
basic level?

Where does simplicity
stop working?

The need for
separation of concerns
+ abstraction

Introduction

What is RV?

An introduction to
verification in general,
and runtime
verification more
specifically.

Manual
monitoring

What is RV at its most
basic level?

Where does simplicity
stop working?

The need for separation
of concerns
+ abstraction

Instrumentation

How to automate event
extraction and monitor
injection

Introduction

What is RV?

An introduction to
verification in general,
and runtime
verification more
specifically.

Manual
monitoring

What is RV at its most
basic level?

Where does simplicity
stop working?

The need for separation
of concerns
+ abstraction

Instrumentation

How to automate event
extraction and monitor
injection

Specification
Languages

How do we automate
verifier synthesise?

● Guarded command
language

● Automata
● Regular expressions
● LTL

Introduction

What is RV?

An introduction to
verification in general,
and runtime
verification more
specifically.

Manual
monitoring

What is RV at its most
basic level?

Where does simplicity
stop working?

The need for separation
of concerns
+ abstraction

Instrumentation

How to automate event
extraction and monitor
injection

Various
Directions

● Real-time
● Offline
● Other topics

Specification
Languages

How do we automate
verifier synthesise?

● Guarded command
language

● Automata
● Regular expressions
● LTL

1. Introduction to RV

Software is difficult
to do well

So many examples of
expensive and deadly
bugs!

1. Introduction to RV

Software ever more
central to our lives

Most of our daily lives
depend on it!

Software is difficult
to do well

So many examples of
expensive and deadly
bugs!

1 >> Introduction to RV

Software ever more
central to our lives

Most of our daily lives
depend on it!

Software is difficult
to do well

So many examples of
expensive and deadly
bugs!

WE NEED TO CHECK!

Testing is practical but incomplete
Model checking is complete but impractical

RV as an alternative

2a. FiTS - Financial Transaction System

FiTS

BackendInterface

Admin User

Account Objects

User Objects

2a. FiTS - Financial Transaction System

FiTS

BackendInterface

Admin User

Account Objects

User Objects

Basic code + Solutions
are provided in repo

2b. Manual RV - Assertions

“Only users from Argentina can be Gold Users”

Point assertion

2b. Manual RV - Assertions

“The system should be initialised before the first user session is opened”

Temporal property

Things start to get
messy!

2b. Manual RV - Assertions

This is what we’re
talking about!

“The administrator must reconcile accounts every 1000 attempted external money
transfers or whenever an aggregate total of one million dollars in attempted
external transfers is reached”

2b. Manual RV - Assertions

“The administrator must reconcile accounts every 1000 attempted external money
transfers or whenever an aggregate total of one million dollars in attempted
external transfers is reached”

System Under
Scrutiny (SUS)

Monitoring code
spread throughout the

FiTS system

2 >> Need for Separation of Concerns

There are two main problems with the manual approach:

● Placement of the monitors - Non-modular

AOP

AOP

2 >> Need for Separation of Concerns

There are two main problems with the manual approach:

● Placement of the monitors - Non-modular

● Programming of the verifier - Error-prone

AOP

Specification
languages

3. Instrumenting Monitors
Student use AOP code to write monitoring code in a single file

SUS RV
(AOP)

3 >> Instrumenting Monitors

SUS RV
(AOP)

The code is modular
but verification code
is still hand-written,

so error-prone

4a. Specification Languages: Guarded-Commands
Students are introduced to Guarded Commands (event | condition -> action)
● They write the spec and
● The compiler

SUS RV
(AOP)

Monitor
synthesis

GCL
spec

4a. Specification Languages: Guarded-Commands
Students are introduced to Guarded Commands (event | condition -> action)
● They write the spec and
● The compiler

Introduction to
● Monitor state
● Parametrised properties

SUS RV
(AOP)

Monitor
synthesis

GCL
spec

4a >> Specification Languages: Guarded-Commands

SUS RV
(AOP)

Monitor
synthesis

GCL
spec

Abstracted from AOP
but language is same

as SUS

4b. Specification Languages: Finite State Automata
Students are introduced to automata
● They write the properties in automata
● Write a convertor into GCL

SUS RV
(AOP)

Monitor
synthesis

GCL
spec

ConversionFSM
spec

4b >> Specification Languages: Finite State Automata

SUS RV
(AOP)

Monitor
synthesis

GCL
spec

ConversionFSM
spec

Cool but FSMs lack
structure

4c. Specification Languages: Regular Expressions
Students are introduced to REs
● Understand semantics
● How to monitor using derivatives

4c. Specification Languages: Regular Expressions
Students are introduced to REs
● Understand semantics
● How to monitor using derivatives

They express properties as REs
Generate the code as GCL

SUS RV
(AOP)

Monitor
synthesis

GCL
spec

DerivativesRE
spec

4c >> Specification Languages: Regular Expressions

SUS RV
(AOP)

Monitor
synthesis

GCL
spec

DerivativesRE
spec

Can we use LTL?

4d >> Specification Languages: LTL

SUS RV
(AOP)

Monitor
synthesis

GCL
spec

DerivativesLTL
spec

Of course!

5. Real-Time Properties
Students should understand:
● Lowerbound vs Upperbound properties
● LB can be monitored with timestamps

 LB: A session should not be
opened in the first ten

seconds immediately after
system initialisation

5. Real-Time Properties
Students should understand:
● Lowerbound vs Upperbound properties
● LB can be monitored with timestamps
● UB require events to detect as-early-as-possible

 LB: A session should not be
opened in the first ten

seconds immediately after
system initialisation

UB: A new account must
be approved or rejected

by an administrator
within 24 hours of its

creation

5 >> Real-Time Properties
Students should understand:
● Lowerbound vs Upperbound properties
● LB can be monitored with timestamps
● UB require events to detect as-early-as-possible

● The effect of slowdown on real-time properties

 LB: A session should not be
opened in the first ten

seconds immediately after
system initialisation

UB: A new account must
be approved or rejected

by an administrator
within 24 hours of its

creationApplies for any aspect of
the system which is reflexiv

E.g. System reasons on its
own memory consumption

6a. Offline Runtime Verification

SUS
Log
code

(AOP)

GCL
spec

Logging code
generation

The need to be non-intrusive
- RV reduced to logging at runtime

Students generate code to record needed info

Log file

6a >> Offline Runtime Verification

SUS
Log
code

(AOP)

GCL
spec

Logging code
generation

Whatever isn’t
recorded is lost

Log file

6b. Offline Runtime Verification

SUS
Log
code

(AOP)

GCL
spec

Logging code
generation

Verification code
generation

Verification codeVerification code is updated to
consume events from the log
file

Log file

6b >> Offline Runtime Verification

SUS
Log
code

(AOP)

GCL
spec

Logging code
generation

Verification code
generation

Verification code Log file

If a violation is detected,
it is too late to do
anything about it!

7a. Advanced Topics to Consider
● More theory

● Reactivity: Enforcement / Reparation and Control / Compensation

● Efficiency: Profiling / Optimisation

● Persistence of Monitors

● DSLs

7b. Advanced Topics - Links to Applications
Link to students’ area of specialisation

● Distributed systems
● Hardware
● Hybrid and embedded systems
● Security/Privacy
● Contracts/Policies
● Transactional information systems
● Huge, unreliable or approximated domains

See: A survey of challenges for
runtime verification from

advanced application domains

7c. Advanced Topics - Links to Other Areas
Link to students’ area of specialisation

● Static Techniques
● Model Learning
● Testing
● Runtime Assertion Checking

See: COST Action IC 1402 ArVI:
Runtime Verification Beyond Monitoring

Activity Report of Working Group 1

Experiences Teaching the Course

2018

RV winter school in
Pratz sur Arly (1hr)

2016

RV summer school in
Madrid (~6hrs)

2013

ECI Winter School in
Computer Science in

Buenos Aires (~20hrs)

Experiences Teaching the Course at University

since 2014

CPS3233 - Verification
Techniques

till 2013

CSA3218 - Formal
Methods

CPS5120 - Runtime
Verification
(Masters)

The hands-on
approach

“Traditional”
approach

Variations of the Course
Length
● Cutdown versions (summer/winter schools)
● 5-credit version at University
● Longer version in the book

Technology
● Java + AspectJ

Case study
● FiTS

The hands-on
approach

Other options would
work just as well

Conclusion
A lot to celebrate in our past

Time to see more RV take up in industry

Passing on the baton through education

Ideas can be adapted according to context
Easy to connect to many other areas

