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What is Special? (2) - Separation of Concerns 
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Zooming in
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Compilers - Challenges
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Monitors - Challenges
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Monitors - Options
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Verifiers - Challenges
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Reactions - Challenges
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Reactions - Options
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Reactions - More Options
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Cyber Security (1)
Securing a Group Key Exchange Protocol 

Implementation

(part of NATO-funded project)



Secure Communication in the Quantum Era

Quantum computers (when they become practical) pose a threat to cryptographic communication 

protocols.

This project aimed to design a new “Quantum-safe” Group Key Exchange Protocol

And provide a proof of concept implementation

Case study: a chat application using the protocol to establish the secret keys



The need for secure communication

As the COVID-19 pandemic lockdown forced most employees into remote working, serious weaknesses 

in Zoom were exposed. Issues ranged from insecure key establishment to inadequate block cipher mode 

usage. 

Other previous high-profile incidents concerning insecure cryptographic protocol implementation were 

caused by:

● Weak randomness.

● Insufficient checks on protocol compliance.

● Memory corruption bugs.



Many things can go wrong on many different 
           levels of abstraction

(High level) Wrong protocol 
implementation

The protocol implementation might deviate from the 
verified (theoretical) design

Low level threats
Arithmetic overflows, undefined downcasts, and 
invalid pointer references

Hardware
Can hardware be trusted? 
Side Channel attacks?

  Malware, Data leaks, etcMedium level threats
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A mix of RV 
and Hardware



Concept 1: Isolation
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Concept 1: Isolation
Certified H/W
(Hardware)

Hide memory errors 
from attack surface
(Low level)

No crypto key transfers
(Medium level)
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Concept 2: Monitoring

High level

Check sequences of actions

Check parameters

Check any assumptions implicit in proofs

Low level

Plaintext leakage across border
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Concept 2: Monitoring

Monitor for data leaks 
(Medium level)



Concept 2: Monitoring

Monitor for data leaks 
(Medium level)

Monitor code while executing
(High level)



Summary



How does it look in practice?



Hardware Security Module - SECube
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Looking Deeper at a Single Client



Instrumentation



Log Output



High level monitors

Sequence of actions (according to protocol design)

Valid parameters

Valid returns values

Data is wiped after use



Formal Specification



Properties verified (High level) on ECDHE

Validation of remote peer's public key 
on each exchange is done (unless the 
session is aborted)



Properties verified (High level) on ECDHE

Once master secret is established, 
private keys should be scrubbed 
from memory 
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Monitoring Overheads

        2%                    11%                      5%                     6%                      3%                      5%
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A - Creating a chat room
B - Joining a chat room

Instrumentation 
is more 
expensive than 
HSM



Running the Monitor Offline



Switching to Online Monitoring



Monitoring Output



Monitor Alert
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Future/Ongoing Work



Future/Ongoing Work

Protecting the monitor

- The monitor is executed in a protected environment (RunC Container)

- The logs are encrypted and stored in temper-evident file system (SEALFS)



Cyber Security (2)
Extracting Evidence

(part of Horizon 2020 
LOCARD project)





Stealthy Malware - Living Off the Land (LOtL)

● Delegate sensitive tasks (e.g. sending messages) to benign apps

● Leave little to no evidence behind (no suspicious permissions needed)

● Cannot avoid executing in memory



Assumptions

● We don’t modify Android
● We don’t modify the app
● We want an approach which is easy to use across apps and app versions



Whatsapp Example

Could Whatsapp be sending messaging without me knowing it?



Instrumenting Whatsapp



MobFor (ii)

Forensic
readiness

1. Asset
management

Targeted
 > Apps
 > Devices
 > Users

This project has received financial support from the European Union 
Horizon 2020 Programme under grant agreement no. 832735.



MobFor (ii)

Forensic
readiness

1. Asset
management

Targeted
 > Apps
 > Devices
 > Users

2.Instrumentation

Drivers

+

This project has received financial support from the European Union 
Horizon 2020 Programme under grant agreement no. 832735.



MobFor (ii)

Forensic
readiness

Forensic
acquisition

1. Asset
management

Targeted
 > Apps
 > Devices
 > Users

2.Instrumentation

Drivers

+

3.Event-triggered
memory dumps 

This project has received financial support from the European Union 
Horizon 2020 Programme under grant agreement no. 832735.



MobFor (ii)

Forensic
readiness

Forensic
acquisition

1. Asset
management

Targeted
 > Apps
 > Devices
 > Users

4.Non-volatile memory

Device logs,
Backup, Cloud,
External sources

2.Instrumentation

Drivers

+

3.Event-triggered
memory dumps 

This project has received financial support from the European Union 
Horizon 2020 Programme under grant agreement no. 832735.



MobFor (ii)

Forensic
readiness

Forensic
acquisition

1. Asset
management

Targeted
 > Apps
 > Devices
 > Users

4.Non-volatile memory

Device logs,
Backup, Cloud,
External sources

Forensic
analysis

5.Timeline
analysis

2.Instrumentation

Drivers

+

3.Event-triggered
memory dumps 

Chain of custody

This project has received financial support from the European Union 
Horizon 2020 Programme under grant agreement no. 832735.
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Where does RV fit in?
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Future/Ongoing Work

Making agents more generic (using infrastructure-based trigger points)

Hosting app in virtual app instead of repackaging

Trying the same approach on financial apps

Adding anomaly detection to show value added of newly logged events



Conclusions



Conclusions

RV in itself offers two main ideas:

- Formal specifications
- Separation of concerns

The nice thing about RV is that it has a lot to offer to different areas

Two main projects:

- Securing a cryptographic protocol (in conjunction with hardware)
- Extracting events from memory 


