
Runtime Verification as a 
Toolkit of Techniques for 

Cyber Security Monitoring
Christian Colombo

University of Malta

Genova, April 2023



What is Runtime Verification?



A General Picture

System



A General Picture

System eventsMonitor



A General Picture

System eventsMonitor Verifier output



A General Picture

System eventsMonitor Verifier output
Reactor 

Visualisation
Simplification

feedback



What is Special?

System eventsMonitor Verifier output
Reactor 

Visualiser
Simplifier

feedback



What is Special? (1) - Automatic Synthesis

System eventsMonitor Verifier output
Reactor 

Visualiser
Simplifier

feedback

Compilerspecification

Reactor 
Visualiser
Simplifier

Compilerspecification



What is Special? (2) - Separation of Concerns 

System eventsMonitor Verifier output
Reactor 

Visualiser
Simplifier

feedback

Compilerspecification

Reactor 
Visualiser
Simplifier

Compilerspecification



Zooming in

System eventsMonitor Verifier output
Reactor 

Visualiser
Simplifier

feedback

Compilerspecification

Reactor 
Visualiser
Simplifier

Compilerspecification



Specifications

System eventsMonitor Verifier output
Reactor 

Visualiser
Simplifier

feedback

Compilerspecification

Reactor 
Visualiser
Simplifier

Compilerspecification



System eventsMonitor Verifier output
Reactor 

Visualiser
Simplifier

feedback

Compilerspecification

Specifications - Challenges

Reactor 
Visualiser
Simplifier

Compilerspecification

Choice of expressive 
power, e.g. real-time

Choice of language
(depending on target 
users)



System eventsMonitor Verifier output
Reactor 

Visualiser
Simplifier

feedback

Compilerspecification

Reactor 
Visualiser
Simplifier

Compilerspecification

Specifications - Options
Variety of logics
Enriched automata
Domain specific,    
Controlled natural
languages



Compilers

System eventsMonitor Verifier output
Reactor 

Visualiser
Simplifier

feedback

Compilerspecification

Reactor 
Visualiser
Simplifier

Compilerspecification



Compilers - Challenges

System eventsMonitor Verifier output
Reactor 

Visualiser
Simplifier

feedback

Compilerspecification

Reactor 
Visualiser
Simplifier

Compilerspecification
Correctness

(Efficiency is usually 
ignored when done 
before runtime)



Compilers - Options

System eventsMonitor Verifier output
Reactor 

Visualiser
Simplifier

feedback

Compilerspecification

Reactor 
Visualiser
Simplifier

Compilerspecification

Compilation of 
automata is simple

Logics and other 
languages are 
harder



Monitors

System eventsMonitor Verifier output
Reactor 

Visualiser
Simplifier

feedback

Compilerspecification

Reactor 
Visualiser
Simplifier

Compilerspecification



Monitors - Challenges

System eventsMonitor Verifier output
Reactor 

Visualiser
Simplifier

feedback

Compilerspecification

Reactor 
Visualiser
Simplifier

Compilerspecification

Intrusiveness needs 
to be kept to a 
minimum



Monitors - Options

System eventsMonitor Verifier output
Reactor 

Visualiser
Simplifier

feedback

Compilerspecification

Reactor 
Visualiser
Simplifier

Compilerspecification

Instrumentation (e.g., 
Aspect-Oriented 
Programming)

Tracing



Verifiers

System eventsMonitor Verifier output
Reactor 

Visualiser
Simplifier

feedback

Compilerspecification

Reactor 
Visualiser
Simplifier

Compilerspecification



Verifiers - Challenges

System eventsMonitor Verifier output
Reactor 

Visualiser
Simplifier

feedback

Compilerspecification

Reactor 
Visualiser
Simplifier

Compilerspecification

Efficient use of 
resources

Practical 
architectural choices



Verifiers - Options

System eventsMonitor Verifier output
Reactor 

Visualiser
Simplifier

feedback

Compilerspecification

Reactor 
Visualiser
Simplifier

Compilerspecification

Online vs Offline vs 
Hybrid

Choice of programming 
language, 
Communication 
protocol



Reactions

System eventsMonitor Verifier output
Reactor 

Visualiser
Simplifier

feedback

Compilerspecification

Reactor 
Visualiser
Simplifier

Compilerspecification



Reactions - Challenges

System eventsMonitor Verifier output
Reactor 

Visualiser
Simplifier

feedback

Compilerspecification

Reactor 
Visualiser
Simplifier

Compilerspecification

Give timely and 
effective feedback to 
system

Help developer fix 
the issue



Reactions - Options

System eventsMonitor Verifier output
Reactor 

Visualiser
Simplifier

feedback

Compilerspecification

Reactor 
Visualiser
Simplifier

Compilerspecification

Allow monitor to 
steer the system

Provide visualisation

Simplify 
counterexample



Reactions - More Options

System eventsMonitor Verifier output
Reactor 

Visualiser
Simplifier

feedback

Compilerspecification

Reactor 
Visualiser
Simplifier

Compilerspecification

What can be done if 
violation is detected 
late?
Compensations



Cyber Security (1)
Securing a Group Key Exchange Protocol 

Implementation

(part of NATO-funded project)



Secure Communication in the Quantum Era

Quantum computers (when they become practical) pose a threat to cryptographic communication 

protocols.

This project aimed to design a new “Quantum-safe” Group Key Exchange Protocol

And provide a proof of concept implementation

Case study: a chat application using the protocol to establish the secret keys



The need for secure communication

As the COVID-19 pandemic lockdown forced most employees into remote working, serious weaknesses 

in Zoom were exposed. Issues ranged from insecure key establishment to inadequate block cipher mode 

usage. 

Other previous high-profile incidents concerning insecure cryptographic protocol implementation were 

caused by:

● Weak randomness.

● Insufficient checks on protocol compliance.

● Memory corruption bugs.



Many things can go wrong on many different 
           levels of abstraction

(High level) Wrong protocol 
implementation

The protocol implementation might deviate from the 
verified (theoretical) design

Low level threats
Arithmetic overflows, undefined downcasts, and 
invalid pointer references

Hardware
Can hardware be trusted? 
Side Channel attacks?

  Malware, Data leaks, etcMedium level threats



Many things can go wrong on many different 
           levels of abstraction

(High level) Wrong protocol 
implementation

The protocol implementation might deviate from the 
verified (theoretical) design

Low level threats
Arithmetic overflows, undefined downcasts, and 
invalid pointer references

Hardware
Can hardware be trusted? 
Side Channel attacks?

  Malware, Data leaks, etcMedium level threats How can RV 
help?



Many things can go wrong on many different 
           levels of abstraction

(High level) Wrong protocol 
implementation

The protocol implementation might deviate from the 
verified (theoretical) design

Low level threats
Arithmetic overflows, undefined downcasts, and 
invalid pointer references

Hardware
Can hardware be trusted? 
Side Channel attacks?

  Malware, Data leaks, etcMedium level threats How can RV 
help?

A mix of RV 
and Hardware



Concept 1: Isolation



Medium level

Crypto keys

Low level

Hide memory errors from attack surface

Hardware

Bring-your-own certified h/w

Concept 1: Isolation



Concept 1: Isolation



Concept 1: Isolation
Certified H/W
(Hardware)



Concept 1: Isolation
Certified H/W
(Hardware)

Hide memory errors 
from attack surface
(Low level)



Concept 1: Isolation
Certified H/W
(Hardware)

Hide memory errors 
from attack surface
(Low level)

No crypto key transfers
(Medium level)



Concept 2: Monitoring



Concept 2: Monitoring

High level

Check sequences of actions

Check parameters

Check any assumptions implicit in proofs

Low level

Plaintext leakage across border



Concept 2: Monitoring



Concept 2: Monitoring

Monitor for data leaks 
(Medium level)



Concept 2: Monitoring

Monitor for data leaks 
(Medium level)

Monitor code while executing
(High level)



Summary



How does it look in practice?



Hardware Security Module - SECube



Hardware

Host 
(PC)

Full isolation

SECube
Device 
(HSM)

Binary instrumentation

Runtime Verification



Hardware Setup

Host (PC) Device 
(HSM)Host (PC)Device 

(HSM)

Host (PC)

Host (PC)

Device 
(HSM)

Runtime 
Verification

Runtime 
Verification

Runtime 
Verification

Runtime 
Verification

Device 
(HSM)



Looking Deeper at a Single Client



Instrumentation



Log Output



High level monitors

Sequence of actions (according to protocol design)

Valid parameters

Valid returns values

Data is wiped after use



Formal Specification



Properties verified (High level) on ECDHE

Validation of remote peer's public key 
on each exchange is done (unless the 
session is aborted)



Properties verified (High level) on ECDHE

Once master secret is established, 
private keys should be scrubbed 
from memory 



Monitoring Overheads

        2%                    11%                      5%                     6%                      3%                      5%

            
1%

0.4%



Monitoring Overheads A - Creating a chat room
B - Joining a chat room



Monitoring Overheads

        2%                    11%                      5%                     6%                      3%                      5%

            
1%

0.4%

A - Creating a chat room
B - Joining a chat room

Instrumentation 
is more 
expensive than 
HSM



Running the Monitor Offline



Switching to Online Monitoring



Monitoring Output



Monitor Alert



Where does RV fit in?

System eventsMonitor Verifier output
Reactor 

Visualiser
Simplifier

feedback

Compilerspecification

Reactor 
Visualiser
Simplifier

Compilerspecification



Where does RV fit in?

System eventsMonitor Verifier output
Reactor 

Visualiser
Simplifier

feedback

Compilerspecification

FRIDA 
instrumentation

Reactor 
Visualiser
Simplifier

Compilerspecification



Where does RV fit in?

System eventsMonitor Verifier output
Reactor 

Visualiser
Simplifier

feedback

Compilerspecification

Protocol 
correctness 
checks in terms 
of Larva specs

FRIDA 
instrumentation

Reactor 
Visualiser
Simplifier

Compilerspecification



Where does RV fit in?

System eventsMonitor Verifier output
Reactor 

Visualiser
Simplifier

feedback

Compilerspecification

Protocol 
correctness 
checks in terms 
of Larva specs

FRIDA 
instrumentation

Reactor 
Visualiser
Simplifier

Compilerspecification

Online/offline 
modes of 
deployment



Where does RV fit in?

System eventsMonitor Verifier output
Reactor 

Visualiser
Simplifier

feedback

Compilerspecification

Protocol 
correctness 
checks in terms 
of Larva specs

FRIDA 
instrumentation

Reactor 
Visualiser
Simplifier

Compilerspecification

Online/offline 
modes of 
deployment

Flag violations 
on the console



Future/Ongoing Work



Future/Ongoing Work

Protecting the monitor

- The monitor is executed in a protected environment (RunC Container)

- The logs are encrypted and stored in temper-evident file system (SEALFS)



Cyber Security (2)
Extracting Evidence

(part of Horizon 2020 
LOCARD project)





Stealthy Malware - Living Off the Land (LOtL)

● Delegate sensitive tasks (e.g. sending messages) to benign apps

● Leave little to no evidence behind (no suspicious permissions needed)

● Cannot avoid executing in memory



Assumptions

● We don’t modify Android
● We don’t modify the app
● We want an approach which is easy to use across apps and app versions



Whatsapp Example

Could Whatsapp be sending messaging without me knowing it?



Instrumenting Whatsapp



MobFor (ii)

Forensic
readiness

1. Asset
management

Targeted
 > Apps
 > Devices
 > Users

This project has received financial support from the European Union 
Horizon 2020 Programme under grant agreement no. 832735.



MobFor (ii)

Forensic
readiness

1. Asset
management

Targeted
 > Apps
 > Devices
 > Users

2.Instrumentation

Drivers

+

This project has received financial support from the European Union 
Horizon 2020 Programme under grant agreement no. 832735.



MobFor (ii)

Forensic
readiness

Forensic
acquisition

1. Asset
management

Targeted
 > Apps
 > Devices
 > Users

2.Instrumentation

Drivers

+

3.Event-triggered
memory dumps 

This project has received financial support from the European Union 
Horizon 2020 Programme under grant agreement no. 832735.



MobFor (ii)

Forensic
readiness

Forensic
acquisition

1. Asset
management

Targeted
 > Apps
 > Devices
 > Users

4.Non-volatile memory

Device logs,
Backup, Cloud,
External sources

2.Instrumentation

Drivers

+

3.Event-triggered
memory dumps 

This project has received financial support from the European Union 
Horizon 2020 Programme under grant agreement no. 832735.



MobFor (ii)

Forensic
readiness

Forensic
acquisition

1. Asset
management

Targeted
 > Apps
 > Devices
 > Users

4.Non-volatile memory

Device logs,
Backup, Cloud,
External sources

Forensic
analysis

5.Timeline
analysis

2.Instrumentation

Drivers

+

3.Event-triggered
memory dumps 

Chain of custody

This project has received financial support from the European Union 
Horizon 2020 Programme under grant agreement no. 832735.



Where does RV fit in?

System eventsMonitor Verifier output
Reactor 

Visualiser
Simplifier

feedback

Compilerspecification

Reactor 
Visualiser
Simplifier

Compilerspecification



Where does RV fit in?

System eventsMonitor Verifier output
Reactor 

Visualiser
Simplifier

feedback

Compilerspecification

Reactor 
Visualiser
Simplifier

Compilerspecification
FRIDA 
instrumentation

Non-intrusive to 
the app



Where does RV fit in?

System eventsMonitor Verifier output
Reactor 

Visualiser
Simplifier

feedback

Compilerspecification

Reactor 
Visualiser
Simplifier

Compilerspecification

Online or offline 
data extraction 
from dumps

FRIDA 
instrumentation

Non-intrusive to 
the app



Where does RV fit in?

System eventsMonitor Verifier output
Reactor 

Visualiser
Simplifier

feedback

Compilerspecification
Post processing 
of data obtained, 
timeline creation

FRIDA 
instrumentation

Non-intrusive to 
the app

Online or offline 
data extraction 
from dumps



Future/Ongoing Work

Making agents more generic (using infrastructure-based trigger points)

Hosting app in virtual app instead of repackaging

Trying the same approach on financial apps

Adding anomaly detection to show value added of newly logged events



Conclusions



Conclusions

RV in itself offers two main ideas:

- Formal specifications
- Separation of concerns

The nice thing about RV is that it has a lot to offer to different areas

Two main projects:

- Securing a cryptographic protocol (in conjunction with hardware)
- Extracting events from memory 


