
BYOD for Android — Just add Java

Jessica Buttigieg, Mark Vella, and Christian Colombo

PEST Research Lab @ University of Malta, Malta
[jessica.buttigieg.12][mark.vella][christian.colombo]@um.edu.mt

Bring-Your-Own-Device (BYOD) implies that the same mobile device is used for
both work and personal purposes. This poses a security concern where untrusted user-
installed applications might interfere maliciously with corporate ones. Android’s exist-
ing fixed permissions mechanism is not a suitable countermeasure. Malware isolation
through virtualization1 and managed device scans2 is possible, however a complete so-
lution requires a context-specific (work/personal) policy mechanism. Our proposition,
BYOD-RV, uses Dynamic Binary Instrumentation (DBI) and Runtime Verification (RV).
DBI (in-memory code patching) avoids Android source code changes as typically re-
quired by similar approaches, e.g. [3]. RV (runtime monitoring of program correctness
properties) enables expressing dynamic policy rules in Java, e.g. [2].

User
App 1

User
App n ...

System
App 1

System
App n ...

Android Framework

Activity
Manager

Telephony
Manager

Location
Manager ...

Android Runtime

libdvm

android.*

Core
Java libs

libart dex2oat

(Native) (Dalvik bytecode) System
OAT

App 1
OAT

App n
OAT...

Native Libraries

libc ...webkit SSL

Linux Kernel (unpatched)

DBI

RV monitor/
Rule-set

Runtime
Patch

(Dalvik bytecode)

(Dalvik bytecode)

(Dalvik bytecode)

(Native)

Intercept call through libdvm runtime patching

Load/Call
(JNI-libdvm)

Call (Java-libdvm)

DBI

(Native)

RV monitor/
Rule-set

RV monitor/
Rule-set OAT

(Native)

(Dalvik bytecode)

Runtime
Patch

Load
(JNI-libart)

Intercept call through native library runtime patching

Intercept call through OAT patching

Call
(Java-libart)

Call
(JNI-libart)

Original control flow

Incoming call, low battery, etc... Incoming call, low battery, etc...

Policy DSL
Parser

Policy DSL
Parser

Generate Generate

Android method re-definition
to native-based patching

Native code patching

OAT patching (via bytecode patching)

Android stackBYOD-RV Dalvik BYOD-RV ART

Intercept device event through BroadcastReceiver

JNI callA

D
C

E

F

G

I

SQLite OpenGL

H
Policy rule callB

Proposed approach

(Native)

Fig. 1. BYOD-RV. Dalvik -left- and Android Runtime (ART) -right- versions.

1 www.vmware.com/files/pdf/view/VMware-BYOD-Opportunity-Whitepaper.pdf
2 nuvotera.com/solutions/mobile-device-management/

Method The architecture for the Dalvik runtime (libdvm) version is shown in Fig. 1 -
left. The DBI component is loaded in process memory via ptrace and patches libdvm
(G) to create in-line hooks that intercept (C) security-sensitive Android method calls by
re-defining them as native. This is lightweight DBI that requires no code block copying.
Device events e.g. low battery or incoming call events, are intercepted (D) with the in-
clusion of a BroadcastReceiver component. The DBI component is injected into ev-
ery launched application by a system ‘starter’ application (requires a firmware update).
It requires root privileges/SELinux re-configuration. Intercepted events are passed to the
RV monitor, which is loaded through JNI (A) as Dalvik bytecode, rendering all appli-
cation and framework classes available for calling from policy rules (B). Rules take an
event|condition→action form (inspired by [1]), where conditions distinguish be-
tween work/personal modes and actions prescribe execution resumption. All is captured
in familiar Java/Android API syntax as per following ‘Photo Capture’ rule snippet:
wifi.ruleset.add(new Rule("Photo_capture"){
public boolean condition(){
if(wifi.ruleset_work_WIFI || wifi.ruleset_work_location) return true; else return false; }

public void action() {
wifi_ruleset.continue_exec = false; ShowToast("Access Denied"); } });

Experimentation BYOD-RV was implemented on Android 4.4 using the DDI toolkit.3

The following policy rules have been successfully experimented with. Conditions: iden-
tification of the workplace wifi; workplace geolocation; and executing corporate apps.
Application access-control actions: blocking photo captures and video/voice record-
ing at the workplace. Application modification actions: restrict Internet access in work
mode to a URL white-list; append a corporate signature at the end of all outgoing mes-
sages in work mode. The device events experimented with so far are the low battery
and incoming call events, resulting in the termination of non-work applications for the
prior and terminating calls in case of an ongoing video conference for the latter. Due to
ahead-of-time compilation by dex2oat of all Dalvik bytecode to OAT files, porting to
ART (libart) requires hooking Android methods at alternate locations (Fig. 1 - right).
Patching native libraries (H) to intercept native library calls (E) made by the system
OAT (compiled Android framework and core Java libraries) is one option, which how-
ever introduces a semantic gap challenge. Patching OAT files through pre-compilation
bytecode patching (I) avoids this issue by intercepting Android method calls made by
application OATs (F), but requires disabling OAT integrity checks. BYOD configuration
is to be further simplified with a Domain-Specific Language (DSL).

References
[1] Colombo, C., Francalanza, A., Mizzi, R., Pace, G.J.: polyLarva: Runtime verification with

configurable resource-aware monitoring boundaries. In: SEFM. LNCS, vol. 7504, pp. 218–
232. Springer (2012)

[2] Falcone, Y., Currea, S., Jaber, M.: Runtime verification and enforcement for android appli-
cations with RV-Droid. In: RV. pp. 88–95. Springer (2013)

[3] Russello, G., Conti, M., Crispo, B., Fernandes, E.: MOSES: supporting operation modes on
smartphones. In: SACMAT. pp. 3–12. ACM (2012)

3 https://github.com/crmulliner/ddi

