
Project brief
Aims & objectives

While software monitors can help assure that sensitive software systems are safe, 
one still needs to prepare for different scenarios of compromise, including those 
where the system and its security monitors are incrementally taken over by attackers:
1. The monitor is run in a container, as separate as possible from the rest of the system.
2. Monitoring logs are stored as a tamper-evident file where data authenticity is verifiable.

1. Monitor Execution Isolation
Making it harder for attackers to reach

2. Tamper-Evident Log Data
Ensuring evidence collected is authentic

Christian Colombo
Department of Computer Science

Managing Cybersecurity of Software Monitors

Keeping the monitor running in 
isolation from the monitored 
application protects it if the 
application is taken over by malicious 
actors (Attack scenario 1). 

At the same time, this brings 
challenges with it due to extra layers 
of communication and reduced 
visibility of internal operations.

Yet, if attackers manage to gain full 
control of the host machine, there is 
little that can be done to stop them 
from corrupting the monitoring 
system as well (Attack scenario 2). 
Another layer of protection is 
needed…

We store the monitoring system output 
within a tamper-evident file system on a 

forensic node (Phase A). If all else fails and 
the attacker modifies the data, our file 

system is still able to distinguish between 
authentic and tampered monitor output.

How is this even possible? 
The trick is to use cryptography: A secret key is 

generated and intertwined with the monitor output. 
This gives us the ability to audit the monitoring data 

for authenticity at a later stage (Phase B).


