Runtime Verification as a
Toolkit of Techniques for
Cyber Security Monitoring

Christian Colombo
University of Malta

Buenos Aires, November 2023

What is Runtime Verification?

A General Picture

L System J

A General Picture

Very loose definition o
a “system’”...
server/client
banking/robotics/etc

sequential/concurrent/
distributed

A General Picture

L System I Monitor }

A General Picture

-

A General Picture

Reactor
System Monitor Verifier Visualisation

Simplification

O feedback D

What is Special?

Reactor
System Monitor Verifier Visualiser

Simplifier

O feedback D

What is Special? (1) - Automatic Synthesis

| specification> { Compiler }

L System I Monitor } L Verifier } [\gsza%rr}
¢ :

What is Special? (2) - Separation of Concerns

| specification> { Compiler }

L System I Monitor } L Verifier } {\é?i%i%rr}
¢ :

Why Runtime Verify?

As a support tool during testing

Some oracles might be hard to implement
For detecting bugs

Not always feasible to fully verify/test system before runtime
For general stream processing/pattern recognition

Sometimes it's convenient

Zooming in

| specification > Compiler

Reactor
System Monitor Verifier Visualiser

Simplifier

¢ :

Specifications g

(Compiler }

[System I Monitor } [verter } Slri?l:ﬁoerr }
(J

Specifications -

Choice of expressive
power, e.g. real-time
Compiler

Choice of language
(depending on target
users)

System Monitor Verifier

Simplifier

¢ :

Specifications - §

Variety of logics
Enriched automata
Domain specific,
Controlled natural
languages

Compiler

System Monitor Verifier

Simplifier

¢ :

Compilers

| specificatioff

Reactor
Visualiser

System Monitor Verifier
Simplifier

¢ :

Compilers - Challenges

Correctness

| specificatio

(Efficiency is usually
ignored when done
before runtime)

Reactor
Visualiser

System Monitor Verifier
Simplifier

¢ :

Compilers - Options

Compilation of
automata is simple

| specificatio

Logics and other
languages are
harder

Reactor
Visualiser

System Monitor Verifier
Simplifier

¢ :

Monitors

| specification > Compiler

Reactor
Visualiser
Simplifier

Verifier

:

Monitors - Challenges

| specification > Compiler

Intrusiveness needs
to be kept to a

.y Reactor
System minimum Verifier Visualiser

Simplifier

:

Monitors - Options

| specification > Compiler

Instrumentation (e.g.,
Aspect-Oriented
Programming)

Reactor
System Verifier Visualiser
Tracing, Logging Sl

:

Verifiers

| specification > Compiler

Reactor
Visualiser
Simplifier

System Monitor

Verifiers - Challenges

| specification > Compiler

System

Efficient use of
resources

Reactor
Visualiser
Simplifier

Monitor

Practical
architectural choices

Verifiers - Options

| specification > Compiler

Online vs Offline vs

Hybrid

_ _ Reactor
System Monitor Choice of programming Visualiser
language, Simplifier

Communication

protocol,

Reactions

| specification > Compiler

Reactor
Visualiser
Simplifier

System Monitor Verifier

Reactions - Challenges

| specification > Compiler

Give timely and

effective feedback to
system

System Monitor Verifier

Help developer fix
the issue

Reactions - Options

| specification > Compiler

Allow monitor to

steer the system

Provide visualisation

System Monitor Verifier

Simplify
counterexample

Reactions - More Options

| specification > Compiler

What can be done if

violation is detected
late?
Compensations

System Monitor Verifier

Cyber Security (1)
Securing a Group Key Exchange Protocol
Implementation

(part of NATO-funded project)

Secure Communication in the Quantum Era

Quantum computers (when they become practical) pose a threat to cryptographic communication
protocols.

This project aimed to design a new “Quantum-safe” Group Key Exchange Protocol
And provide a proof of concept implementation

Case study: a chat application using the protocol to establish the secret keys

L-Universita
ta' Malta

The need for secure communication

As the COVID-19 pandemic lockdown forced most employees into remote working, serious weaknesses

in Zoom were exposed. Issues ranged from insecure key establishment to inadequate block cipher mode
usage.

Other previous high-profile incidents concerning insecure cryptographic protocol implementation were

caused by:
e Weak randomness. ® -
L] ‘ .
.) ®
e Insufficient checks on protocol compliance. @

e Memory corruption bugs.

L-Universita
ta' Malta

Many things can go wrong on many different
levels of abstraction

(High level) Wrong protocol The protocol implementation might deviate from the
implementation verified (theoretical) design

Medium level threats Malware, Data leaks, etc

Arithmetic overflows, undefined downcasts, and
invalid pointer references

Hardware Can hardware be trusted?
Side Channel attacks?

Low level threats

L-Universita -
ta' Malta

Many things can go wrong on many different
levels of abstraction

(High level) Wrong protocol The protocol implementation might deviate from the
implementation verified (thzg -

Medium level threats How can RV

ArithmetiC® d downcasts, and

Low level threats o !
invalid pointer references

Can hardware be trusted?
Side Channel attacks?

Hardware

L-Universita
ta' Malta

Many things can go wrong on many different
levels of abstraction

(High level) Wrong protocol The protocol implementation might deviate from the

implementation verified (thzg)

Medium level threats How can RV

d downcasts, and
Low level threats

A mix of RV
and Hardware

L-Universita
ta' Malta

Concept 1: Isolation

L-Universita
ta' Malta

Concept 1: Isolation

Medium level

Crypto keys
Low level

Hide memory errors from attack surface
Hardware

Bring-your-own certified h/w

L-Universita
ta' Malta

Concept 1: Isolation

REE
Data and
control flow SECube chip
to less trusted :
nvironment
«—» RA TA
Protocol library Crypto primitives
: A A
Data and control flow to more trusted environment
L-Universita
ta' Malta

Concept 1: Isolation

Certified H'W

(Hardware)

s // y

Data and control flow to more trusted environment

L-Universita
ta' Malta

Concept 1: Isolation

REE

Data and

control flow !

to less trusted :

environment

<4“—>p RA
: Protocol library
A

L-Universita
ta' Malta

Hide memory errors

from attack surface
(Low level)

Certified H'W

(Hardware)

J

SECube chip

TA
Crypto primitives

A

Data and control flow to more trusted environment

Hide memory errors

Concept 1: Isolation from attack surface
Certified H/W (Low level)

(Hardware)

REE

Data and

control flow !
to less trusted :
nvironment |

No crypto key transfers /
(Medium level)

Data and control flow to more trusted environment

Hide memory errors

from attack surface
(Low level)

Concept 1: Isolation

Certified H/W
(Hardware)

Biggest -
REE weakness : \

Data and
control flow ! SECube chip
to less trusted :
environment |
< p» RA TA
: Protocol library Crypto primitives
A A

Data and control flow to more trusted environment

No crypto key transfers /

(Medium level)

Concept 2: Monitoring

L-Universita
ta' Malta

Concept 2: Monitoring

High level
Check sequences of actions
Check parameters
Check any assumptions implicit in proofs
Low level

Plaintext leakage across border

L-Universita i
ta' Malta /

Concept 2: Monitoring

REE TEE

Data and :

control flow SECube chip

to less trusted :

environment

<+ RA TA
Protocol library Crypto primitives
A A

Data and control flow to more trusted environment

L-Universita
ta' Malta

Concept 2: Monitoring

REE . RV-enabled TEE
intermediate level of trust

Data and :
control flow ! ! Instrumentation + RV SECube chip
to less trusted : ! (including data analysis)
environment !

<«———» RA TA

Protocol library Crypto primitives
A A

Data and control flow to more trusted environment

L-Universita
ta' Malta

Concept 2: Monitoring

REE . RV-enabled TEE
intermediate level of trust
Data and :
control flow ! ! Instrumentation + RV SECube chip
to 1‘?88 trusted { ! (including data analysis)
environment

—p> RA TA
Protocol library Crypto primitives

A A

Monitor for data leaks

(Medium level)

L-Universita
ta' Malta

Data and control flow to more trusted environment

Monitor code while executing
(High level)

REE . RV-enabled n TEE
intermediate level of trust
Data and :
control flow ! ! Instrumentation + RV SECube chip
to I?SS trusted { ! (including data analysis)
environment !

—p> RA TA
Protocol library Crypto primitives

A A

Monitor for data leaks

(Medium level)

L-Universita
ta' Malta

Data and control flow to more trusted environment

How does it look in practice?

Hardware Security Module - SECube

L-Universita
ta' Malta

Hardware

Full isolation
o || S
(HSM)

Binary instrumentation

<

Runtime Verification

L-Universita
ta' Malta

Hardware Setup

Device
(HSM)

Host (PC)

Runtime
Verification

L-Universita
ta' Malta

Y

Host (PC)

Runtime

Verification

A

Host (PC)

Runtime

Verification

A

Host (PC)

Runtime

Verification

A

Device
(HSM)

Looking Deeper at a Single Client

Host ~ SECube
—Hook| Chat Application Primitives
Rest of Network ¢ ¢
—{Hook| GKE Library 4—» Protocol Calculations

Log file
L-Universita
ta' Malta

Instrumentation

Host 'SECube
at Application Primitives
Rest of Network ¢ t
~—Hook KE Library H Protocol Calculations

N

Log file

L-Universita
ta' Malta

!

Log Output

L-Universita
ta' Malta

[1935]
[1935]
[1935]
[1935]
[1935]
[1935]
[1935]
[1935]
[1935]
[1935]
[1935]
[1935]
[1935]
[1935]
[1935]
[1935]
[1935]
[1935]
[1935]
[1935]
[1935]
[1935]
[1935]
[1935]
[1935]
[1935]
[1935]

56421f6415b70

1625088325476
1625088325476
1625088325476
7ffcla22736f

1625088325476
1625088325476
1625088325476
7ffcla2272df

1625088325476
1625088325476
1625088325476
7ffcla2272df

1625088325476
1625088325476
1625088325476
7ffcla2272df

1625088325476
1625088325476
1625088325476
7ffcla2272df

1625088325476
1625088325476
1625088325476
7ffcla2272df

1625088325476
1625088325476

47 4b 45 7c 3e 20

libpthread!read(fd=0x0, buf=0x7ffcla22736f,
libpthread!read() retVal: 0x1

[HEXDUMP] out...

2f

libpthread!read(fd=0x0, buf=0x7ffcla2272df,
libpthread!read() retVal: 0x1

[HEXDUMP] out...

72

libpthread!read(fd=0x0, buf=0x7ffcla2272df,
libpthread!read() retVal: 0x1

[HEXDUMP] out...

6f

libpthread!read(fd=0x0, buf=0x7ffcla2272df,
libpthread!read() retVal: 0x1

[HEXDUMP] out...

6f

libpthread!read(fd=0x0, buf=0x7ffcla2272df,
libpthread!read() retVal: 0x1

[HEXDUMP] out...

6d

libpthread!read(fd=0x0, buf=0x7ffcla2272df,
libpthread!read() retVal: 0x1

[HEXDUMP] out...

20

libpthread!read(fd=0x0, buf=0x7ffcla2272df,
libpthread!read() retVal: 0x1

GKE |>
count=0x1)

/
count=0x1)

-
count=0x1)

0
count=0x1)

o
count=0x1)

m
count=0x1)

count=0x1)

Formal Specification

process_msg2

get_msg2

round2_send key:pse

process_msg| process_msg2

all
get_msgl get_msg2

[\

— round1_send

get_msgl @
all

all

initialised

init

% L-Universita -

ta' Malta

OTAN

Properties verified (High level) on ECDHE

Remote peer's public key is
validated on each exchange
(unless the session is aborted)

start

.

Q connect

L-Universita
ta' Malta

Properties verified (High level) on ECDHE

Once master secret is established,
private keys should be scrubbed

from memory

scrubPrivKey

start
Q connect ‘Q deriveKDF‘Q validatepk\

I
I
I
I
I
I
I
A4

L-Universita N
ta' Malta

High level monitors

Property layers Chat app GKE Library All (incl. Primitives)

Assertion Printable decrypted Sensitive data scrubbed Valid function
characters parameters and returns

Temporal Chatroom lifecycle, Correct function call
standard sockets sequence

Hyper Randomness quality

L-Universita
ta' Malta

Running the Monitor Offline

Host 'SECube

. |Hook| Chat Application Primitives
Rest of Network < » A A

‘ \ \

' lHook| GKE Library <%> Protocol Calculations

Log file >
v

Offline Monitor

Log file

L VilIvVTIdila | A
ta' Malta

Switching to Online Monitoring

Host ~ SECube

s % 1 a
f =g 0 - —{Hook| Chat Application Primitives
% Rest of Network A 4

v v
\J\ i—Hook GKE Library %~~> Protocol Calculations

ﬂ—» Online Monitor

L-Universita
ta' Malta

FIFO named '/tmp/pipe 241798 to larva is created successfully.

* You are now connected to the server. *

* You can now create a chat room or enter an existing chat room. *

* For available commands, please type /help. *

GKE|> waiting for chat app

/room new U 4

Creating room 'U’

CONGRATULATIONS! The room 'U' was created for users {3,4}.

A shared secret key for all room users was established by the Quantum-Future Group Authenticated Key Exchange Protocol.

From now on, the shared secret key will be used with AES CCM 128 to encrypt communication between room users.

You can now enter the room and start sending encrypted messages.

GKE|> RV:: *1* Initialised

: *a* init protocol run env called as expected

:: *be* init participant “called as expected

:: *bl* init participant called as expected

: *c* round one called as expected

: *d* load pw called as expected

:: *e* generate beta called as expected

:: *f* calculate g called as expected

:: *2* During the key exchange protocol (executed during room creation) the correct number of messages were received in round 1.
: *g* round two called as expected

:: *h* generate k called as expected

11 *1* extract result called as expected

:: *j1* kem enc called as expected

: *k1* calculate shared value called as expected

:: *11* generate MAC init called as expected

:: *3* During the key exchange protocol (executed during room creation) the correct number of messages were sent in round 1.
:: *4* During the key exchange protocol (executed during room creation) the correct number of messages were received in round 2.
: *5% pDuring the key exchange protocol (executed during room creation) the correct number of messages were sent in round 2.
: *m* round two finalize called as expected

:: *n* generate MAC non init called as expected

/room enter U

You have entered the room 'U’

You can now type a message directly to the command line.

The message will be encrypted and will be sent to all room users.

For other available actions, please type /roomhelp

GKE|U> test

ta [U]3: test

GKE|U> RV:: *6* The previously received message was decrypted using the shared secret key established during the creation of the room.

natosps@natosps-Z87-HD3:~/git/(KE/Inst entation/Inj ion$ python3 injectRV.py ../../bin/chat --id 3 --repeater 147.175.106.130

Monitor Alert

GKE | rooml> hello
[rooml]3: hello

GKE|rooml> RV:: *6* The previously received message was decrypted using the shar
ed secret key established during the creation of the room.

mame novy protokol!

GKE | rooml> RV::*!WRONG!* Found non-ASCII characters: [169, -61, -95, 109, 161, 3
2, 11e, 111, 118, -61, -67, 32, 112, 114, 111, 116, 111, 107, 111, 188, 33]
[rooml]3: mame novy protokol!

L-Universita NATO
ta' Malta 7 OTAN
Vg V!

Where does RV fit in?

| specification> { Compiler }

[System I Monitor } [Verifier } {\él?sza%r}
¢ :

Where does RV fit in?

| specification > Compiler

FRIDA
instrumentation

Reactor
Monitor Verifier Visualiser

Simplifier

¢ :

Protocol
correctness

checks in terms
of Larva specs

| specification > Compiler

FRIDA
instrumentation

Reactor
Monitor Verifier Visualiser

Simplifier

¢ :

Protocol
correctness

checks in terms
of Larva specs

| specification > Compiler

Online/offline
modes of
deployment

FRIDA
instrumentation

Reactor
Monitor Verifier Visualiser
Simplifier

¢ :

Protocol

correctness
checks in terms
of Larva specs

Compiler

| specification >

Flag violations
on the console

Online/offl

FRIDA
instrumentation

modes of
deployment

Monitor Verifier

\Y

Reactor
Visualiser
Simplifier

:

Monitoring Overheads

— Scenario A: 3 clients involved, with client id=1 creating a room (following
the protocol steps for an initiator participant Uyp).

— Scenario B: 3 clients involved, with client id=1 joining the room (following
the protocol steps for a non-initiator participant Ui<;<n).

The scenarios include 20 and 13 seconds of thread sleeps respectively to mimic
a realistic chat. This will be factored in in the results discussion.

L-Univlersité NATO
ta' Malta .‘
~ OTAN

MOnitoring Overheads A - Creating a chat room

B - Joining a chat room

Time (s) Without SEcube™ Using SEcube™

| Scenario | A B ” All | A B | All
Non-instrumented 20.02 13.01 33.03 20.18 | 13.27 | 33.45
Instrumented 20.44 14.39 34.83 21,30 | 13.68 34.98

L-Universita
ta' Malta

OTAN

Monitoring Overheads

A - Creating a chat room
B - Joining a chat room

Instrumentation
is more
expensive than
HSM

Time (s) Without SEcube™ Using SEcube™
Scenario A B | All A B All
Non-instrumented 20.02 13.01 33.03 20.18 13.27 33.45
Instrumented 20.44 14.39 34.83 21.30 13.68 34.98
Increase 2% 11% 5% 6% | 3% | 5%

1%

0.4%

Past Work

#|Context |Tech |Instrumentation |Data aspect On/offline
1 |Firefox |C++ |DBI (Frida) Taint inference on outgoing data | off
2 | Paramiko | Python | AOP (aspectlib) | Limited to parameter checking |off
3 |Chat app |C++ |DBI (Frida) Monitoring incoming data on (async)

Future/Ongoing Work

Protecting the monitor

- The monitor is executed in a protected environment (RunC Container)

- The monitoring logs are encrypted and stored in temper-evident file system
(SEALFS)

Cyber Security (2)
Extracting Evidence

(part of Horizon 2020
LOCARD project)

Stealthy Malware - Living Off the Land (LOtL)

e You don’t know you are infected

e Malware can observe what you are doing e.g., through accessibility
permission

e Can unlock your phone

e Send messages from your phone without your knowledge

e Modify text fields as you press submit

\,"‘:, TechRepublic.

(), search

CES Developer Work From Home Linux 5G IT Policy Downloads Securlty Top DaaS Providers Excel Tips More v Newsletters Forums Res

Escobar mobile malware targets 190 banking and
financial apps, steals 2FA codes

2 by Cedric Pernet in Security N\
f)(in)(w)(= on March 17, 2022, 7:18 AM PDT

A new Android mobile malware dubbed Escobar has hit the cybercrime
underground market. Read more about it and see how to protect yourself

from this threat.

Stealthy Malware - Living Off the Land (LOtL)

e Delegate sensitive tasks (e.g. sending messages) to benign apps

e Leave little to no evidence behind (no suspicious permissions needed)

e BUT Cannot avoid executing in memory

Assumptions

e \We don’t modify Android
e \We don’t modify the app
e \We want an approach which is easy to use across apps and app versions

Whatsapp Example

Could Whatsapp be sending messages without me knowing it?

Instrumenting Whatsapp

o o X
i}

MobFor (ii

Forensic
readiness

1. Asset
management

Targeted
> Apps

> Devices
> Users

This project has received financial support from the European Union
Horizon 2020 Programme under grant agreement no. 832735.

MobFor (ii

Forensic
readiness
1. Asset
management
Targeted
> Apps [X X]
> Devices k
> Users

2.Instrumentation

Drivers

+ 85

This project has received financial support from the European Union
Horizon 2020 Programme under grant agreement no. 832735.

MobFor (ii

Forensic
readiness
1. Asset
management
Targeted
> Apps
> Devices g.
> Users
o,
v

2.Instrumentation

Drivers

+ 85

Forensic
acquisition

3.Event-triggered
memory dumps

>

This project has received financial support from the European Union
Horizon 2020 Programme under grant agreement no. 832735.

MobFor (ii

Forensic
readiness
1. Asset
management
Targeted
> Apps
> Devices g.
> Users
o,
v

2.Instrumentation

Drivers

+ 85

Forensic
acquisition

3.Event-triggered

memory dumps

G ¢

o10
101
ool {;}

4.Non-volatile memory

Device logs,
Backup, Cloud,
External sources

=

a=g

LOG

This project has received financial support from the European Union
Horizon 2020 Programme under grant agreement no. 832735.

MobFor (ii

Forensic
readiness
1. Asset
management
Targeted
> Apps
> Devices Q.
> Users
L
v

2.Instrumentation

Forensic Forensic

acquisition analysis

3.Event-triggered 5. Timeline
memory dumps analysis

Drivers ° —
= o1o
o <g':. 88 () [~ [I
)

4.Non-volatile memory /
e e

o
Device logs, z
Backup, Cloud,

External sources

LOG

Chain of custody

—

This project has received financial support from the European Union
Horizon 2020 Programme under grant agreement no. 832735.

Where does RV fit in?

| specification> { Compiler }

[System I Monitor } [Verifier } {\él?sza%r}
¢ :

Where does RV fit in?

| specification > Compiler

FRIDA
instrumentation

Non-intrusive to
the app

\ Reactor
System Monitor Verifier Visualiser

Simplifier

¢ :

Where does RV fit in?

specification Compiler

FRIDA
instrumentation

Data extraction
from dumps

Non-intrusive to
the app

N\

Reactor
System Monitor Verifier Visualiser
Simplifier

¢ :

Where does RV fit in?

specification Compiler

FRIDA
instrumentation

Post processing
of data obtained,
timeline creation

Data extraction
from dumps

Non-intrusive to
the app

N\

System Monitor

Reactor
Visualiser

Verifer
Simplifier

O feedback D

Recent Work

Making instrumentation “plug-and-play”
Hosting app in virtual app instead of repackaging

Using infrastructure-based trigger points

Adding anomaly detection to show value added of logged events

Future/Ongoing Work

Trying the same approach on financial apps

Improving the virtualisation system

Conclusions

Conclusions

RV in itself offers two main ideas:

- Formal specifications
- Separation of concerns

The nice thing about RV is that it has a lot to offer to different areas
Two main projects:

- Securing a cryptographic protocol (in conjunction with hardware)
- Extracting events from memory

Questions

