A Domain Specific Property Language For Fraud
Detection To Support Agile Specification
Development

Aaron Calafato
Dept. of Computer Science
University of Malta
aaron.calafato.06 @um.edu.mt

Abstract—Fraud is a major challenge in the taxation area.
This is addressed by auditing cases deemed fraudulent by a
fraud expert. This selection process currently involves fraud
experts defining patterns informally to be developed by an IT
team. The code is thereafter tested and refined in an iterative
mode until the fraud expert accepts the outcome of the process.
This process is very lengthy and prone to human induced
bugs. In this paper we present a framework where the fraud
expert is empowered to design patterns through a domain-specific
language, and feedback will be gathered through an automated
process. This process provides the expressivity to define and refine
clear and unambiguous rules without the involvement of the
software developer.

I. INTRODUCTION

Fraud is a critical aspect in any financial system, including the
taxation system. To address this issue, a fraud expert would
informally define a tax fraud rule to a software developer. After
analysing and understanding the rule, this is coded into an IT
system. Before being used in the actual fraud detection, the rule
needs to the tested and verified by the fraud expert. Consider
the following rule, which might be identified by a fraud expert:

“Load the taxpayer ID for any individual who declared a
total income of less than 3000 Euro for any three years of
assessment.”

If we were to try to get a developer to produce a system which
returns the taxpayers matched by the rule, we may run into a
number of problems:

1) Typically, when a fraud expert identifies a rule which
refers to a particular value e.g. a threshold of 3000
Euros profit, they would generally want to tweak the
value so as to improve the effectiveness of the rule.

2) The software might contain bugs due to the software
developer’s lack of knowledge, especially when deal-
ing with complex taxation concepts.

3) Rules may be misinterpreted, for instance, the “to-
tal income” may be understood to be the income
from employment rather than the summation of all
incomes, such as pensions and bank interests.

4) The process is prone to standard bugs which can oc-
cur while implementing any code, due to the manual
coding of the system.

Christian Colombo
Dept. of Computer Science
University of Malta
christian.colombo@um.edu.mt

Gordon J. Pace
Dept. of Computer Science
University of Malta
gordon.pace @um.edu.mt

The above disadvantages have directed us to tackle the chal-
lenges by reducing manual coding in order to diminish bugs
and also by defining rules in a more formal manner so as
to avoid any ambiguity arising from lack of details. Domain
Specific Languages (DSLs) [1] have been found to address
both of these problems. DSLs are languages built with only the
necessary functionality to address a problem. In this manner,
the user can use a focused set of basic concepts to build more
complex ones [2]. For example, in taxation, one can combine
the notions of “declared income” and “employee” to obtain
the notion of “paid salaries”.

DSLs are, however, not natural enough to be read from a non-
technical user. To address this issue, we have used a Controlled
Natural Language (CNL) approach [3] to make the language
more accessible to technical laypersons. Just as in the case
for general DSLs, CNLs are focused on a particular semantic
domain, while being a subset of a natural language, therefore
still follow the basic syntax and morphology rules. This makes
them more accessible to be used by the common person. Our
work uses Grammatical Framework (GF) [4], a framework
which allows the generation of CNLs.

Rules in Mapping Programming
English Code
T Refine Automated‘
Rule Process ¢

Feedback
Match Cases

Fig. 1. Automated flow using a Controlled Natural Language

Figure 1 illustrates the proposed flow where the resulting
system will allow the fraud expert to define the rules in an
English-based language. At this stage, the rules are defined
in a clear and structured language. The rules are thereafter
translated to the respective programming-code, not readable
by a fraud expert but more processable for an IT system. An
automated process will then use this generated code to match
any cases. To match the cases, our proposed architecture will
sequentially process the contents of the tax returns submitted
in a taxation system. The processing will involve gathering
the fields related to the rule, such as the “total income” and
flagging cases matched to the rule.

The returned cases allow the fraud expert to visualise the effect
of the rule onto the existing cases. With this approach, the
intervention of a software developer is required only at the
initial stage to develop the basic concepts. The final result
would therefore allow the fraud expert to refine the rule in
a “What-if” manner where the feedback would indicate the
accuracy of the rule.

II. LANGUAGE

The two challenges of (i) automation and (ii) allowing the
fraud experts to write rules independently, can be achieved
through the defined CNL. The benefits are:

e The language is now structured, enforcing that the
rules are complete with the necessary information.

o The language is unambiguous, where a term has only
one meaning, and a one-to-one mapping exists from
the English-based concepts to the programming-based
ones.

e The fraud expert is presented with a natural language
and not a low level technical language.

To implement the language, the grammar has been divided into
two parts: (i) the low-level concepts which are the building
blocks and (ii) the high-level forms used to combine these
underlying concepts into the tax fraud rules. The low-level
concepts are bound to either taxation terms such as “total
income” and “individual”, or to standard mathematical terms
such as “average” or “three years”. These concepts have
been built independently from the high-level structure. For
instance, in the above example, the phrase “for any three years
of assessment” is built as a low-level component based on
smaller and more concise concepts. With this layered approach,
intermediate concepts can be introduced, such as “for any three
sequential years” uses an additional temporal logic concept.

Defining the grammar in this layered pattern provides a number
of advantages:

e Low-level concepts are not tightly bound to the high-
level grammar of the language, making the low-level
concepts reusable if another high-level concept is
introduced.

e Combinators are added to combine the basic concepts
into new ones. For instance, a rule may expect a
basic condition such as “the bank interests are less
than 600 Euro”. With a summing combinator, the field
“pensions” may be added to the rule and still preserve
the expected form of the condition. The resulting
rule “the bank interests plus pensions are less than
600 Euro”. This can be achieved since the summing
combinator takes two basic values and returns a new
value.

e The high-level grammar is left to control the form of
the rule. For instance, the example combines a con-
dition and a number of years for which the condition
should be applied. Another rule structure allows the
user to aggregate a field for a number of years, such
as “an average total income for any three sequential
years to be less than 600 Euro”. The two-high level

forms common low-level concepts but restrict their
composition differently. In this manner, high-level
grammar makes the language more controllable since
each form is concerned with only one type of rule.

The final outcome from this grammar is a controlled set of
concepts which can be used according to the context within
the rule. Figure 2 illustrates how CNLs are made clearer with
a user interface such as a fridge magnet interface!, done by
only giving the user the possibility to enter correct entries.

|taxpayer_id||where| |individua|||dec|ared||€| |

| detrease| | maximum || minimum | |tota| ||tota|_\ncome |

Fig. 2. Grammatical Framework fridge magnet user interface

III. CONCLUSION

Currently, the process to define tax fraud rules involves contin-
uous human intervention. From the informal definitions to the
manual implementation of rules, the current system is lengthy
and error prone. This work is directed towards enabling a fraud
expert to independently write fraud rules, while being informed
with timely feedback on the matched cases for the defined rule.
To allow the definition and processing of tax fraud rules, we
have proposed the creation of an English based CNL for tax
fraud detection. The use of grammars has allowed us to build
a well-defined and focused set of concepts which result in
unambiguous and clear definitions. With a structured language,
the concepts are unambiguously mapped to the respective
programming code which is used to match the cases. These
cases are then returned to the user to assess the precision of
the rule. With this approach, the fraud expert can refine the
rule without any involvement from the software developer.

This approach is able to reduce the continuous human interven-
tion in defining rules. The process is therefore made less error
prone to human induced bugs and ambiguity in the definitions.
Once finalised, the grammar will be evaluated with a number
of tax auditors at the Inland Revenue Department to assess its
usability and expressivity.

REFERENCES

[11 M. Fowler, Domain Specific Languages, 1st ed.
Professional, 2010.

[2] S. P. Jones, J. M. Eber, and J. Seward, “Composing contracts: an
adventure in financial engineering (functional pearl),” in ICFP ’00:
Proceedings of the fifth ACM SIGPLAN international conference on
Functional programming. New York, NY, USA: ACM, 2000, pp.
280-292. [Online]. Available: http://dx.doi.org/10.1145/351240.351267

[3] T. Kuhn, “A survey and classification of controlled natural languages,”
Computational Linguistics, vol. 40, no. 1, pp. 121-170, March 2014.

[4] K. Angelov and A. Ranta, “Implementing controlled languages in gf,” in
Proceedings of the 2009 Conference on Controlled Natural Language,
ser. CNL’09. Berlin, Heidelberg: Springer-Verlag, 2010, pp. 82-101.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1893475.1893482

Addison-Wesley

A fridge magnet interface provides assistance in writing phrases with a
CNL. The interface provides only the words which satisfy the grammar. GF
fridge magnet interface: http://cloud.grammaticalframework.org/gfse/

