
		
Extracting	Runtime	Monitors	from	Tests:		
An	Introduction	
Luke	Chircop,	Christian	Colombo,	Adrian	Francalanza,	Mark	Micallef,	and	Gordon	Pace	
	

Project	GOMTA	financed	by	the	Malta	Council	for	Science	&	
Technology	through	the	National	Research	&	Innovation	
Programme	2013	



Why	generate	monitors	from	tests?	
• Monitors	can	provide	extra	assurance	at	runtime	

•  Industry	already	invests	a	lot	in	testing		
			(but	little	in	runtime	verification)	

• Creating	monitors	after	creating	tests	feels	repetitive/waste	

		



Verification	–	A	language	problem	

		

All	behaviours	

Good	
behaviours	



Testing	

		

All	behaviours	

Good	
behaviours	
Test	some	
behaviours	



Runtime	verification	

		

All	behaviours	

Good	
behaviours	

Runtime		
behaviours	



Testing	

		

All	behaviours	

Good	
behaviours	

An	assertion	per	
checked	behaviour		

Test	some	
behaviours	



Runtime	verification	

		

All	behaviours	

Good	
behaviours	

Runtime		
behaviours	

One	“assertion”	for	all	
behaviours!	



Generating	runtime	verifiers	from	tests	

		

All	behaviours	

Good	
behaviours	

Test	some	
behaviours	

		

All	behaviours	

Good	
behaviours	

Approximate	a	decision	
procedure	for	all	behaviours	

from	individual	ones	



Why	is	it	difficult?	

		

All	behaviours	

Good	
behaviours	

Test	some	
behaviours	

		

All	behaviours	

Good	
behaviours	

Typical	language	inference	challenges:		
•  Few	examples	
•  Usually	no	negative	tace	examples	



Why	not	use	test	assertions	directly?	

Sequence	of	
Method	

Invocations	

Assertions	

Pattern		
Matching	

Assertions	

vs	

Test	 Runtime	Verifier	



Test	assertions	are	typically	very	specific	
@Test 
public void testWithdraw(){ 

 Account a = new Account(); 
 a.setBalance(100); 

 a.withdraw(60); 

 assertEquals(a.getBalance(),40); 
} 



Idealistic	test	assertions	
@Test 
public void testWithdraw(){ 

 initialBalance = 100; 
 withdrawAmount = 60; 

 Account a = new Account(); 

 a.setBalance(initialBalance); 
 a.withdraw(withdrawAmount ); 

assertEquals(a.getBalance(),initialBalance-withdrawAmount); 
} 



What	if	you	insist	on	using	assertions?	
•  There	might	be	other	hidden	assumptions:	
• Assumptions	on	the	global	state	(shared	data	structures,	files,	
etc)	
• Assumptions	on	the	control/data	flow	leading	up	to	the	
assertion	(test	setup,	method	call	sequence	in	test,	etc)	



Related	approaches	
Testing	to	more	“generalised”	testing	
1.  EUnit	à	QuickCheck	(Thomas	Arts	et	al.)	
2.  Gherkin	à	QuickCheck	(Christian	Colombo	et	al.)		

Model-based	testing	to	RV	
3.  QuickCheck	à	Larva	(Gordon	Pace	and	Kevin	Falzon)	

Testing	to	Regression	testing/Debugging	
4.  Invariant	detection	with	Daikon	(Pastore	et	al.)	

Tests	are	generated	and	checked	
automatically	using	a	model,		
e.g.	automata	with	pre	&	post	

conditions	



1.	EUnit	à	QuickCheck	
• Generates	QuickCheck	automaton	from	sequences	of	method	calls	
• Uses	algorithm	to	learn	automata	
• Uses	learned	automaton	to	improve	testsuite	



Points	to	consider	
• Assumes	the	availability	of	negative	traces	
• Not	usually	present	in	testsuites	

•  Suitable	for	testing,	probably	also	for	RV	if	negative	traces	are	
available	



2.	Gherkin	à	QuickCheck	
•  Similar	to	previous	but	state	identification	is	easier	as	more	
explicit	in	Gherkin	tests	



Standard	Business	Specifications	



Standard	Business	Specifications	

States	



Standard	Business	Specifications	

States	

Actions	



Standard	Business	Specifications	

Post	Condition	

Pre	Condition	



Automatically	Generated	QC	Model	



Points	to	consider	
•  The	higher	the	testing	level,	the	more	useful	for	RV	



3.	QuickCheck	à	Larva		
•  Translates	QC	automata	into	Larva	script	
• Main	challenge	is	to	make	sure	you	match	corresponding	entry	
and	exit	points	
•  recursiveMethod()		-entry	
•  recursiveMethod()		-entry	
•  recursiveMethod()		-exit	

•  recursiveMethod()		-exit	



Points	to	consider	
•  It	is	easy	to	go	from	Model-Based	Testing	to	RV	
• Model-Based	Testing	not	very	commonplace	



4.	Invariant	detection	with	Daikon	
• Detect	invariants	from	running	testsuite	
•  Filter	out	invariants	which	no	longer	hold	on	modified	testsuite	
• Use	model	checking	to	detect	invariants	which	are	violated	in	
update	



Points	to	consider	
• How	can	we	adapt	it	to	RV?	



Approach	1:	Gherkin	à	QC	à	Larva	
• We	know	how	to	go	from	Gherkin	to	QC	
• We	know	how	to	go	from	QC	to	Larva	
• Go	from	Gherkin	to	Larva	



Approach	2:	Infer	invariants	
• Daikon	–	an	invariant	generation	tool	

Data	
traces	

Invariants	

Original	
program	

Tests	

Infer	
invariants	

Instrument	
and	run	



Approach	2:	Infer	invariants	
• Daikon	–	an	invariant	generation	tool	



Approach	2:	Infer	invariants	

Data	
traces	

Invariants	

Original	
program	

Tests	

Infer		
invariants	

Instrument	
and	run	

Program	with	
runtime	
monitors	

Generate	and	
instrument	
monitors	



Approach	2:	Infer	invariants	

Pattern	match	on	deposit	
+	

Check	postconditions	if	
preconditions	hold	



Two	main	challenges 		
• Make	monitors	useful	
• Weaken	preconditions	
•  Tighten	postconditions	

• Avoid	false	negatives	



Challenge	–	Weaken	preconditions	

Is	this	deliberate?	



Challenge	–	Weaken	preconditions	

Is	this	deliberate?	

Missing	test	cases?	



Challenge	–	Weaken	preconditions	

Remove	such	invariants	



Challenge	–	Weaken	preconditions	

Remove	such	invariants	

Set	appropriate	threshold	



A	test	case	improvement	problem	

Generate	
invariants	

Improve	
testsuite	

Insight	on	testsuite	Refined	invariants	

Intelligent	test	suggestion	
(boundary	value	analysis,	etc)	



A	test	case	improvement	problem	

Generate	
invariants	

Improve	
testsuite	

Insight	on	testsuite	Refined	invariants	

Use	as		
monitors	

When	satisfied	



Challenge	–	Avoiding	false	negatives	

		

All	behaviours	

Good	
behaviours	



Approach	3:	Combine	testing	and	RV	by	
design	
•  Specification	of	tests	and	monitors	in	a	single	language		
(like	property-based	testing	but	allowing	some	properties	to	be	
specified	by	examples)	
•  If	a	precise	specification	is	available,	generate	test	cases	
automatically	
•  If	not,	have	test	cases	and	specifications	specified	separately	



Approach	3:	Combine	testing	and	RV	by	
design	
•  Specification	of	tests	and	monitors	in	a	single	language		
(like	property-based	testing	but	allowing	some	properties	to	be	
specified	by	examples)	
•  If	a	precise	specification	is	available,	generate	test	cases	
automatically	
•  If	not,	have	test	cases	and	specifications	specified	separately	

E.g.,	balance’=balance	+	deposit	
Automatically	generates		
200	=	150	+	50		
350	=	290	+	60	

E.g.,	balance’	>=	0	



Conclusion	
• Generating	monitors	from	tests	is	hard!	
•  Following	presentations:		
• What	we	learned	so	far	from	the	case	study	at	Ixaris	
•  The	next	challenge	along	the	way:	filtering	out	unuseful	
monitors	


