
		
Extracting	Runtime	Monitors	from	Tests:		
An	Introduction	
Luke	Chircop,	Christian	Colombo,	Adrian	Francalanza,	Mark	Micallef,	and	Gordon	Pace	
	

Project	GOMTA	financed	by	the	Malta	Council	for	Science	&	
Technology	through	the	National	Research	&	Innovation	
Programme	2013	



Why	generate	monitors	from	tests?	
• Monitors	can	provide	extra	assurance	at	runtime	

•  Industry	already	invests	a	lot	in	testing		
			(but	little	in	runtime	verification)	

• Creating	monitors	after	creating	tests	feels	repetitive/waste	

		



Verification	–	A	language	problem	
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Runtime	verification	
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Generating	runtime	verifiers	from	tests	
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Why	is	it	difficult?	
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Typical	language	inference	challenges:		
•  Few	examples	
•  Usually	no	negative	tace	examples	



Why	not	use	test	assertions	directly?	
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Test	assertions	are	typically	very	specific	
@Test 
public void testWithdraw(){ 

 Account a = new Account(); 
 a.setBalance(100); 

 a.withdraw(60); 

 assertEquals(a.getBalance(),40); 
} 



Idealistic	test	assertions	
@Test 
public void testWithdraw(){ 

 initialBalance = 100; 
 withdrawAmount = 60; 

 Account a = new Account(); 

 a.setBalance(initialBalance); 
 a.withdraw(withdrawAmount ); 

assertEquals(a.getBalance(),initialBalance-withdrawAmount); 
} 



What	if	you	insist	on	using	assertions?	
•  There	might	be	other	hidden	assumptions:	
• Assumptions	on	the	global	state	(shared	data	structures,	files,	
etc)	
• Assumptions	on	the	control/data	flow	leading	up	to	the	
assertion	(test	setup,	method	call	sequence	in	test,	etc)	



Related	approaches	
Testing	to	more	“generalised”	testing	
1.  EUnit	à	QuickCheck	(Thomas	Arts	et	al.)	
2.  Gherkin	à	QuickCheck	(Christian	Colombo	et	al.)		

Model-based	testing	to	RV	
3.  QuickCheck	à	Larva	(Gordon	Pace	and	Kevin	Falzon)	

Testing	to	Regression	testing/Debugging	
4.  Invariant	detection	with	Daikon	(Pastore	et	al.)	

Tests	are	generated	and	checked	
automatically	using	a	model,		
e.g.	automata	with	pre	&	post	

conditions	



1.	EUnit	à	QuickCheck	
• Generates	QuickCheck	automaton	from	sequences	of	method	calls	
• Uses	algorithm	to	learn	automata	
• Uses	learned	automaton	to	improve	testsuite	



Points	to	consider	
• Assumes	the	availability	of	negative	traces	
• Not	usually	present	in	testsuites	

•  Suitable	for	testing,	probably	also	for	RV	if	negative	traces	are	
available	



2.	Gherkin	à	QuickCheck	
•  Similar	to	previous	but	state	identification	is	easier	as	more	
explicit	in	Gherkin	tests	



Standard	Business	Specifications	
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Automatically	Generated	QC	Model	



Points	to	consider	
•  The	higher	the	testing	level,	the	more	useful	for	RV	



3.	QuickCheck	à	Larva		
•  Translates	QC	automata	into	Larva	script	
• Main	challenge	is	to	make	sure	you	match	corresponding	entry	
and	exit	points	
•  recursiveMethod()		-entry	
•  recursiveMethod()		-entry	
•  recursiveMethod()		-exit	

•  recursiveMethod()		-exit	



Points	to	consider	
•  It	is	easy	to	go	from	Model-Based	Testing	to	RV	
• Model-Based	Testing	not	very	commonplace	



4.	Invariant	detection	with	Daikon	
• Detect	invariants	from	running	testsuite	
•  Filter	out	invariants	which	no	longer	hold	on	modified	testsuite	
• Use	model	checking	to	detect	invariants	which	are	violated	in	
update	



Points	to	consider	
• How	can	we	adapt	it	to	RV?	



Approach	1:	Gherkin	à	QC	à	Larva	
• We	know	how	to	go	from	Gherkin	to	QC	
• We	know	how	to	go	from	QC	to	Larva	
• Go	from	Gherkin	to	Larva	



Approach	2:	Infer	invariants	
• Daikon	–	an	invariant	generation	tool	
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Approach	2:	Infer	invariants	
• Daikon	–	an	invariant	generation	tool	



Approach	2:	Infer	invariants	
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Approach	2:	Infer	invariants	
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Two	main	challenges 		
• Make	monitors	useful	
• Weaken	preconditions	
•  Tighten	postconditions	

• Avoid	false	negatives	



Challenge	–	Weaken	preconditions	
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Challenge	–	Weaken	preconditions	
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A	test	case	improvement	problem	
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Challenge	–	Avoiding	false	negatives	
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Approach	3:	Combine	testing	and	RV	by	
design	
•  Specification	of	tests	and	monitors	in	a	single	language		
(like	property-based	testing	but	allowing	some	properties	to	be	
specified	by	examples)	
•  If	a	precise	specification	is	available,	generate	test	cases	
automatically	
•  If	not,	have	test	cases	and	specifications	specified	separately	



Approach	3:	Combine	testing	and	RV	by	
design	
•  Specification	of	tests	and	monitors	in	a	single	language		
(like	property-based	testing	but	allowing	some	properties	to	be	
specified	by	examples)	
•  If	a	precise	specification	is	available,	generate	test	cases	
automatically	
•  If	not,	have	test	cases	and	specifications	specified	separately	

E.g.,	balance’=balance	+	deposit	
Automatically	generates		
200	=	150	+	50		
350	=	290	+	60	

E.g.,	balance’	>=	0	



Conclusion	
• Generating	monitors	from	tests	is	hard!	
•  Following	presentations:		
• What	we	learned	so	far	from	the	case	study	at	Ixaris	
•  The	next	challenge	along	the	way:	filtering	out	unuseful	
monitors	


