Industrial Experiences with Runtime Verification of Financial Transaction Systems: Lessons Learnt and Standing Challenges

Christian Colombo

Joint work with Gordon Pace

Marrying Runtime Verification with the Financial Transaction Industry

Christian Colombo

Joint work with Gordon Pace

Financial transaction systems

Taking a closer look

Taking a closer look

What kind of regulations?

E-money funds can be redeemed at par value and without delay

No interest can be given unless the institution is a bank

An unregistered user cannot spend more than €xxx/€xxx a week/month.

Marrying RV and the Financial Industry

How does Fintech see RV?

How does RV see Fintech?

Why is RV different for the industry?

Unlike model checking and testing, RV works live!

Why is RV different for the industry?

Unlike model checking and testing, RV works live!

The attraction

Compliance is a huge headache for Fintech

Their testing is not enough

How is Fintech challenging for RV?

Spikes in traffic

How is Fintech challenging for RV?

Spikes in traffic

Reliability requirements

How is Fintech challenging for RV?

Spikes in traffic

Reliability requirements

The human side!!

What next?

Challenges and options:

The process (human) side of things

The engineering challenges

Our experiences

Our decisions

Lessons learnt

A success story

Process (human) side of things

The human side of it

Communicating the idea

Acceptance of the project

Identifying properties

Who does what when

Case studies

Exercise - Process (CS1)

Exercise - Process (CS2)

Lessons Learnt

What benefit will these guys get?

Do these guys have the right level of abstraction of the system?

Summary for academia-led projects

Summary for academia-led projects

Who will maintain the monitors?

Those who benefit

Who will maintain the monitors?

What if those who benefit are not technical?

Controlled natural language

Engineering side of things

Engineering

Engineering design options

Engineering design options

System-Monitor Organisation

System Execution Monitor Execution

Asynchronous

Offline

System-Monitor Organisation

ne Synchronous

Asynchronous

Offline

Online

System-Monitor Organisation

System Execution **Monitor Execution** Online Synchronous Asynchronous

Offline
Communication

• Method call

• Communication protocol

TCP/IP

Jason

• Database logs

Tight coupling Loose coupling

Method call interception (aspect-oriented programming)

Method call interception (aspect-oriented programming)

Communication interception (monitor acts as a proxy or sniffer)

Method call interception (aspect-oriented programming)

Communication interception (monitor acts as a proxy or sniffer)

Events by design

Implicit vs explicit state space

Monitoring logics using rewriting rules

VS

Traversing automata

Memory management

Garbage collection

Setting a maximum memory size per monitored entity

Exercise - Engineering (CS2)

Description of situation (Case Study 2):

Java system with mySQL database

Efficiency concerns

Trust issues

What would you choose in each case?

Exercise - Engineering (CS3)

Description of situation (Case Study 3):

Microservices built using Akka actors

Efficiency concerns

System design with RV in mind

What would you choose in each case?

Evaluation and lessons learnt

Defining success

Usefulness to industry?

Number of publications?

Create a startup?

Success - actual use in industry

Lesson Learnt 1: University- vs Industry-led

Lesson Learnt 2: RV from design (or not)

Architecture

	Industry	Academia
RV in design	Sync, async	Case-by- case
No RV in design	Case-by- case	Offline

Communication

	Sync	Offline
RV in design	Tight coupling possible	Loose coupling
No RV in design	Case-by- case	Loose coupling

	Sync	Offline
RV in design	Custom events	Lots of options
No RV in design	AOP, Proxy	Database

Implicit/explicit state space

	(Logic comp explicit	oilable to) implicit
Non-strict memory constraints	Both ok	implicit
Strict memory constraints	explicit	No ideal solution

Garbage collection

	(Property writer)	
	technical	Non- technical
Non-strict memory constraints	Both ok	Automatic
Strict memory constraints	User- managed	Open problem

Case study 3 - A success story

The Open Payments Ecosystem

One morning...

You wake up with a great idea...

One morning...

You wake up with a great idea...

A mobile app which gives users complete visibility of their **money spending habits**

One morning...

You wake up with a great idea...

A mobile app which gives users complete visibility of their **money spending habits**

It allows them to **budget their salary**, save every month, ...

You start imagining how it

would look...

You start imagining how it

would look...

You start imagining how it

would look...

There is just one problem...

You need a **bank license**!

(Those were screenshots from Revolut btw)

Payment programme setup costs

- Implementing card processes
- Agreement with bank
- Compliance to legislation
- Auditing
- Dispute resolution
- •

Building a payment application

Building a payment application

Your App
Building a payment application

Building a payment application

Building a payment application

Open Payments Ecosystem + Compliance

Compliance

1. Checking compliance to regulations

Compliance

1. Checking compliance to regulations

2. Matching service provider capabilities

Can application violate regulations at **runtime**?

1. Checking compliance to regulations

Complia

2. Matching service provider capabilities

3. Limiting risk for service providers

Example

- 1. Compliance to regulations
- 2. Capability matching
- 3. Risk mitigation

1. Compliance to regulations

- 2. Capability matching
- 3. Risk mitigation

Example 1. Does the application fall under the definition of e-money?

Example

1. Compliance to regulations

- 2. Capability matching
- 3. Risk mitigation

UK e-money regulations state that funds on financial instruments should be redeemable at par value.

1. Are funds redeemable through the application?

Example

1. Compliance to regulations

- 2. Capability matching
- 3. Risk mitigation

UK e-money regulations state that funds on financial instruments should be redeemable at par value.

1. Is correct value given to the user

- 1. Compliance to regulations
- 2. Capability matching
- 3. Risk mitigation

Example

- 1. Compliance to regulations
- 2. Capability matching
- 3. Risk mitigation

UK e-money regulations state that funds on financial instruments should be redeemable at par value.

3. How many funds are allowed on instruments?

Open Payments Ecosystem + Compliance

• Not all properties are checkable upfront

Implication: SA not enough

Not all properties are checkable upfront

Implication: SA not enough

• Application is run by third party:-

Not all information is available

Implication: SA can only be done on info provided

Not all properties are checkable upfront

Implication: SA not enough

- Application is run by third party:
 - Not all information is available
 - We cannot trust the application

Implication: SA can only be done on info provided

Implication: We have to verify model adherence at runtime

Not all properties are checkable upfront

Implication: SA not enough

• Application is run by third party:

- Not all information is available
- We cannot trust the application
- Understanding the domain
 - Frequent legislation changes
 - Academics will not remain involved

Implication: SA can only be done on info provided

Implication: We have to verify model adherence at runtime

Implication: We need a common language

Info Provided by Developer -The Model

Developer submits model of application rather than implementation

Info Provided by Developer -The Model

Developer submits model of application rather than implementation

Application Execution

Application Execution

1. Is the jurisdiction the UK?

Static check the model

2. Can service provider support e-money applications?

UK e-money regula 1. Does the application fall under instruments should be redeated the definition of e-money?

Example

1. Are funds redeemable through the application?

Runtime check implementation against model

Example

UK e-money regulations state that funds on financial instruments should be redeem 1. Does the application

fall under the definition

 $\sqrt{\text{of e-money}}$?

Runtime verify remaining checks, eg: limits, at par value, delays

Example

UK e-money regulations state that funds on financial instruments should be redeemable at par value.

1. Is correct value given to the user

3. How many funds are allowed on instruments?

RV design choices - Process

The process was not in our control

RV design choices - Engineering

- Synchronised monitoring with a timeout for each transaction
 - Monitor gives go ahead
- Properties which do not affect particular transaction success are monitored **asynchronously**
 - E.g., Fraud risk monitoring
 - E.g., Statistics gathering

RV design choices - Engineering

Communication: asynchronous messaging in Akka microservices architecture

Event extraction: events-by-design

Algorithm: Java code if-then-else statements (automatically translated from controlled natural language)

Understanding the domain

Lawyers

Developers

 \bigcirc

 \bigcirc

RV engineers

Understanding the domain

Lawyers

Know the domain Know the laws Non-technical **Developers** Know the domain Know the scope of the system

RV engineers Little understanding of the domain Will not remain in the project

Will not remain in the project

Example - Controlled Natural Language

LAW: An electronic money issuer must not award (a) interest in respect of the holding of electronic money; or (b) any other benefit related to the length of time during which an electronic money holder holds electronic money.

CNL: For each programme p, and instrument i, where p is regulated in the UK, and i deals with e-money, then i does not give time-based rewards.

Thoughts on this project

- Challenge in understanding domain
- Industry-led project and RV by-design made life "easy"
- Interesting solution for combining static and dynamic checking
- Interesting combination of sync and async monitoring

Conclusion

Conclusion - Do they live happily ever after?

RV has a lot to offer to industry

Better communication is needed both ways

Balance of industrial and academic "success"

Open challenges

Overhead fine-grained control to system administrators

Eg: switching properties on and off

How much state to keep per monitor

Jump-starting the state when turning properties on

Robustness

Persisting monitors, caching, etc

Up to us...

