
Considering Academia-Industry Projects
Meta-Characteristics in

Runtime Verification Design

Christian Colombo and Gordon J Pace

Department of Computer Science, University of Malta, Malta

Abstract. Runtime verification, with its practical applicability and myr-
iad of theoretical challenges it still poses, has the potential to bridge the
gap between academic research in the field of formal methods with the
software industry. In order to facilitate this, it is useful to extrapolate
success patterns from previous projects: Are certain characteristics of an
industry-academia project a determining factor in the project’s success?
How can runtime verification design decisions take into considerations
project characteristics to improve the chances of success?
This paper attempts to shed some light on these questions by reflecting
on five projects with two partners over the past ten years. A number
of lessons emerge, perhaps the most poignant one being the need to
think long term in setting mutually beneficial goals from which a strong
working relationship can emerge.

1 Introduction

Although various underlying notions from runtime monitoring and verification,
albeit in limited form, have long found themselves in standard quality assurance
practice in industry, its adoption as a first class element and building block of the
system being built is still rare. Much of the use of runtime verification techniques
in industry, thus still stems from projects in conjunction with academic partners
interested in exploring scalability and industrial-relevance of these techniques.
In the literature reporting these projects, the focus is invariably the effective-
ness of the techniques used on the system under scrutiny. What is usually not
reported (being beyond the scientific scope of such publications), is the process
of adoption, the context of the project, the logistic challenges encountered and
its longer term impact in terms of adoption of techniques beyond the scope
of the original project e.g. Was it an industry- or academia-led project? Was
runtime verification being engineered retrospectively on a legacy system or one
being developed from scratch? It is worth noting that some, although not all, of
the observations we make are relevant to any project with partners from both
industry and academia, and not limited to runtime verification.

In this paper, we present anecdote-based observations based on our expe-
rience from five academia-industry projects1, discussing and reviewing major

1 While it would have been preferable to include a wider set of projects in our analysis
(including those from other research groups), we found that reporting of the “post-



design decisions in runtime verification engineering. An implicit assumption
throughout the paper will be that the goal of the academia-industry collabo-
ration is the benefit to both parties. Hence, in the next section we attempt to
describe success from the two points of view. In Section 3 we describe project
meta-characteristics which might affect the engineering decisions discussed in
Section 4. We bring everything together in Section 5 by reviewing our decisions
in five projects and report on their success. The last section concludes with some
final remarks.

2 Defining Success

Success in the context of industry-academia projects may take various forms,
and defies a simple uni-dimensional metric. Instead, it makes more sense to talk
of ways in which a project may have a positive impact on the industrial partner,
the academic one, or the collaboration between the two.

2.1 Impact on Industrial Partners

We start by identifying different ways in which a collaborative runtime verifica-
tion project may leave an impact on the industrial partners.

Direct changes within their systems: The direct way in which a project
may leave impact is in resulting to changes in their actual software systems
(post-project) either through (i) stronger runtime checks within the normal
logic of the system to ensure higher confidence in system correctness; or
(ii) changes in the system architecture, introducing separate logical units to
perform runtime checks or even through the adoption of the use of a runtime
verification tool thus completely separating concerns of the normal system
and verification logic.

Changes to the quality assurance process: Another way in which projects
may leave an impact on the system is through the quality assurance process,
particularly during testing, either (i) by enabling the quality assurance team
to identify further correctness elements or runtime scenarios, thus resulting
in more or better test oracles and test cases; or (ii) through the adoption
of techniques from runtime verification to support the specification of a test
suite — from the oracles to test scripts and test cases e.g. moving from
timeless assertion-based oracles which assert constraints on the system state

mortem” of such projects is sparse in the literature. Many of the observations we
make in this paper are on the non-scientific aspects of the research projects (e.g.
whether participation of the industrial partner in the project had an impact on
the way they approached validation and verification of other systems they were
developing), which are typically not discussed in scientific reports of the outcome of
such projects. Therefore, while we are aware of several projects which have applied
academic techniques in an industrial setting, we cannot include these in this paper
due to the lack of information of what happened after the end of the project.



at a particular point in the execution of the system, to temporal oracles
each of which may refer to and compare the state of the system at various
temporal points.

Indirect effects: Although the project may not result in direct changes to the
current or planned future versions of the system, or to the quality assurance
process, exposure to runtime verification may have indirect and longer-term
effects, sometimes due to the Hawthorne effect2 resulting from oversight
by the academic partner due to the collaboration and accentuated by the
domain ignorance of the oversight [12]. Two ways we have seen this happen
was through exposing architects and developers (i) to alternative ways in
which verification can be integrated into a system, yet keeping it in a separate
component; and (ii) to the realisation of the possibility to look at different
levels of failure handling at runtime going beyond class invariants and pre-
and post-conditions.

Although we define the notion of success in a rather broad manner, we have
witnessed projects which have partially failed to realise an impact in any of
the three effects listed above, typically due to one of (i) the fact that day-to-
day fire-fighting with system problems did not leave enough time and resources
to consider further changes which runtime verification may require; (ii) lack of
interest in immersion into deploying runtime verification due to the designers
or developers involved felt that the change was imposed on them (e.g. through
company policy to participate in the project) or due to being involved with a
team which felt that dynamic analysis was not within their remit (e.g. developers
may feel that it is an aspect which quality assurance should handle, or the quality
assurance may feel that the onus should be on the developers since the checks
are performed at runtime); or (iii) despite an interest to consider the use of
runtime monitoring or verification, fear (rightly or wrongly) of its impact on the
complexity of the system and its performance impeded its adoption.

2.2 Impact on Academic Partners

Given the different objectives of the academic partners, the impact sought is
similarly different. We identify three aspects in which joint runtime verification
projects with industrial partners can prove to be fruitful:

Evaluation of new techniques on real-world systems: Typically, a pri-
mary measure of success from an academic perspective in many collaborative
projects is that of evaluating new techniques on a real-world system. The
degree to which the proposed techniques are successfully integrated into the
system to be evaluated is a major measure of project impact from the aca-
demic side.

2 Sometimes referred to as the observer effect, the Hawthorne effect is the phenomenon
that when aware of being observed, individuals may modify aspects of their be-
haviour.



Application of tools to real-world systems: Many academically developed
tools tend to be proof-of-concept artefacts, and mostly developed in an evo-
lutionary manner across generations of students, mostly with little regard
to software engineering practice. The experience of applying such tools on
real-world systems can be a major challenge but can result in important
insight on the strengths but also on design and algorithmic bottlenecks of
the tools.

Understanding better the challenges to real-world adoption: The very
experience of attempting to transpose runtime verification techniques to be
applicable in a real-world setting is in itself a learning experience, expos-
ing the academic partners to real-world challenges, which can lead to the
development of new techniques and solutions, and establish longer-term col-
laboration with the industrial partners.

3 Success-Determining Factors

When considering our past projects (see Section 5), two common success-determ-
ining characteristics clearly emerge.

Project lead: One of the determining factors is the degree to which all the
partners have at stake in the project. Particularly from the industrial side,
where ongoing commercial deadlines and pressures may result in the project
being put on the back burner; how central the project is to those partners
immediate (or near-future) commercial objectives makes a substantial dif-
ference to the chances of success. In general, projects which are instigated,
designed and/or led by these partners result in two important advantages
towards achieving success:

(i) Priority: In industrial settings, priorities may change easily and quickly
(e.g., change in leadership, change in market, etc). When a project is
low on the industrial partner’s priority list, chances are that resources
get allocated elsewhere. Projects which were initiated by the industry
partner(s) tended to be given more priority and it was easier to obtain
information and get access to resources in a timely manner.

(ii) Engagement: When an industrial partner gets involved in a project
without a clear direct benefit (but perhaps to start a long term research
collaboration, to test what academic tools may offer, or to get in touch
with students as potential employees), there is a great possibility that
the academic researchers will not find much enthusiasm and engagement
from the stakeholders within the company — particularly employees who
do not see the value of the project.

Legacy vs. new system: A major distinction in industrial runtime verifica-
tion projects is whether the effort concerns an existing legacy system or
whether the system is being designed from the ground up with runtime
verification in mind. This issue is particularly pronounced in runtime verifi-
cation due to the desirability of extracting events non-intrusively at runtime.



Legacy systems are typically hard to modify and interoperate with for sev-
eral reasons, particularly their brittleness and sometimes poorly supported
dated technologies. Furthermore, obtaining the necessary information and
understanding how a legacy system works might also be significantly chal-
lenging due to unmaintained or incomplete documentation and code which
has been changed and fixed over and over again.
On the other hand, a system which is being newly built and which incorpo-
rates runtime verification from the start, may provide a dedicated interface
for the monitor which makes all relevant events readily available and also
listens out for any incoming instructions from the monitor.

4 Design Decisions

When applying runtime verification to real-world systems, a number of design
decisions have to be taken. In this section we focus on some of the most pertinent
ones, particularly those which (from our experience — see the next section) may
severely affect project success. It is worth noting that some of the design choices
are interconnected and may influence each other.

4.1 System Feedback: Level of Runtime Intrusion

One important decision is that of how intrusive on the system the runtime anal-
ysis will be. From a most basic level in which one can merely monitor or observe
a system and log information about its runtime behaviour, then moving up to
runtime verification, in which not only is the behaviour observed, but particular
behavioural patterns are identified to be undesirable and algorithmically classi-
fied to be so. This latter level of intrusion can be taken further by adding on logic
to support runtime recovery or reparation, triggering in the case of undesirable
behaviour being observed (to make up for it)3. One can also go another step
further, using runtime enforcement [9] to ensure that the undesirable behaviour
is avoided in the first place, modifying the system’s behaviour to ensure it works
as expected.

The higher the level of intrusion, the more difficult it is to have the runtime
system to be integrated with the production-ready system. In the context of
the success-determining criteria discussed in Section 3, intrusion beyond non-
reparatory runtime verification is unlikely to be achieved on legacy systems, but
this can be pushed up considerably in industry-led projects on systems still being
designed and developed.

4.2 Online vs. Offline

Another fundamental design decision is whether runtime monitoring is carried
out online or offline. Online monitoring interacts directly with the system at run-
time while offline monitoring involves processing runtime events independently

3 This is supported by typical RV tools such as JavaMOP [4] and Larva [8].



of the running system. This is a major difference from an intrusiveness point
of view as in the case of online monitoring the verification software very likely
interferes with the running system and typically competes for the same resources.

Considering the success-determining factors identified in the previous section,
similar to higher intrusiveness, online monitoring decreases the likelihood of
the project being taken onboard by the industrial partner on the live systems.
Therefore, caution should be used and in the case of an academia-led legacy
project, it should ideally be avoided altogether. On the other hand, when working
in the context of an industry-led project where a system is being designed and
developed with online runtime verification in mind, the associated risks can be
minimised and catered for.

4.3 System-Monitor Communication

Once the runtime verification mode of online vs. offline is decided, one would
typically decide on the communication mode; particularly how the system events
are to reach the verifier. The choice is highly dependent on whether monitoring
takes place online or offline. As one would expect, offline monitoring allows for
communication to be significantly more loosely coupled. For example this may
take the form of simply dumping a relevant part of the monitored system’s
database. The advantage of loose coupling is that it does not interfere with the
monitored system. In the case of online monitoring, the choice between tightly
and loosely coupled communication modes would typically be more constrained
by the desire to have the monitor receive system events in a timely fashion.
Options in this case may range from direct method calls from the system, to
message transmission over a network. While all these options are possible when
considerations are included in the design, more care should be taken when dealing
with legacy systems due to repercussions the modifications may bring about.

4.4 Event Extraction

Legacy systems are less amenable to incorporating a clean and modular way
of extracting relevant system events. It is for this reason that runtime verifi-
cation is perhaps one of the best case studies for aspect-oriented programming
(AOP)[10]. However, even with the sophistication of AOP, understanding which
method invocations to capture and whether these provide enough context to
bind the necessary data variables is a non-trivial task. Moreover, when runtime
verification is also used to steer the system (as opposed to simply being a pas-
sive observer), particular care needs to be taken to ensure that bugs are not
accidentally introduced. Maintenance and system updates might also result in
unintended consequences in the system-monitor interaction. Another approach
to extract events in a legacy system context is through the use of a proxy. This
is convenient when the events of interest are visible from a communication point
of view.

In contrast, when dealing with a new system, the monitoring of events can
be designed as part of the system, i.e. the system proactively makes relevant



events available to the monitor. When a new system is designed for an offline
setting, one may still opt for a less direct way of extracting events, such as by
interfacing with the database. Extracting events from the database would also
probably be the most rational choice when dealing with a legacy system, albeit
some database modifications might be needed.

4.5 Specification of Properties

When dynamic analysis is used to verify behaviour, the manner in which the dis-
criminator between correct or expected behaviour from bad behaviour is written,
plays an important role in determining the success of adoption of the techniques
in the real-life system. Although in some projects (particularly academia-led
ones) the specification language used may be determined by the objectives of
the project itself (e.g. a project focussing on how overheads induced due to mon-
itoring specifications using a particular logic or class of logics can be reduced), in
many cases this choice may be flexible, ranging from one extreme of developer-
friendly specifications written as observers in the same programming language
as the main system, to the other extreme involving the use of complex logics
which developers may require training to use in an effective manner. In between,
one can find intermediate specification languages which bridge this gap e.g. the
use of graph-based formalisms (e.g. automata) or regular expressions with which
most developers would be familiar.

As in the other design challenges, the higher the industrial involvement, the
more one can choose to identify and adopt an appropriate logic (possibly hidden
beneath syntactic sugar or within a controlled natural language), while with
lower industrial involvement, developer-friendly formalisms would be preferable.

5 Observations and Commentary

In order to review our past projects in the light of the above design choices, we
start by describing the projects. We had five projects with two partners, with
the information summarised in Figure 1 ordered in completion date order. The
first project was with one partner while the following four projects were with
the second partner4.

1. System Feedback: Level of Runtime Intrusion. In the majority of the projects,
we opted for the least intrusive of the approaches — that of a passive ob-
server. In the case of the first project where we had online monitoring, we
could also alert the system of a violation. Further along the intrusiveness
spectrum, the last project includes runtime enforcement where transactions
may be stopped if they would lead to a violation. In this last project, the
monitor also plays the role of an observer when collating statistics which do
not involve corrective actions.

4 Names of the industrial partners are left out due to information sensitivity and in
order to allow us to be able to discuss project success or otherwise more freely.



2. Online vs. Offline. The online vs. offline choice is closely related to the
intrusiveness choice before. All observer monitors were naturally offline while
the rest of the options necessitated an online architecture.

3. System-Monitor Communication. The offline monitoring projects made use
of a database dump and text files to store the observed data. The online
counterparts intercepted method calls in the first case, while in the second
case, used asynchronous messages to establish handshakes between the sys-
tem and the monitor.

4. Event Extraction. The second and third projects used a database script to
obtain a copy of the relevant part of the database. In the first and fourth
projects, we used aspect-oriented programming since these were legacy sys-
tems, while in the last project we could construct custom events which were
designed as part of the system.

5. Specification of Properties. In most projects we used an automata-based
formalism — namely DATEs [7]. In the case of the fourth project we used
assertions since these were extracted automatically from test traces. Finally,
in the last project we provided a controlled natural language [11] which
internally compiled to a ruled-based language.

Proj Part
Characteristics Decisions

Lead System Intr On/Off Comm Events Spec

1 A Aca Leg RV On Method call AOP Aut

2

B

Aca Leg Obs Off Db dump Db script Aut

3 Ind Leg Obs Off Db dump Db script Aut

4 Aca Leg Obs Off Text files AOP Ass

5 Ind New Enf/Obs On/Off Async messaging Custom events CNL

Fig. 1. Summary of the collaborative runtime verification projects discussed.

Given the above design choices, we can now comment on the successes of each
partnership:

Partner A (Project 1). From an academic perspective, this project provided
us with the experience and case study needed to create a practical runtime
verification tool. From an industry perspective, it was useful to demonstrate
to the partner how checks can be embedded in a system and how they can be
expressed. However, to date we are not aware of any use of explicit runtime
verification technologies adopted within their system.

Partner B (Projects 2–5). The first project with this partner served mainly to
prepare the way for other future ones — the next project was an initiative of a
number of employees and was successfully deployed on their live data. These
experiences led the way to two other projects: Projects 4 and 5. Project 4 was
successful from an academic perspective in exploring new ideas however, so
far it did not result in direct effects in the industrial technology used. The last



project enabled us the freedom of applying the latest academically developed
ideas to an industrial system with relative success from both perspectives.

Key Observations

Better chances of success when legacy systems are monitored offline:
We note that with the exception of the last project, all projects took place on
legacy systems. In all cases with the exception of the first project, we applied
offline monitoring when working with legacy systems. The first project which
went against this pattern was not successful from an industrial perspective.

Industry-led projects more likely to succeed (industrially): Another
observation is that the two industry-led projects were both very successful
from an industrial perspective. From an academic perspective, it is less pre-
dictable though as the emphasis is on finding a solution to the problem at
hand.

Industry-led projects on non-legacy systems give rise to win-win sit-
uations: Although the latest project has the advantage of hindsight gained
from previous projects, and a well established relationship with the partner,
it was also the only one which was both industry-led and dealt with a non-
legacy system. We hypothesise that these latter characteristics significantly
improved the chances of achieving high levels of success from the point of
view of both parties.

6 Conclusions

In this paper, we have considered how poignant characteristics of a project af-
fect the engineering choices in the context of runtime verification. Engineering
design decisions are particularly delicate in the context of runtime verification
since, unlike other techniques such as testing or static analysis, the generated
runtime verification code typically interacts directly with the running system.
Runtime verification design aspects such as whether to monitor a system online
or offline have been the subject of numerous publications [5, 3, 2]. However, to the
best of our knowledge, it is the first time that runtime verification engineering
design choices were put against the backdrop of project meta-characteristics.
Indisputably, there are various other variables contributing to the success (or
lack thereof) of a project. In particular, the human aspects come to mind with
questions such as how to build a working relationship amongst partners, how to
involve the right stakeholders in the project, and how to handover the outcome
of a project to the industrial partner have been tackled in [6] and more generally
in [1].

Ultimately, the chance of success of an academia-industry project depends
on the quality of the relationship (and the trust) between the parties. Once the
parties learn to better understand each other, the chances of success increase
dramatically. For this reason, a project in the early years of a collaboration might
simply serve the purpose of establishing a good working relationship between



the partners. Once the relationship improves, it becomes more probable that
undertaken projects are of higher importance to the industrial partner. Hence,
the more likely it is that a project is industry-led and concerns a non-legacy
system which consequently (as we have explained throughout the paper) increase
the design options dramatically.

References

1. Mehmet Aksit, B. Tekinerdogan, Hasan Szer, Hakan Faruk Safi, and Meryem Ayas.
The DESARC method: An effective approach for university-industry cooperation,
pages 51–53. Institute of Research Engineers and Doctors, 1 2015. 10.15224/978-
1-63248-038-5-10.

2. Luciano Baresi and Carlo Ghezzi. The disappearing boundary between
development-time and run-time. In Proceedings of the Workshop on Future of
Software Engineering Research, FoSER 2010, at the 18th ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineering, 2010, Santa Fe, NM,
USA, November 7-11, 2010, pages 17–22, 2010.

3. Ian Cassar, Adrian Francalanza, Luca Aceto, and Anna Ingólfsdóttir. A survey
of runtime monitoring instrumentation techniques. In Proceedings Second Inter-
national Workshop on Pre- and Post-Deployment Verification Techniques, Pre-
Post@iFM, pages 15–28, 2017.

4. Feng Chen and Grigore Rosu. Java-mop: A monitoring oriented programming
environment for java. In Tools and Algorithms for the Construction and Analy-
sis of Systems, 11th International Conference, TACAS 2005, Held as Part of the
Joint European Conferences on Theory and Practice of Software, ETAPS 2005,
Edinburgh, UK, April 4-8, 2005, Proceedings, pages 546–550, 2005.

5. Christian Colombo, Gordon Pace, and Patrick Abela. Safer asynchronous runtime
monitoring using compensations. Formal Methods in System Design, 41(3):269–
294, 2012.

6. Christian Colombo and Gordon J. Pace. Industrial experiences with runtime ver-
ification of financial transaction systems: Lessons learnt and standing challenges.
In Lectures on Runtime Verification - Introductory and Advanced Topics, pages
211–232. 2018.

7. Christian Colombo, Gordon J. Pace, and Gerardo Schneider. Dynamic event-based
runtime monitoring of real-time and contextual properties. In Formal Methods for
Industrial Critical Systems (FMICS), volume 5596 of Lecture Notes in Computer
Science, pages 135–149, 2008.

8. Christian Colombo, Gordon J. Pace, and Gerardo Schneider. LARVA — safer
monitoring of real-time java programs (tool paper). In Seventh IEEE International
Conference on Software Engineering and Formal Methods, SEFM 2009, Hanoi,
Vietnam, 23-27 November 2009, pages 33–37, 2009.

9. Yliès Falcone, Laurent Mounier, Jean-Claude Fernandez, and Jean-Luc Richier.
Runtime enforcement monitors: composition, synthesis, and enforcement abilities.
Formal Methods in System Design, 38(3):223–262, 2011.

10. Gregor Kiczales. Aspect-oriented programming. In 27th International Conference
on Software Engineering (ICSE 2005), 15-21 May 2005, St. Louis, Missouri, USA,
page 730, 2005.

11. Tobias Kuhn. A survey and classification of controlled natural languages. CoRR,
abs/1507.01701, 2015.



12. Ali Niknafs and Daniel M. Berry. An industrial case study of the impact of domain
ignorance on the effectiveness of requirements idea generation during requirements
elicitation. In 21st IEEE International Requirements Engineering Conference, RE
2013, Rio de Janeiro-RJ, Brazil, July 15-19, 2013, pages 279–283, 2013.


