
Applying Runtime Verification to 
Group Key Establishment

Secure Communication in the Quantum Era (SPS G5448)
April 2019 

Christian Colombo - University of Malta



Authenticated group key establishment (AGKE)

First step: Designing a protocol 



Authenticated group key establishment (AGKE)

First step: Designing a protocol

Second step: Proving it is correct in principle 



Authenticated group key establishment (AGKE)

First step: Designing a protocol

Second step: Proving it is correct in principle 

Third step: What can go wrong at runtime?



What can go wrong at runtime?

(High level) Wrong protocol 
implementation

The protocol implementation might deviate 
from the verified (theoretical) design

Low level threats
Arithmetic overflows, undefined downcasts, 
and invalid pointer references

Hardware Can hardware be trusted?



What can go wrong at runtime?
...but in practice is far from enough

(High level) Wrong protocol 
implementation

The protocol implementation might deviate 
from the verified (theoretical) design

Low level threats
Arithmetic overflows, undefined downcasts, 
and invalid pointer references

Hardware Can hardware be trusted?

Medium level threats: Malware, Data leaks, etc



Unintended consequences
❏ Timing attacks

❏ Cache timing attacks

❏ Microarchitecture side-channel attack

❏ Power/EM/acoustic attacks

❏ Fault attacks

❏ Reaction attacks

❏ Data remanence attacks

❏ Attacks on random number generators



Timing attack
If (secret) 

Do something lengthy

Else 

Do something simple

An external observer can learn the secret 
by observing the duration of the execution.
 
(or the power used or any other side effect)



What can we do?
Analyse code to make sure secrets can’t be leaked!



Secure programs

Identifying secure programs

Programs 
accepted by 

analysis



Secure programs

Soundness/Completeness of dynamic analysis

Secure programs

Static 
Analysis

Dynamic 
Analysis

Dynamic + Static 
Analysis

Static 
Analysis



How do we use these 
techniques in practice?



Runtime Verification



Runtime Verification

What 
specification 
language to 
use

What tool to 
use

What protocol 
to adopt 
between the 
system and 
monitor/verifier



High level logic
● Before any data is sent by the client, 

the server hash is verified to match the client's version

● If the operation is of type “Send”, 

then the message receiver ID must be in the set of approved receiver IDs



Low level considerations
General considerations for any code

Arithmetic overflows

Undefined downcasts

Invalid pointer references



Mid-level 
Applicable to any crypto protocol

Data flow monitoring

E.g. Ensuring no control is decided on secret data

(which affects the timing of the program)



Challenges for RV
Over and above the usual correctness and overheads concerns

The monitor can present an additional security vulnerability

❖ As a piece of code
❖ As a reaction-triggering device 



Our plan of comprehensive 
approach:
Trusted Execution 
Environment (TEE)





Trusted isolated hardware - 
avoid hardware threats 



Highly restricted+monitored 
communication to the outside world
- Avoiding leaks, malware, etc

Monitor high level protocol 
implementation



What can go wrong at runtime?
...but in practice is far from enough

(High level) Wrong protocol 
implementation

The protocol implementation might deviate 
from the verified (theoretical) design

Low level threats
Arithmetic overflows, undefined downcasts, 
and invalid pointer references

Hardware Can hardware be trusted?

Medium level threats: Data leaks, malware, etc

Implementation 
monitor

Communication 
monitor

By trusted 
execution env.

Analysis of code


