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Abstract
Analytical security of cryptographic protocols does not immediately translate to operational security due to incorrect imple-
mentation and attacks targeting the execution environment. Code verification and hardware-based trusted execution solutions
exist, however these leave it up to the implementer to assemble the complete solution, imposing a complete re-think of the
hardware platforms and software development process. We rather aim for a comprehensive solution for secure cryptographic
protocol execution, which takes the form of a trusted execution environment based on runtime verification and stock hardware
security modules. RV-TEE can be deployed on existing platforms and protocol implementations. Runtime verification lends
itself well at several conceptual levels of the execution environment, ranging from high level protocol properties, to lower level
checks such as taint inference. The proposed architectural setup involving two runtime verification modules is instantiated
through a case study using a popular web browser. We successfully monitor high and low level properties with promising
results with respect to practicality.

Keywords Cryptographic protocols · Runtime verification · Trusted execution environment · Binary instrumentation ·
Malware

1 Introduction

It is standard cryptographic practice to establish provable
security guarantees in a suitable theoretical model, abstract-
ing from implementation details. However, security of any
cryptographic system needs to be holistic: over and above
being theoretically secure and implemented in a secure way,
the operation of a protocol also needs to be secured. While
there exists a lot of research on the theory and general imple-
mentation aspect of cryptographic systems, its longterm
operation security, albeit heavily studied, is not sowell estab-
lished.
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Evidence for undesirable consequences stemming from
this state of affairs is unfortunately way too frequent, with
several high profile incidents making the information secu-
rity news in recent years. Insecure execution spans improper
implementation related to specific protocol issues to more
generic insecure programming practices. While the notori-
ous Heartbleed OpenSSL vulnerability [57], for example,
was caused by a memory corruption bug in its C source code,
OpenSSL’s timing attacks on the underpinning ciphers [8] are
examples of how design security can be broken in implemen-
tation. Similarly, Bluetooth Smart’s attack [74] was related to
complexities with getting elliptic curve cryptography secure
implementation right. Even once programming hurdles are
addressed, issues arising at the platform level are a stark
reminder that secure execution of cryptographic protocols is
a hard problem. Insufficient physical randomness employed
by certificate generation [32] is emphasizedwhen large-scale
generation for millions of IoT devices is carried out. Operat-
ing system features can be misused by malware campaigns,
e.g., TrickBot [36], to inject code into web browsers and steal
all their cryptographic secrets. Even when these attack vec-
tors are closed down, secure protocol execution can still be
undermined by hardware side-channels, with Meltdown and
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Spectre [35,40] shaking up the systems security landscape in
the last two years.

A runtime monitor [16] can check the actual physical
leakage of the system (in a selected model), verify formal
conditions on inputs and outputs of primitive algorithms, as
well as detect and prevent unusual use of the system (such
as too many executions in some time window). The run-
time verification approach can thus provide heuristic tools
that can strengthen the implementation against existing, but
also against as yet unknown (future) attacks of various types.
A standalone monitor can also be more easily changed or
upgraded than a complex cryptographic protocol. Further-
more, different types of monitors (of varying cost) can be
employed according to expected security risks posed by the
environment.

In this paper we propose RV-TEE, a comprehensive solu-
tion based on runtime verification (RV) at different levels of
the implementation: from the low-level bugs and attacks, to
data leaks, up to implementation issues at the protocol level.
The end result is a Trusted Execution Environment (TEE)
that is able to isolate security-critical code from potentially
malware-compromised, untrusted, code. We propose that as
an alternative to switching to specialized TEE hardware, the
same secure execution environment can be provided through
the use of hardware security modules (HSM), that extend
existing stock hardware. RV’s role is two-fold: It firstly pro-
vides the all-important runtime service of verifying correct
protocol implementation, ensuring that design-level security
properties are not broken. Secondly, it fulfills the role of a
secure monitor that scrutinizes data flows crossing the TEE’s
trust boundaries. Overall we make the following contribu-
tions:

– We show how RV in conjunction with HSM can be
used to securely execute cryptographic protocols, both in
terms of correct implementation as well as resilience to
malware infection. Most importantly our approach only
requires extending, rather than replacing, existing stock
hardware.

– We demonstrate the feasibility of our approach on real-
world web browser code, both in terms of monitoring
the correct execution of a third party ECDHE protocol
implementation, aswell as practical execution overheads.

– We also present quantitative results regarding the use of
RV for taint inference in combination with the SeCube
hardware security module. The aim of this experiment
to demonstrate RV-TEE’s effectiveness in securely exe-
cuting cryptographic primitives and in detecting data
that might be attemptedly being exfiltrated outside the
trust boundary. For this purpose we simulate a real-world
banking trojan attack.
This contribution is novel and has not appeared in our
workshop paper [18].

This paper is organized as follows: Section 2 presents
existing RV and hardware-based methods to complement
models for theoretical protocol security, while Sect. 3
describes RV-TEE, our comprehensive approach for protocol
operational security. Sections 4 and 5 present results obtained
from a feasibility study on the Firefox web browser; the sec-
tions present high level and low level RV setups respectively.
Section 6 presents additional results with respect to HSM
employment and a banking trojan case study. Section 7 con-
cludes by presenting a way forward as guided by this initial
exploration.

2 Background and related work

Cryptographic protocols are designed to withstand a broad
range of adversarial strategies. Standard practice is to rely on
formal security models, defined in a dedicated way for a spe-
cific cryptographic task at hand (e.g., public-key encryption,
pseudo-random generation, signing, 2-party key establish-
ment, etc.), and succinct definitions are givenmaking explicit
the exact scenario in which a security proof (or reduction)
is meaningful. In the case of key establishment, significant
work has been done for over twenty years in the direction
of dedicated security models (see [45] for a comprehensive
overview).

Subsequent work has focused on specific scenarios (e.g.,
attribute based, see [71]) or advanced security goals (e.g.
considering malicious insiders [11], aiming at strong secu-
rity [77], preventing so-called key compromise impersonation
resilience [25], etc.).Many of the attack strategies considered
in the latter may actually be deployed on the implementation
at runtime.

While having formal models to prove security protocols
safe is a crucial first step, there are several things which may
still go wrong in the implementation at runtime: To start
with, the implementation might not be faithful to the proven
design. Secondly, the implementation involves details which
go beyond the design — these may all pose problems at run-
time, ranging from low-level hardware issues, to side-channel
attack vulnerabilities, to insecure execution contexts result-
ing from general-purpose operating system features that are
prone to malware abuse.

To reason about the various kinds of security threats and
how we deal with them through our proposal, we loosely
classify them under four levels:
High level These are logical bugs causing the protocol
implementation to deviate from the (typically theoretically
verified) design.
Medium levelAt this level, we includemalware attacks: The
protocol implementation might seem to follow its design and
yet such attacks might nonetheless manage to reach their tar-
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get, e.g., to exfiltrate data, by attacking the execution runtime
rather than the protocol’s implementation per se.
Low level We classify under this heading threats originat-
ing from programming bugs e.g., causing secret information
to be deducible from the outside, or resulting in undefined
behavior such as arithmetic overflows, undefined downcasts,
and invalid pointer references.
Hardware level Finally, hardware can pose a threat if the
manufacturer cannot be trusted or due to its susceptibility to
side-channel attacks.

2.1 Runtime verification

Runtime verification (RV) [15,37] involves the observation
of a software system—usually through some form of instru-
mentation — to assert whether the specification is being
adhered to. There are several levels at which this can be
done: from the hardware level to the highest-level logic, from
module-level specifications to system-wide properties, and
from point assertions to temporal properties. In all cases, the
advantage of applying RV techniques is twofold: On the one
hand, monitors are typically automatically synthesized from
formal notation to reduce the possibility of introducing bugs,
and on the other hand, monitoring concerns are kept separate
(at least on a logical level) from the observed system.

The novelty of this paper complements existing work in
applying RV to the security domain, specifically by provid-
ing a comprehensive solution for implementation security of
cryptographic protocols, comprising: i) verification of cor-
rect protocol implementation; and ii) an RV-enabled Trusted
Execution Environment (TEE) requiring minimal hardware.
In what follows we loosely classify existing RV works on
security protocols according to the threat level they address.
High level At the highest level of abstraction, a number of
approaches [4,68,69,81] check for properties directly derived
from the protocol design (which would have been checked
through the security model). This approach ensures that
even though the protocol would have been theoretically ver-
ified, the implementation does not diverge from the intended
behavior due to bugs or attacks.

An example of a temporal property in this category taken
from TLS protocol verification [4] is before any data is sent
by the client, the server hash is verified to match the client’s
version. This can be expressed in several formalisms. The
one chosen in this case is LTL [56], which is a commonly
used specification language in the RV community.

A second example (from [81]) is non-temporal but instead
focuses on ensuring data does not leak to unintended recip-
ients: If the operation is of type “Send”, then the message
receiver IDmust be in the set of approved receiver IDs. In this
case the property is expressed in an established RV frame-
work called Copilot comprising a stream-based dataflow
language.

Other specification formalisms used are timed regular
expressions [68] for dealing with realtime considerations,
state machines [69] when modeling of temporal ordering of
events suffices, and signal temporal logic when dealing with
signals [68].
Low level At a low level, RV techniques based on informa-
tion flow can be used to check software elements which are
not specific only to protocol implementations. Rather, such
checks would be useful in the context of any application
where security is paramount. For example, Signoles et al.
[70] provide a platform for C programs, Frama-C, which can
automatically check for a wide range of memory corruption
vulnerabilities such as arithmetic overflows, undefineddown-
casts, and invalid pointer references. At this level, we also
include Secure Flow [3] (a library within Frama-C) which
protects against control-flow based timing attacks by moni-
toring information flow labels for all values of interest.

2.2 Trusted execution environments (TEE) and
hardware security modules (HSM)

Besides typical RV use as outlined above (corresponding
to the high level concerns), we propose leveraging RV for
the provision of a trusted execution environment (TEE) to
cover the medium level. The provision of a TEE is the
ultimate objective whenever executing security-critical tasks
[61], such as cryptographic protocol steps. Trusted comput-
ing finds its origin in trusted platform modules (TPM) that
comprise tamper-evident hardware security modules (HSM)
[72]. However, TPM constitute just one component of a
complete TEE solution as depicted in Fig. 1. In fact, the
cornerstone of TEE lies in the isolated execution of critical
code segments in a way that they become unreachable by
malware infections of the non-trusted operating system and
application code.
TPM are entrusted with booting an operating system (OS)
environment that is segmented in a non-trusted and trusted
domains respectively, ensuring the integrity of the boot pro-
cess and at the same time protecting the cryptographic keys
upon which all integrity guarantees rely on. The non-trusted
domain corresponds to a typical OS that fundamentally
provides security through CPU ring privileges. However
the presence of software and hardware bugs along with
inherently insecure OS features render malware infections
possible at both the user and kernel levels. The crucial role
of TEE comes into play when despite an eventual infec-
tion, malware is not able to interfere with security-critical
code executing inside the trusted domain. Complete isola-
tion is key, encompassing CPU, physical memory, secondary
storage and even expansion buses. Code provisioning to
the trusted domain as well as data flows between the two
domainsmust be fully controlled in order to fend offmalware
propagation through trojan updates or software vulnerabil-
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Fig. 1 Components of a trusted
execution environment (TEE)

ity exploits. These two requirements can be satisfied through
TPM employment and a secure monitor that inspects all data
flows crossing the trust domain boundary.

A number of TEE extensions to CPUs (CPU-TEE) have
already reached industry level maturity. Intel’s SGX [47] and
AMD’s SVM [30] technologies are primary examples. These
constitute hardware extensions allowing an operating system
to fully suspend itself, including interrupt handlers and all
the code executing on other cores, in order to execute the
trusted domain code within a code enclave. Another wide-
spread example is ARM’s TrustZone [55] that provides a
CPU-TEE for mobile device platforms. TrustZone imple-
ments the trusted domain as a special secure CPUmode, and
which when transited from normal mode is completely hid-
den from the untrusted operating system, therefore allowing
particular security functions and cryptographic keys to only
be accessible when in secure mode. The Android keystore
[19] is the most common functionality that makes use of this
mode.

Several other ideas also originate from academia, such as
the suggestion to leverage existing hardware virtualization
extensions to implement TEE without having to resort to
further specialized hardware [46]. Other work focus on pro-
viding practical solutions to port existing applications to a
CPU-TEE. For example Haven [5] makes use of a library
that exposes a subset of a windows API inside an Intel
SGX enclave, enabling legacy applications to execute inside
a CPU-TEE completely unmodified. While this approach
may come across as too bloated for a secure enclave exe-
cution, recent work [76] showed that such bloating concerns
are exaggerated. VC3 [63] offers a secure map-reduce cloud

solution, also running on SGX, where the map/reduce code
is submitted to the cloud service provider in an encrypted
form and only gets decrypted and executed once inside the
enclave. Another challenge with cloud computing is assur-
ing that virtual machines (VMs) are not tampered with by
malicious cloud service operators or tenants. Solutions such
as CloudVisor [80] show that in such cases a TPM suffices
to secure the booting process of guest VMs.

Despite all these efforts, it is important to note that CPU-
TEEs are not attack-proof since practical threats targeting
all the aforementioned hardware have already been demon-
strated [34,62,66,79]. More importantly, when considering
the adoption of CPU-TEE platforms for secure AGKE exe-
cution there is the major stumbling block of having to either
make use of special hardware, with the consequence of OS
modification requirements, or else having to execute unmodi-
fiedOS code on top of a TEE-enabling hypervisor.Moreover,
in all cases, the trusted code would have to execute without
the support of an underlying operating system and therefore
complicating the development process of trusted code.

The common denominator with all existing TEE plat-
forms is the need for cryptographic protocol code to execute
on special hardware. In contrast, we propose to achieve
a similar level of assurance by combining RV with any
hardware security module (HSM) of choice, encompassing
high-bandwidth network cards with hardware accelerated
encryption [73], down to smaller on-board micro-controllers
and/or smartcards used in resource constrained devices
[10,21]. Ultimately, even a CPU-TEE [30,47,55] can be
used if deemed suitable. Compatibility-wise, if the design
of the software to be secured already supports HSMs, e.g.
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PKCS#11, deployment even comes close to ‘plug-and-play’.
Ultimately, the level of protection with respect to tampering
and resistance to side-channel attacks, of the adopted HSM
is carried forward to RV-TEE.

2.3 Practical binary instrumentation

Binary instrumentation presents the pending primitive nec-
essary to make RV work alongside the TEE. Specifically
RV monitors must be able to track process memory content
of the protocol execution to be secured. The most suit-
able type of instrumentation at the binary level is that of
Dynamic Binary Instrumentation (DBI). Overall, DBI is a
widely-adopted technique in the domain of software secu-
rity, including the availability of widely used frameworks
(e.g., Frida1 and libdft2) that simplify tool development in a
programming language agnostic manner.

Addressing high level concerns, binary instrumentation is
applied at the level of function call tracing. By leveraging
various runtime structures that support program execution,
e.g. imports/exports tables, as well as dynamic binary re-
rewriting, various practical applications can be attained by
avoiding overheads associated with continuous stack frame
creation and restoration. Such applications include malware
sandboxes [78], end-point securitymonitors [53], cloud secu-
rity monitoring [28], and patented application sandboxes
[24].

Tracking of information flows presents the medium level
option with dynamic taint analysis (DTA) being the predom-
inant technique. DTA concerns which data flows are to be
considered tainted due to their suspicious provenance, e.g.,
an input systemcall, anduponwhich anumber of checksmust
be performed before them being passed onwards to sensitive
sinks e.g., output system calls, or dynamically-created com-
mands such as SQL or shell commands. Applications that
rely on this technique are still highly experimental but carry
sought-after potential to detect complex memory errors [14],
protect from mobile malware [58], enable Advanced Persis-
tent Threat (APT) attack detection and investigation [42],
and provide data privacy assurance on the cloud [52], just to
name a few.

Themain limitation is presented by impractical overheads
[29]. At its core, taint analysis requires the computation of a
shadow state that identifies which data flows become tainted,
propagate taint to other data objects, and at which point these
objects should becomeuntainted [64]. The shadow state itself
presentsmemory overheads concerns,while its computations
per program statements carries execution overheads. More-
over at the binary level, since the high level semantics of the
source code are lost, the situation with runtime overheads

1 https://www.frida.re/.
2 https://github.com/vusec/vuzzer/tree/master/support/libdft.

reverses as compared to function call tracing. Aggressive
optimization techniques, revolving around efficient shadow
state look-ups, avoidance of stack frame creation and regis-
ter spilling, identification of redundant flows through static
analysis and intermittent tracking [13,29,31], have demon-
strated the possibility of bringing back overheads closer
to compile-time taint analysis. However, even in this case
slowdowns ranging between 1.5× and 3× are still consid-
ered prohibitive for on-line scenarios, beyond also missing
on programming language independence and intermittent
monitoring of the binary-level approach. One solution for
practical DTA concerns inferring, rather than tracking, taint
[67]. Taint inference takes a black-box approach to DTA,
trading off between accuracy and efficiency. This method
only tracks data flows at sources/sinks and then applies
approximate matching in order decide whether tainted data
has propagated all the way in-between. With slowdowns
averaging only 0.035× for fully-fledged web applications,
this approach seems promising. Furthermore, its binary-level
implementation can leverage the same aforementioned tech-
niques proposed for function tracing.

In certain cases, DBI may have to be complemented with
its static alternative: Static Binary Instrumentation (SBI).
SBI concerns modifying the executable file directly on disk
before loading into memory for execution. In general SBI
is complicated by the lack of execution context, and there-
fore knowledge of the original program per se, available
to the instrumenter. In our case SBI is planned solely as
an additional option for the instrumentation code injection
step. Security-conscious applications nowadays implement
increased security measures that may prohibit dynamic code
injection, forcing instrumentation to occur statically through
executable-header data structure manipulation [7].

2.4 Information-stealingmalware

The kind of malware we consider for the medium threat
level gets injected into victim processes and subsequently
exfiltrates credentials or any other security-sensitive infor-
mation. Once injected, malware defeats any kind of cryptog-
raphy without having to break its mechanism per se. Rather,
since cryptographic schemes assume secrecy of secret/pri-
vate keys, through process injection information-stealing
malware undermines this core assumption. The injection pro-
cess itselfmay leverage overtOS features typically employed
bydebuggers, e.g.,OpenProcess onWindows [33] andptrace
on linux [20].

More likely, in order to remain undetected by anti-
malware solutions, lesser known or even undocumented OS
features are exploited instead. These are ones tucked beneath
openly available inter-process communication mechanisms.
OnWindows, theNtQueueApcThread,NtMapViewOfSection
and GlobalAddAtom internal system functions have been
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widely abused [33]. On linux, tampering with those data
structures associated with the implementation of the POSIX
signal call has been shown to provide a similar attack vector
[20]. Mobile OSes, whilst relying on more restricted exe-
cution environments presented by locked-down devices, are
still prone to similar attacks [41].

Threat intelligence reports categorize malware with infor-
mation stealing characteristics under the following three
headings: i) Memory scraping malware; ii) Credentials
dumping malware; and iii) banking trojans. Primarily found
in point-of-sale (PoS) terminals, memory scraping malware
aims to steal sensitive data directly from PoS terminal mem-
ory, e.g., plaintext card details, through regular expression-
based signatures and subsequently harvesting them for card
cloning purposes or similar abuse [27,60]. FighterPOS [75]
and GlitchPOS [48]) are two notorious examples of this type
ofmalware. On the other hand, credentials dumpingmalware
is the PCversion of PoSmalware,withwebbrowsers present-
ing common targets [43]. Actually, the target range is much
wider, with any process that retains passwords, hashes or
credentials of any form, e.g., session tickets, in memory pre-
senting a potential target [51,54]. Notable examples include
CStealer [1] and KPOT Stealer [65].

Finally, banking trojans are mass information stealing
malware, typically also doubling as fully-fledged botnets,
reacting to commands broadcast over command and control
(C2) channels [9,22]. Zeus was one of the earliest bank-
ing trojans to rise to notoriety, followed by variants such
as Citadel and Gameover Zeus, as well as other separate
families including Dridex, Ursnif, Trickbot and Qakbot, that
are still infecting machines up until very recently [44]. They
tend to share advanced functionality, namely: client-sideweb
page content injection (webinjects), key-logging, connect-
back functionality (stealthy back-dooring), and obfuscated
command and control (C2) channels.

Whilst an HSM can help to protect secret cryptographic
keys through isolated execution, a complete TEE would be
required for comprehensive protection at all threat levels.
For example, in case encryption/decryption is delegated to
an HSM, any injected malware could still gain access to the
plaintext (personal data, credit card data etc.). Similarly, any
injected code could invoke a private key-based operation, e.g.
to complete certificate-based authentication, without ever
having to actually disclose the HSM-protected key.

3 RV-Tee: an RV-centric TEE

Figure 2 shows the RV-TEE’s architecture superimposed on
the generic TEE blueprint, as illustrated earlier in Fig. 1. This
setup is not tied to specific security hardware nor requires any
OS modifications. It also mitigates threats related to hard-

ware level issues, including side channel attacks on ciphers,
while keeping runtime overheads to a minimum.

The primary components of this design are two RV mon-
itors executing within the untrusted domain and a hardware
security module (HSM) providing the trusted domain of the
TEE. The chosen example HSM is a USB stick, comprising
a micro-controller (MCU), a crypto co-processor providing
h/w cipher acceleration and true random number generation
(TRNG), as well as flash memory to store long term keys. In
this manner, cryptographic primitive and key management
code are kept out of reach of malware that can potentially
infect the OS and applications inside the untrusted domain.
The co-processor in turn can be chosen to be one that has got
extensive side-channel security analysis, thus mitigating the
remaining hardware-related threats (e.g., [12]). The Crypto
OS is executed by the MCU, exposing communication and
access control interfaces to be utilized forHSMsession nego-
tiation by the protocol executing inside the untrusted domain,
after which a cryptographic service interface becomes avail-
able (e.g., PKCS#11). In a typical TEE fashion cryptographic
keys never leave the HSM. The proposed setup forgoes deal-
ing with the verification of runtime provisioned code since
the cryptographic services offered by the HSM are expected
to remain fixed for long periods.

The RV monitors complete the TEE: They verify correct
implementation of protocol steps and inspect all interactions
with the hardware module, both of which happen through
the network and external bus OS drivers respectively. Ver-
ifying protocol correctness leverages the high-level flavors
of RV (in the rest of the paper we refer to this as function
call tracing), checking that the network exchanges follow
the protocol-defined sequence and that the correct decisions
are taken following protocol verification steps (e.g., digi-
tal certificate verifications). Inspecting interactions with the
HSM, on the other hand, treats hooked functions as sources
and sinks for information flow tracking, rather than protocol
steps. In both cases the monitors are proposed to operate at
the binary (compiled code) level. The binary level provides
opportunities to secure third-party protocol implementations,
as well as optimized instrumentation applied directly at the
machine instructions level. Overall, binary instrumentation is
a widely-adopted technique in the domain of software secu-
rity, including the availability of widely used frameworks
(e.g., Frida3) that simplify tool development. The higher-
levelRVmonitor is taskedwithmonitoring protocol steps and
as such, instrumentation based on library function hooking
suffices. This kind of instrumentation is possible to deploy
with minimal overheads.

The proposed RV aimed at medium level threats adopts
dynamic taint inference approach through a re-purposing of
R. Sekar’s taint inference algorithm [67], specifically port-

3 https://www.frida.re/.
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Fig. 2 RV-TEE: An RV-centric
comprehensive security for
cryptographic protocol
implementations (USB stick
example)

ing it from a web application setup to process memory. In
the case of data (sources) flowing into Crypto OS call argu-
ments originating from suspicious sites, (e.g., network input,
interprocess communication (IPC) or dynamically generated
code), the Crypto OS calls represent the sinks. All these
scenarios are candidates of malicious interactions with the
HSM. In the reverse direction, whenever data flows result-
ing from Crypto OS call execution and that end up at the
same previously suspicious sites, the calls present the tainted
sources while the suspicious sites present the sinks. In this
case these are scenarios of malicious interactions target-
ing leaks of cryptographic keys/secrets, timing information
or outright plaintext data leaks. Whichever the direction of
the tainted flows, the same approximate matching operators
can be applied between the arguments/return values of the
sources/sinks.

Revisiting the threat levels introduced in the previous
section, in the proposed RV-TEE: i) High level threats
are covered through RV function call tracing (Sect. 4); ii)
Medium level threats are covered through taint-inferring RV
(Sect. 5); iii) The low level can be covered through comple-
mentary frameworks such as Frama-C in an offline manner;
iv) The hardware level is covered by allowing the approach to
work with any certified device of choice (Sect. 6). Finally, a
nonce-based remote attestation protocol, e.g. [2], can option-
ally close the loop of trust: Executed by the Crypto OS, its
purpose is to ascertain the integrity of the RV monitors in
cases where they are targeted by advanced malware infec-
tions.

Table 1 summarizes how RV-TEE can protect against
high/medium/low/hardware level threats targeting crypto-
graphic protocols as compared to the individual security
controls it brings together. At this point, it becomes clear

that RV-TEE’s main proposition is to combine the level of
protection provided by the individual state-of-the-art compo-
nents into a comprehensive solution. Component aggregation
is based on the blueprint for TEE design [61]. The level of
security brought along by the individual components is spe-
cific to chosen tool/configuration/hardware. We will delve
deeper into specific choices and evaluate their security in
Sects. 4–6. The inclusion of an information flow-based RV
component is made for completeness’ sake. However this is
not intended to form part of the comprehensive runtime solu-
tion, rather it is intended to be used in an offline manner, e.g.
during testing.

4 RV function call tracing

To test the feasibility of RV-TEE, both in terms of real-
world codebase readiness and practical overheads,we choose
a key agreement protocol — ECDHE [59] — and apply
our approach to it. Despite having its design proven secure
from an analytical point of view, its security in prac-
tice can be compromised if not executed with all required
precautions.

Three properties for secure ECDHE implementation are:
P1Digital certificate verification in order to authenticate pub-
lic keys sent by peers: Ifwrong certificates are sent, or else the
correct ones fail verification when using a certificate chain
that ends at a root certificate authority, the protocol should
be aborted.
P2 Both session public keys are regenerated per session in
the ephemeral version of the protocol and as such, both
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Table 1 RV-TEE comparison to the state-of-the-art to secure cryptographic protocol execution

Control/Threat level High Medium Low H/W

RV-TEE •Verify adherence •Isolated crypto •Software •Side-channel
to protocol design execution vulnerability resistance

•Exfiltration detection •Tamper-evident

detection (offline)

RV - function call tracing [4,68,69,81] •Verify adherence – – –

to protocol design

RV - taint inference [67] – •Exfiltration – –

detection

RV - information flow [3,70] – – •Software –

vulnerability

detection

HSM [10,21,30,47,55,72,73] – •Isolated crypto – •Side-channel
execution resistance

•Tamper-evident

peers need to validate the remote peer’s public key on each
exchange4 (unless the session is aborted).
P3 Once the master secret in TLS, has been established, the
private keys should be scrubbed from memory in order to
limit the impact of memory leak attacks such as Heartbleed,
irrespective of whether the session is aborted.
Firefox and NSS

We chose Firefox’s implementation of ECDHE for our
case study, mainly since it makes use of the open-source and
widely adopted Network Secure Service library5 (NSS). It
supports TLS 1.2 and 1.3, among other standards, as well
as being cross-platform by sitting on top of the Netscape
Portable Runtime (NSPR).

4.1 Applying RV to the context

Larva [17] has been available for a decade with numerous
applications in various areas [16]. The advantage of Larva
is that being automata-based and having Java-like syntax, it
offers a gentle learning curve. Furthermore, it has a number of
features which come in handy when applying it for protocol
verification.
Basic sequence of eventsAt its simplest, a protocol involves
a number of events which should follow a particular order.
Each event corresponds to a hooked library function call. In
Listing 1, the first two transitions deal with the start of a new
session (sslImport and prConnect).
Conditions and actions The occurrence of an event is not
always enough to decide whether it is a valid step of the

4 See Section 5.2.3 in ftp://ftp.iks-jena.de/mitarb/lutz/standards/ansi/
X9/x963-7-5-98.pdf.
5 https://searchfox.org/mozilla-central/source/security/nss/lib.

1 Transitions {
2 start −> newsession [sslimport]
3 newsession −> server_connect [prconnect]
4 server_connect −> failed_cert_auth [sslauthcertcompl]
5 failed_cert_auth −> close [prclose\\mcParent=mc;]
6 close −> certerr_ok [destroypk\mc.hasParent(mcParent)]
7 failed_cert_auth −> certerr_bad [eot]
8 close −> certerr_bad [eot]
9 }

Listing 1 Certificate error property (P1).

protocol or not. Larva supports conditions and actions on
transitions to perform checks on parameters, return values,
etc. In the example (see lines 5–6 in Listing 1), this was
necessary to ensure that the call to destroy the private key is
a sub-call of close.
Sub-patterns Following software engineering principles of
modularity, Larva allows matching to be split into sub-
automata which can communicate their conclusions to each
other and their parent. The second property we are checking
needs to ensure that whenever a session fails for some reason,
it is properly aborted. Listing 2 shows a property describing
a session ‘abort’ pattern whereupon matching, the success
is communicated (using abort.send in line 10) to other
automata for which an abort is relevant.

Figure 3 shows the second and third properties in their
diagrammatic format. For clarity, we have removed some
details which are not needed for the reader to understand the
general idea.6

6 For complete Larva properties, traces and recording timings for
this, and all subsequent experiments, visit: http://github.com/ccol002/
rv-crypto.
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start

�

connect deriveKDF

abort

validatepk

abort

masterKeyDerive

masterKeyDerive

(a) Diagrammatic representation of P2.

start

�

connect deriveKDF validatepk

scrubPrivKey

(b) Diagrammatic representation of P3.

Fig. 3 Finite state automata of properties; dashed transitions represent the end-of-trace event

1 Property abort {
2 States {
3 Accepting { abort }
4 Normal { close }
5 Starting { start }
6 }
7 Transitions {
8 start −> close [prclose\\mcParent=mc;]
9 close −> abort [destroypk\mc.hasParent(mcParent)\abort.

send();]
10 }
11 }

Listing 2 Abort detection property (part of P2).

Hooked functions The complete list of hooked functions
feature in the list of Larva events shown in Listing 3. These
events are in turn what trigger the monitoring automata to
transition from one state to another. All functions are con-
veniently exported by NSS3, although freebl3 has to
be re-compiled with debug symbols to allow for locating
EC_ValidatePublicKey.

4.2 Firefox case study

Comprehension of Firefox’s usage of NSS yielded an aggres-
sively optimized implementation, with two design strategies
being of particular relevance to our experiments. These are:
(i) Interleaved TLS sessions executed on the same thread
whenever accessing a specific URL over HTTPS; and which
in turn are (ii) Executed concurrently to certificate verifica-
tion on a separate thread. The main implication here is the
need to separate individual TLS sessions in order to execute
the RV monitors on separate sessions. This task is left to
an individual TLS session filtering procedure described by
Algorithm 1. Its first step is to identify the beginning and end
of each TLS session. This is made possible through NSPR’s
file descriptors (fd), by pairing calls toSSL_ImportFD and
PR_Close for the same fd. This pair and all intervening

1 Events {
2 sslimport() = {MethodCall mc.call(String n,∗,∗)} filter {n.

equals("SSL_ImportFD")}
3 prconnect() = {MethodCall mc.call(String n,∗,∗)} filter {n.

equals("PR_Connect")}
4 sslauthcertcompl() = {MethodCall mc.call(String n,∗, Map

params)} filter
5 {n.equals("SSL_AuthCertificateComplete") &&
6 !((String)params.get("err")).equals("0x0")}
7 destroypk(mc) = {MethodCall mc.call(String n,∗,∗)} filter {

n.equals("SECKEY_DestroyPrivateKey")}
8 prclose(mc) = {MethodCall mc.call(String n,∗,∗)} filter {n.

equals("PR_Close")}
9 eot() = {EndOfTrace eot.call()}

10 createpk(mc) = {MethodCall mc.call(String n,∗,∗)} filter {n.
equals("SECKEY_CreateECPrivateKey")}

11 validatepk(mc,params) = {MethodCall mc.call(String n,∗,
Map params)} filter

12 {n.equals("EC_ValidatePublicKey")}
13 deriveKDF(mc) = {MethodCall mc.call(String n,∗,∗)} filter

{n.equals("PK11_PubDeriveWithKDF")}
14 step(ret) = {step.receive(Object ret)}
15 abort() = {abort.receive()}
16 destroypke5() = {MethodCall mc.call(String n,∗, Map

params)} filter
17 {n.equals("SECKEY_DestroyPrivateKey") &&
18 ((String)params.get("privk")).contains("e5 e5 e5 e5

")}
19 }

Listing 3 Larva events defined over the hooked functions.

entries are extracted into their own slice, non-destructively
(line 2).

Each slice is iterated multiple times (lines 6-20). During
the first iteration (lines 8-9) all pending function calls, and
all their sub-calls, involving the same fd are pulled into a
newly created TLS session trace by Match_ArgsRetVal.
Similarly all entries, and sub-calls, with a correspondingNSS
context (cx) argument (referred to as cxfd) are also included,
since NSS’s cx is pinned to NSPR’s fd.
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Algorithm 1: Individual TLS session filtering for Fire-
fox/NSS
Input: Func_Call in_full_trace[];
Output: Func_Call out_indiv_sessions[][];

1 while forever do
2 (Func_Call curr_slice[], int fd) ←

GetNextSlice(in_full_trace, ‘SSL_ImportFD’,
‘PR_Close’);

3 int i ← 1;
4 Func_Call prev_session[], curr_session[] ← ∅;
5 Address keys[] ← ∅;
6 repeat
7 if i=1 then
8 curr_session ← Match_ArgsRetVal(curr_slice,

[fd, cx f d ]);
9 i++;

10 else
11 prev_session ← curr_session;
12 if i=2 then
13 keys ← GetKeyAddressesSubCalls(
14 curr_session, ‘SSL_AuthCertificateComplete’,

‘PR_Close’);
15 i++;
16 else
17 keys ←

GetAllKeyAddresses(curr_session);
18 end
19 curr_session ← Match_ArgsRetVal(curr_slice,

[fd, cx f d , keys]);
20 end
21 until curr_session = prev_session;
22 Enqueue (out_indiv_sessions, curr_session);
23 end

Subsequent iterations also pull in calls that are not fd-
based, and which do not happen to be sub-calls of the
already included functions. In order to do so, a heuristic is
employed based onSSL_AuthCertificateComplete
and PR_Close and their sub-calls. These sub-calls obvi-
ously belong to the same thread of execution of their callers,
and comprise various PKCS#11 key derivation/encryption
functions. Once these sub-calls are included within the cur-
rent trace as establishedbyGetKeyAddressesSubCalls
(lines 13-14 followed by 18), what remains missing are all
other PKCS#11 calls that do not happen to be in these sub-
calls, along with all other required hooked functions. Multi-
ple iterations have to be executed in order to do so, adding
function calls for every matching key-related argument or
returnvalue as establishedbyGetKeyAddressesSubCalls
(lines 16 followed by 18). All these arguments and return
values are addresses of key storage locations in memory.
Iterations are executed until no further entries are made (line
20), with the completed individual session passed on to the
RV monitor (line 21) as an output stream.

This is the heuristic part of the algorithm, with the
underlying assumption being that concurrent TLS ses-

Table 2 RV - function call tracing: property matches

Dataset TLS sessions Properties

1a 1b 2a 2b 3a 3b

Bad_SSL 11 11 0 0 0 11 0

Top_100 3,366 0 0 1,342 0 1,405 6

sions do not make use of the same memory locations
to store keys, as otherwise interference between threads
ensues. A second underpinning assumption is that each
individual session either starts a key derivation sub-call
sequence inside SSL_AuthCertificateComplete, or
callsPK11_Encrypton session completion (byPR_Close).
The former occurs whenever the certificate verification
thread loses the race with the ECDHE protocol thread, while
the latter happens whenever Firefox knows it is sending the
final GET/POSTHTTP request and closes its end of the TCP
connection.

This approximate solution trades off precision for effi-
ciency, as compared to tracing all threads at the instruction
level, or having to update Firefox’s source-code to accom-
modate individual TLS session tracing accordingly. This
heuristic fails whenever Algorithm 1 exits after the second
iteration, however it may still be effective in case all required
hooked function calls happen to be already sub-calls of
the included function calls. Ultimately the non-deterministic
behavior resulting from the optimized multi-threaded imple-
mentation is a factor.
Experiments setup

Two experiments were set up. The first experiment,
Bad_SSL, is intended to demonstrate the first RV property
concerning certificate verification errors. It makes use of
11 sites, sub-domains of badssl.com, with known certificate
issues. The second experiment, Top_100, based on Alexa top
100 sites (as of 05/06/2019), sets out to demonstrate the prac-
ticality of the binary level instrumentation. It also sheds light
on Firefox’s runtime behavior, verifying its expected correct
executionwith respect toECpublic keyvalidation andprivate
key scrubbing, through the remaining RV properties. Fur-
thermore, sessions that do not match any of these properties
can also provide insight into full-session: resumption ratio, as
well asAlgorithm1’s heuristic accuracy. Each site has its root
URL accessed 10 times in a row, with all sessions automated
through Selenium v3.141.0/geckodriver v0.24.0 on an Intel
i7 3.6GHz x4 CPU/16GB RAMmachine. Function hooking
implementation uses Frida v12.4.8 and performed solely on
Firefox’s parent process, which is the process that takes care
of all networking functionality over TLS.
Results

Table 2 shows that in Bad_SSL all sessions are eventu-
ally aborted on certificate verification failure, as evidenced
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Table 3 Overheads measured
for Top_100

Configuration Overheads Overheads Significance test
ms % p-value

RV function tracing 363.98 5.26 0.281

RV for taint inference 18.999 0.7 0.129

by property 1a matches7 and no matches for 2a&2b. Prop-
erty 3a matches are a consequence of ECDHE steps being
executed concurrently for certificate verification inside a sep-
arate thread. As for Top_100 the 10 access requests per URL
generate a total of 3,366 sessions. This is due to the fact
that each page may in turn initiate further TLS sessions
due to ancillary HTTP requests being generated by the ini-
tial HTML. None of these sites generated a certificate error,
resulting in not a single session matching 1a&1b (which is
expected by frequently accessed sites). The non-matching of
property 2b and a very low number of property 3b matches,
indicate the expected correct behaviour with respect to EC
public key validation and private key scrubbing respectively.
The six matches for the latter were traced to odd instances
of non-returning SECKEY_DestroyPrivateKey calls,
indicating some implementation quirk occurring during auto-
mated browser sessions. In fact this scenario could not be
reproduced with manual browser sessions.

The numbers of combined matches for properties 2a&2b
and 3a&3b matches, each being less than 3,366, requires
some context. Firstly, remember that TLS sessionsmaymake
use of session resumption rather than go through the full
handshake. From the acquired traces we found 1,951 such
sessions, lowering down the expected combined total for each
property to 1,415. The pending discrepancy for 3a&3b (total-
ing 1,411) is accounted for by 4 sessions that get aborted
for some reason even before ECDHE and certification ver-
ification threads execute. The gap for 2a&2b is accounted
for additionally by 69 sessions that generated no alerts on
exiting after iteration 2 of Algorithm 1, and without man-
aging to include the required calls into the trace by that
time. This accounts for an effective accuracy rate of 0.9795
for the underpinning heuristic. This is quite high, especially
when considering the attained instrumentation efficiency. As
shown by the RV function tracing row in Table 3, when com-
paring the Top_100 sessions executed with/out RV, the mean
overhead is just 5.26%, with the pair-wise differences not
even surpassing the threshold of statistical significance. A
Wilcoxon signed-rank test returns a p-value of 0.281, indi-
cating that external factors, e.g., network latency, server load
and browser CPU contention, may be having a larger impact
than instrumentation. In fact it was observed that varia-

7 For each property, “a” refers to the property being satisfied, i.e., reach-
ing an accepting state, while “b” refers to the property being violated,
i.e., reaching a bad state.

tions between pages (e.g., Youtube takes longer to load than
Google) and the effect of browser caching even caused some
instrumented runs to run faster than non-instrumented ones.

5 RV for taint inference

The experiment presented in the previous section represents
an application of RV at a high level since the properties
checked are related to the protocol specification. In this
section, we present an application of RV which addresses
medium level threats (see Sect. 2): We monitor information
taint. Inspired by the work of Sekar [67], we make a number
of modifications and apply the algorithm in our context.

5.1 Algorithm overview

The algorithm presented in [67] is based on the intuition that
taint flows between sources and sinks can be inferred through
sub-string edit distance: A sub-string s might match a sub-
string of t even though they might not be any exact s in t.
This is useful given that data might be modified during flow
in which case taint inference using exact sub-stringmatching
is likely to produce false negatives.With the aim of optimiza-
tion, the approach initially adopts a coarse-grained sub-string
matching algorithm based on multisets, i.e., it just compares
the number of occurrences of each alphabet character under
consideration. This has the advantage that, for each charac-
ter, the shorter input string is slided over the longer input
string for comparison, the additional computation is a con-
stant (reducing the count of the character which falls outside
the sliding window and conversely for the character which
becomes visible in the window).

The coarse-grained matching result (a conservative ver-
sion of it) is normalized and compared to a threshold d. The
bigger d is,more likely it is that data being exfiltrated is detect
even if modified to some extent. On the other hand, a bigger
d also gives rise to a higher probability of false positives, i.e.,
two sub-strings being coincidentally similar. Note that this
probability depends among other things on the length of the
input string and size of the alphabet. Once the coarse-grained
comparison falls below the threshold, the relevant sub-strings
are compared using the fine-grained algorithm to reduce the
probability of false positives.
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Fig. 4 The taint inference
process using RV

5.2 Adaptations

The context of Sekar’s work is to protect against injection
vulnerabilities such as SQL injection and cross-site scripting.
This is rather different from our application for detecting data
exfiltration in the context of a web browser. Rather than deal-
ing with website inputs, in our case we deal with decrypted
HTTP headers and content; rather than checking against the
web application’s outgoing requests, we check against the
buffer dump from the browser’s memory heap (Fig. 4 depicts
the idea). Of course these differences have significant impli-
cations on the specifics of the algorithm.
Alphabet The alphabet considered in [67] varies between 40
and 70 (depending on whether the application being consid-
ered is case sensitive or not). In our scenario, we are dealing
with a more generic byte stream (decoded from base 64)
which might represent text as much as an image. Therefore
it makes sense to have an alphabet covering the whole range
of a byte, i.e., 256 per byte.
Input string lengthThe length of the input strings being con-
sidered in our case is significant: in the topfive sites decrypted
data per page load averaged to 1352 bytes. On the other hand,
the heap size is of 1Mb per page. This contrasts sharply with
length of typical web application input and request strings.
Time window Given the sequence of HTTP responses
received by a browser, the question arises: For how long
do we keep checking the heap for particular HTTP response
content? Of course, the attacker might delay exfiltration to
avoid detection so a longer time windowmakes the approach

more robust. On the other hand, the longer the time window,
the more expensive the approximate sub-string matching.
Matching threshold The matching threshold strikes a bal-
ance of false positives and false negatives, i.e., a low threshold
reduces the possibility of reporting a match when there actu-
ally isn’t, but might easily miss matches where the attacker
made slight modifications to the information. Since the prob-
ability of false positives is a function of several elements,
including the alphabet size and string length, we repeated the
experiment reported in Figure 8 of [67] to include a bigger
alphabet. We repeated the experiments 40/0.33 and 70/0.7
(i.e., alphabets 40 and 70 with thresholds of 0.33 and 0.7
respectively), and added experimented with three thresholds
for alphabet size 256. We note that as expected, the probabil-
ity of two random strings matching coincidentally becomes
smaller as the alphabet size and string length increases (in
the case of exact string matching, given an alphabet of
size a and string length n, the probability of a match is
an .)

5.3 Algorithm and complexity analysis

Building on the overview and adaptations presented in the
previous subsections, we now provide a more detailed expla-
nation of the algorithm as well as analyze its complexity.

The algorithm starts with the initialization of a num-
ber of parameters: We set the window size to the length
of the (shorter) sink string. If the sink string is long, this
might require a bigger threshold and consequently,more calls
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Fig. 5 Probability of coincidental string matching

Algorithm 2: Coarse-grained and fine-grained byte
string matching

Input: Byte in_source_string[], in_sink_string[];
Output: Func_Call out_match_boolean;

1 window ← in_sink_string.length();
2 threshold ← window * 0.33;
3 comparisons ← (in_source_string.length() -
in_sink_string.length())/step;

4 for offset = 1; offset < comparisons; offset++ do
5 coarse_dist

←CoarseMatch(in_source_string.substring(offset,
window), in_sink_string);

6 if coarse_dist < threshold then
7 fine_dist ←

FineMatch(in_source_string.substring(offset,
window), in_sink_string);

8 if fine_dist < threshold then
9 Alert(‘Match found at offset ’ + offset);

10 return true;
11

12

13 end
14 return false;

to the fine-grained string matching function. Next, we set
the threshold parameter; this affects which coarse-grained
matches will be further considered for fine-grained match-
ing. We multiply the threshold with the window size since
the bigger this is, the more tolerance we need to give.

Following Sekar’s approach, coarse-grained matching
simply compares the histogram of bytes of both strings, com-
putable in O(n + m) where n and m are the lengths of the
compared strings. Given that our alphabet size is 256 because
we are not restricting our byte value range, our sensitivity to
mis/match at this stage is substantially higher than that of the
previous work.

The fine-grained algorithm is a dynamic programming
implementation of edit distance calculation. Since in our
case we have substantially larger strings, this becomes more
expensive both in terms of time and space complexity. The
algorithmic complexity of calculating the edit distance using
dynamic programming is known to be O(nm).

5.4 Implementation

FromanRVperspective, the architecturewe adopt is interest-
ing due to its combination of online and offline monitoring:
The online monitoring component of our setup involves
dynamic binary instrumentation to obtain the sources and
sinks for analysis. While this adds a certain level of over-
head, we perform the more expensive sub-string matching
operations on separate resources, i.e., offline. This can be
run in parallel to the system (the browser), but it will not hin-
der it from operating smoothly. The downside being that the
monitor might fail to keep up with the system and therefore
detect issues late—well after the data has been exfiltrated but
hopefully in time to warn the user and stop further breaches.
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The offline part, mirrors the algorithm described earlier
in Sect. 5.1. More details regarding the online part are given
below:
Hooked functionsTaint sourcemonitoring requires hooking
ssl3_UnprotectRecord and tls13_Unprotect
Record. Both are internal functions to NSS3, and which
therefore necessitates re-compilation with debug symbols.
Together, these twohooks cover allHTTPpayloads decrypted
within TLS <= 1.2 and 1.3 sessions respectively. In
both cases the sslBuffer output parameter is used to
dump the corresponding decrypted buffers. The PR_Write,
PR_Writev, and NSS3 exported functions provide taint
sink monitoring. The corresponding buffers are dumped
using the buf output parameter.
Experiment setup The setup for this experiment is the same
as per Sect. 4.2. Taint sources are hooked inside the Fire-
fox parent process using Frida, while taint sinks are hooked
inside child processes executing web browser tabs. Due to
Firefox’s sandbox [50] that considers all child processes as
low-integrity, setting them up in a highly restricted execution
context, the use of static instrumentation e.g., using LIEF
[38], is necessary in order to inject instrumentation code.
Frida-gadget conveniently packages the entire Frida DBI in
a stand-alone shared library for use within such a setup.

While the parent process is responsible for all networking
and TLS activity, these child processes are tasked with pars-
ing web content and rendering it to screen. Memory scraping
malware, therefore, ismost likely to get injected inside the tab
processes to increase its chances of stealing information. On
the other hand, we notice that plaintext in the parent process
gets over-written as soon as subsequent ciphertext buffers get
decrypted.
Results and Limitations Starting with the sub-stringmatch-
ing aspect of the experiment,wenote that our aimwas to show
that the approach is plausible. However, further experimen-
tation is required to answer several questions including the
right threshold and time window to use for the algorithm.

Finally, a limitation of our current prototype concerns
obfuscationof leaked information (e.g., compression, encryp-
tion, stenography) by malware. This issue can be addressed
through RV rules that define what constitutes process tracing
or injected code, e.g., any code that is dynamically loaded,
and by identifying all its heap accessing instructions as taint
sinks. Further still, targeted attacks could employ malware
that is knowledgeable of the taint inference RV monitor and
which may attempt to tamper with it. Unfortunately this
is part of the arms-race between attackers and information
security, which is always bound to happen. Remote code
attestation could be considered in cases where this is deemed
cost effective.

The same experiment as per Sect. 4 was conducted, only
this time it was the taint inference-based low-level RV that
was activated. As shown by the RV for taint inference row

in Table 3, in this case the 0.7% overheads are even lower
than the higher-level RV, and also not statistically signifi-
cant. While we do not expect this to be the case in general,
in this particular setting the number of hooked functions for
taint inference is much smaller than that used in the previ-
ous experiment. In any case, results returned for this second
monitor continue to affirm the practicality of the function
hooking approach adopted by RV-TEE.

6 Real-world environment considerations
for RV-TEE deployment

The results presented so far validate the approach for the
individual RV components but does not really tackle the
question of whether RV-TEE as a whole is practical in a real-
world environment. The statistics we presented in Table 3 are
promisingwith respect to the overheads introduced by theRV
layer. Apart from these components, the remaining points of
concern are: the introduction of the HSM (Sect. 6.1), which
can potentially pose a bottleneck to the protocol execution;
alongwith evaluatingRV-TEE’s effectiveness in the presence
of information-stealing malware (Sect. 6.2), that leaks infor-
mation subsequent to HSM decryption. In this section, we
focus on these two aspect by carrying out experimentation
on the performance of the HSM module.

6.1 The SECube HSM

As a first experiment we chose Blu5 Lab’s SECube [10].
SECube can make for a very interesting proposition in terms
of a portable, inexpensive, yet sufficiently powerful HSM to
cater for all cryptographic requirements of our TEE. SECube
comprises an MCU, CC EAL5+ -accredited SmartCard and
an ultra low power FPGA, all on the same chip, with the latter
components being callable through specific MCU instruc-
tions. The MCU is an STM32F4 - ARM 32-bit Cortex-M4
CPU. Its 2 MiB of Flash memory and 256 KiB of SRAM are
sufficient to fit in the Crypto OS, comprising a USB driver,
app-level communication protocol and symmetric cipher to
offer authenticated encryption. The absence of an SRAM
cache removes the possibility of associated side-channels,
yet is obvious that constant time operations still have to be
used throughout cipher implementation.
Experiment setup In our experiment we wanted to know
what would be the cost of usingHSM for cryptographic oper-
ations. Using OWASP® Zed Attack Proxy (ZAP) [6], the
same 100 sites as per previous experiments were accessed,
with all traffics collected in plaintext. Also, for each site,
time taken to completely load the website was measured.
We isolated the Firefox browser’s cryptographic operations
by calling directly the AES implementation of its underpin-
ning NSS3 library. We encrypted the collected traffic (all
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requests and responses needed to fully load the page, with all
scripts etc.) inGaloisCounterMode (GCM), an authenticated
encryption scheme supported by TLS 1.3 [59]. The encryp-
tion for each website was performed 10 times in a row on
a Dual Core Intel Core i5-3317U CPU/6GB RAM machine.
Next we did the same experiment, but instead of using NSS,
we called an AES-GCM implementation on SECube.
Results

Table 4 shows the overheads recorded for the encryption
operations registered by SECube when compared to Fire-
fox’s NSS library executing fully on the end-user’s machine.
Results are shown both separately for the top five websites,
as well as the combined measurements for all hundred web-
sites. In each case, the total page load time is shown along
with the portion taken up by NSS encryption. These values
provide the context within which to analyze the increase in
processing times once encryption is offloaded to SECube. In
all cases, the increase in processing times is confirmed to be
statistically significant by aWilcoxon signed-rank test.While
inevitably posing a bottleneck, due to the USB I/O involved,
SECube’s hardware specificationsmanage to keep overheads
within a practically acceptable range. An average of 1723ms
may disturb the overall web browsing experience, but only
a little. To keep the overhead as small as possible, next step
would be to use hardware acceleration through an FPGA
hardware implementation of AES. Overall, this experiment
setup shows that RV-TEE can be deployed at acceptable costs
both in terms of processing overheads and HSM costs.

6.2 Plaintext exfiltration case study

We simulated a banking trojan infection of the Firefox
browser using the Metasploit exploitation framework (MSF)
[49]. The simulation was designed to mimic all stealth tech-
niques typically employed by such malware, as discussed
in Sect. 2.4. Specifically, this setup employs a multi-staged
loading of the malware, with the initial malware payload
being heavily obfuscated, while the subsequent code load-
ing employs the Reflective DLL injection technique [23] and
which maintains stealth by never touching the disk or oper-
ating system data structures. The C2 channel over which
the additional code is loaded, as well as over which the
subsequent exfiltration happens, is itself encrypted. Further-
more, the actual information stealing is pulled off through
a malware dump using a perfectly legitimate command,
procdump [26], and without the need to break the Firefox
sandbox [50]. Overall, this setup mirrors a malware infec-
tion that is very difficult to detect both at the host and the
network levels, and is, therefore, representative of those sce-
narioswhere protection responsibilitywould fall onRV-TEE.
Experiment setup RV-TEE’s taint inference is the com-
ponent responsible for detecting any plaintext leaks as
explained in Sect. 5. As per earlier experimentation, we

hooked ssl3_UnprotectRecord and tls13_
UnprotectRecord in NSS3.dll for the taint sources.
Moreover, the RV-TEE’s implementation was extended to
perform function call tracing over all external processes that
obtain a handle to any of the Firefox processes. Through
this extension it becomes possible to hook potential taint
sinks for the stolen plaintext, irrespective of whether mal-
ware gets injected into Firefox or else plaintext is stolen by
abusing process tracing. The full set of traced taint sinks com-
prises: Toolhelp32ReadProcessMemory and Read
ProcessMemory in Kernel32.dll, and Read
ProcessMemory in Kernelbase.dll. In this manner
we aim for early taint sink hooks, thereby avoiding the limi-
tation of taint inference whenever sink strings are obfuscated
or encrypted.

The sub-string matching threshold d is set to 0.1. While
the analysis presented in Fig. 4 indicates that even d = 0.85
could result in an acceptable FP rate stemming from coin-
cidental matching, we lowered this threshold to compensate
for the occurrence of consecutive 0 values occurring more
frequently than random. These occurrences are a result of
i) memory pages being zeroed out before page re-allocation
by operating systems, ii) wide-character encoding used by
web-browsers to support Unicode character sets, and iii)
data structure padding employed by compilers. Beyond low-
ering the sub-string matching threshold we therefore also
extended RV-TEE’s implementation to convert all wide-
character strings to single-byte ones whenever all individual
characters in the string have a leading 0 byte. Furthermore,
all-0 string matches are discarded, and which in any case
carry no information. Finally, all excessively small source
strings, specifically those less than 20 bytes, were not con-
sidered.
Results The exfiltration functionality of the simulated bank-
ing trojan was activated whenever the browser was directed
to the live.com webmail site and initiated an authenti-
cated session. While the connection was protected through
authenticated encryption over a TLS1.3 session, the simu-
lated malware nonetheless exfiltrated the decrypted email
content directly from the browser’s memory to a 1.07 GB
dump file, and which was then subsequently transferred to
the C2 server.

The sheer, but realistic, size of this exfiltration operation
places significant strain on the taint inference RV, requir-
ing an operation that took 110 minutes to detect the first
exfiltrated string. Segments of the source and sink strings
concerned are shown in Listings 4 and 5. From these seg-
ments, it can be observed how the source string occurs as a
slightlymodified sub-stringwithin the sink string. Successful
detection is attributed to the approximated sub-string match-
ing involved, as well as to the choice of function hooking that
provides sufficiently early access to the exfiltration process.
Eventually, the dumped memory content is fully encrypted
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Table 4 SECube HSM overheads

Sites Load Time Data size NSS SECube Overheads Overheads Significance test
ms bytes ms ms ms % p-value

https://www.google.com 1158 1 367 595 6.942 913.599 906.657 78.76 2.5 × 10−3

https://www.youtube.com 1303 810 458 4.135 575.439 571.304 43.98 2.5 × 10−3

https://www.facebook.com 1045 1 511 775 7.717 944.329 936.612 90.29 2.5 × 10−3

https://www.baidu.com 6775 1 265 391 6.778 818.825 812.047 12 2.5 × 10−3

https://www.wikipedia.org 698 99 336 0.654 64.916 64.262 9.22 2.5 × 10−3

Top_100 average 5204.576 3 171 550 12.355 1735.728 1723.373 33.19 2.1 × 10−21

Fig. 6 Segment of a network
packet capture from the C2
channel

before writing to the C2’s network socket. The end result can
be observed in Fig. 6, with C2 communication occurring over
a TSL1.2 session. Had the function hooking of choice been
one that captured sink strings at a later stage — at a point in
timewhere encryptionwouldhave alreadybeen applied to the
dump—the exfiltrationwould havebeen impossible to detect
despite the approximate sub-stringmatching approach.Over-
all, while it would be desirable to speed up taint inference
further, and therefore be able to detect the attack early enough
to even interrupt exfiltration, the taint inference approach
makes for a practical approach that avoids the overheads
associated with full dynamic taint tracking. Undoubtedly,
prompt detection would be a welcome additional benefit. In
this regard the RV taint inference algorithm (Algorithm 2)
can be invoked concurrently on multiple buffers at the same
time. Furthermore, by combining multiple sink buffers, the
algorithm is transformed into amulti-approximate sub-string
matching problem. From this perspective it can potentially
avail itself of GPU speed-up, similarly to what has been done
already with multi-string matching algorithms [39].

7 Conclusions and future work

An RV-centric TEE, RV-TEE, targeting various levels of
security threats ranging from high-level to hardware-level,
has been proposed to a protocol implementation; promis-
ing to improve the robustness of the implementation with
minimal additional hardware and/or runtime overheads. A
feasibility study of the approach has been carried out on a
real-world third party code-base, which implements a state-
of-the-practice key establishment protocol.

To complement protocol-level RV, a second layer of
RV was proposed for taint inference; monitoring the trust
boundary against data exfiltration. Given the smaller num-
ber of functions hooked, the overheads are lower than the
first experiment. On the other hand, the analysis is signifi-
cantly more cumbersome but this can be done offline, even
though it can benefit from amore optimized implementation.
Additionally a realistic attack mimicking a banking trojan
controlled by an encrypted command and control (C2) chan-
nel demonstrated its practicality.
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1 8950 4e47 0d0d 0a1a 0d0a 0000 000d
4948 .PNG .......... IH

2 4452 0000 00de 0000 0030 0806 0000
007e DR .......0.....~

3 29c4 4500 0000 1974 4558 7453 6f66
7477 ).E.... tEXtSoftw

4 6172 6500 4164 6f62 6520 496d 6167
6552 are.Adobe ImageR

5 6561 6479 71c9 653c 0000 0b39 4944
4154 eadyq.e<...9 IDAT

6 78da ec5d 0d94 5555 153e 8383 40ba
c001 x..]..UU.>..@...

7 1151 0d0a 3113 134d 3014 512c 1164
34ff .Q..1..M0.Q,.d4.

8 b004 4147 0c42 ccb2 9631 d19f 0533
cbac ..AG.B...1...3..

9 858a 5646 8180 8222 1950 4282 0656
2215 ..VF ...".PB..V".

10 2568 0351 89a1 08c4 8f4a 3004 a422
c2f4

11 7dbe fdec 7266 dffb ee9d 79f7 f166
b9bf }...rf....y..f..

12 b5f6 3a6f ce3d 7ff7 9cb3 cfde 679f
7dee ..:o.=......g.}.

13 94ee 1a78 629d 4b07 d5ad e7ad ab1a
b7d8 ...xb.K.........

14 75c7 ef9a 94ea 185e 3dc0 4d77 0643
1343 u......^=. Mw.C.C

15 33eb 0283 c118 cf60 30c6 3318 0cc6
7806 3......0.3...x.

16 8331 9ec1 6030 c633 189a 144a ad0b
0c86 .1..0.3...J....

17 f8a8 acac 24cf f406 f502 1d03 da07
7a1d ....$.........z.

18 f4e4 8409 13fe 698c d7f4 06f4 3004
4760 ......i.....0.G

19 f076 596f 14ed 180d 45f0 7d50 67e5
7117 .vYo ....E.}Pg.q.

20 d0ad c678 d11d 780e 8273 421e 6fc0
e47f ...x..x..sB.o...

21 ac91 e55f 84a0 5bc8 e3c7 51fe cb5e
fa4a ..._..[...Q..^.J

22 0463 41ad f1f3 4584 c390 66b9 4df5
a29a .cA...E...f.M...

23 33f7 20f8 8aa9 9a8d c3c5 a071 21cf
f6a0 3. ........q!...

24 ...

Listing 4 Hexdump segment of an inferred taint source string (from a
tls13_UnprotectRecord buffer)

An HSM component completes RV-TEE. In this regard
the SeCube HSM was experimented with. While runtime
overhead results show that the web browsing experience is
somewhat affected, the on-chip FPGA which harbors the
potential for implementing encryption in hardware, is yet
to be leveraged.

While overall study of employing RV in the context TEEs
shows promise, we note that:

1 ...
2 0000 0080 e5e5 e5e5 0444 a32f f87f

0000 .........D./....
3 0444 a32f f87f 0000 0000 0000 0000

0000 .D./............
4 0000 0000 0000 0000 0000 0000 0000

0000 ................
5 00f1 e5e5 e5e5 e5e5 e5e5 e5e5 e5e5

e5e5 ................
6 8950 4e47 0d0a 1a0a 0000 000d 4948

4452 .PNG ........ IHDR
7 0000 00de 0000 0030 0806 0000 007e

29c4 .......0.....~).
8 4500 0000 1974 4558 7453 6f66 7477

6172 E.... tEXtSoftwar
9 6500 4164 6f62 6520 496d 6167 6552

6561 e.Adobe ImageRea
10 6479 71c9 653c 0000 0b39 4944 4154

78da dyq.e <...9 IDATx.
11 ec5d 0d94 5555 153e 8383 40ba c001

1151 .]..UU.>..@....Q
12 0a31 1313 4d30 1451 2c11 6434 ffb0

0441 .1..M0.Q,.d4...A
13 470c 42cc b296 31d1 9f05 33cb ac85

8a56 G.B...1...3....V
14 4681 8082 2219 5042 8206 5622 1525

6803 F...".PB..V".
15 5189 a108 c48f 4a30 04a4 22c2 f47d

befd Q.....J0.."..}..
16 ec72 66df fbee 9d79 f7f1 66b9 bfb5

f63a .rf....y..f....:
17 6fce 3d7f f79c b3cf de67 9f7d ee94

ee1a o.=......g.}....
18 7862 9d4b 07d5 ade7 adab 1ab7 d875

c7ef xb.K.........u..
19 9a94 ea18 5e3d c04d 7706 4313 4333

eb02 ....^=. Mw.C.C3..
20 83c1 18cf 6030 c633 180c c678 0683

319e ....0.3...x..1.
21 c160 30c6 3318 9a14 4aad 0b0c 86f8

a8ac .0.3...J.......
22 ac24 cff4 06f5 021d 03da 077a 1df4

e484 .$.........z...
23 ...

Listing 5 Hexdump segment of an inferred taint sink string (from a
ReadProcessMemory buffer)

– Program comprehension is required, both for setting up
function hooks as well as to enable individual TLS ses-
sion monitoring. Moreover, real-world code tends to be
written in a manner to favor efficient execution rather
than monitorability, hence the need for an algorithm to
filter individual sessions in our case study. However, in
case RV is used on one’s own code-base, support for RV
could be thought out from inception, with these issues
being somewhat alleviated.

– Adding RV to a system naturally requires trust of the
introduced code. There are however several ways in
which concerns in this regard can be addressed: (i)
the RV code is generated automatically from a finite
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state automaton, thus reducing the possibilities of bugs;
(ii) more importantly, only the hooking code interacts
directly with themonitored code. This separation ensures
that RV interferes as little as possible with the monitored
system.

In terms of future work, firstly, further HSM options
can be considered. Following up initial experimentation
with AES-GCM, we also plan to implement ChaCha20-
Poly1305 to complete the authenticated encryption options
for TLS1.3. Next up is to consider full secure key exchange
implementation inside SECube, thereby pushing ECDHE’s
implementation to theHSM. In fact, its implementation could
be pushed even further away from malware’s reach onto
SECube’s on-chip security controller. Featuring an ISO7816
interface and Global Platform 2.2 compatibility, this deploy-
ment approach would trade speed for further security. This
security controller could also be leveraged for authenti-
cated code provisioning, even though this may somewhat
weaken overall security guarantees. Despite being resource-
restricted, the security controller offers hardware-accelerated
ECDHE and RSA to make up for it. The on-chip Lattice
MachXO2-7000 could provide further practicality and secu-
rity still. The possibility of a hardware implementation of
the symmetric cipher would provide increased d/encryption
throughput aswell as protection fromside-channels related to
non-constant time employment by key-related operations in
the software implementation, all at one go.Atfirst glance, this
HSM setup is deemed promising to take RV-TEE even closer
to practical deployment. Additionally, we intended to future-
proof the proposed HSM by implementing one or more of
NIST’s PQC round 3 key establishment algorithms. Finally,
the RV taint inference component of RV-TEE also deserves
further attention in terms of an optimized implementation.
In this case runtime overheads are not the issue, but rather
we seek the additional benefit for timely detection of data
exfiltration.
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