

1. Checking for complex behaviours

A central challenge in software testing is the
creation of the test oracle, i.e. the mechanism
which decides whether a test passes or fails.
Programming oracles in the same programming
language as the system being tested is arguably
as error prone as the programming of the system
itself. A less risky solution is to express behaviours
in terms of more abstract terms which are
subsequently automatically compiled into code.

2. Inserting checking code without clutter

While programming the oracle might be hard,
another problem is the integration of the oracle
into the system under test so that it can make any
necessary observations. Runtime monitoring
provides the technology to alleviate this problem
by injecting code automatically throughout a
system (at runtime or compile-time) from within a
single module. Thus, monitoring provides a clutter-
free solution whereby oracles can be fully

contained within a single module while still
enjoying system-wide visibility.

3. Covering all system behaviours

Generating all potential test cases is virtually
impossible for any system of reasonable size. Yet,
if the oracle is kept in place beyond the testing
phase as a monitor, then one would effectively be
checking all (observed) behaviours for
correctness. If a violation is detected at runtime,
then the monitor can either simply flag the problem
or can potentially also trigger error handling code.

Tool support – Larva

Larva is an easy-to-use tool which provides means
for addressing the above-mentioned challenges.
Specifically, Larva enables developers to perform:

1. Behaviour specification and compilation
Larva enables the user to specify behaviours in
terms of state machines which are in turn compiled
directly into code. Consider the following example
where we check that no more than two bad logins
can occur consecutively:

bad login

good login bad login

bad login

While the quality of unit testing has improved
dramatically over the past years, wider-ranging
integration and system testing still proves to be
challenging:

1. Complex behaviours which are difficult to
programmatically check for

2. System-wide properties which result in cluttered
code

3. Exorbitant number of test cases to cover most
possible scenarios coupled with the safety-
criticality of the software and the limited time to
market

Property Oracle Compiler

white paper

System Oracle weaver

Facilitating and extending
software testing

through
monitoring techniques

Test

System Monitor weaver

User

User

While this example is admittedly trivial, one can
already appreciate that understanding such a state
machine is arguably easier than going through the
code and understanding the updates of some form
of counter throughout the login module. Moreover,
Larva state machines also support advanced
features such as clocks and parametrisation.
Consider the following revised example (note the
abbreviated event names):

Through the use of a clock which is reset upon the
first bad login, we can now ascertain that the three
consecutive bad logins have to occur within five
minutes. Furthermore, by considering event
parameters, we can distinguish between each user
within the system and instantiate monitors
accordingly. While the above examples were kept
simple for illustration purposes, the described
behaviours may be significantly more complex. For
example consider a promotional offer which should
only be given if a user has done purchases
totalling more than £50 while logged in during the
previous two days. The customer can only take up
the offer during a 24 hour period and in such a
case, no similar offer can be availed of in the next
five days. This behaviour can be encoded as (li =
login, lo = logout, r=reset, pr=pruchase):

Note that such a monitor is significantly more
maintainable than the equivalent oracles written in
code.

2. Attaching the monitor to the system
Larva enables the user to use system events such
as method calls, exception throws, etc., as
transition triggers for the state machines. For
example, the following Larva script excerpt would
associate any method call to any method named
“loginAttempt” with an event called “login”:

login = { *.loginAttempt () }

Frequently, the user would also need to bind
parameters such as binding the user object which
is attempting the login:

login(User u) = {*.loginAttempt (u)}

Furthermore, distinguishing between a successful
or a failed login might require the consideration of
the return value as follows:

bl(User u, Boolean res) =
{*.loginAttempt(u)uponReturning(res)}
filter {res == false}

While monitoring can operate directly on the byte
code, the script writer requires good knowledge of
the source code and has to ensure that all relevant
events are matching correctly.

3. Managing runtime monitors
The predominant issue in the context of runtime
verification is the runtime performance of the
monitor which might negatively affect the system’s
performance or interfere with its normal operation.
Depending on the seriousness of this concern,
there are numerous options of how runtime
monitors can be deployed:

During testing – Monitors are enabled during
testing, particularly advanced testing stages such
as alpha and beta testing and then switched off
altogether upon deployment.

Offline – Monitors may be run on the system log
on separate processing resources or when the
system has excess resources (e.g., at night).

gl (user)
clock @ 5 minutes

bl (user)

bl (user)\reset (clock) bl (user)

*
pr\tot>£50\r(c1)

li lo

c1 @ 24 hrs

c2 @ 5 days

offer\r(c2)

li lo li lo
c1 @ 24 hrs

c2 @ 5 days

offer all states except *

pr\tot+=sum

Online – Monitors are run on the live system, with
hooks in the code which give monitors a direct
communication link. The communication link might
be blocking, i.e. the system waits for the monitor to
process each event; or non-blocking, meaning that
the system simply communicates events to the
monitor and continues its execution. While this
option is the most intrusive, it has the advantage of
enabling the monitor to take corrective measures
as soon as a problem is detected.

Sampled (on/offline) – Monitoring may be
sampled over a selection of the system behaviour
(e.g. only on a number of user sessions).
Furthermore, sampling may occur either using
some statistical distribution, or using other
measures such as the trust attributed to a
particular user account.

Case Studies

Over the years a significant number of case
studies have been carried out which can be
loosely classified under the following headings:

• Security-critical systems
Runtime verification, particularly online and
blocking, is particularly useful in the context of
security-critical systems where security is the main
concern. In such extreme cases, designers would
typically by ready to sacrifice performance in
favour of full step-by-step verification. The most
prominent work in this area is the application of
runtime verification to the Mars Rover at NASA
where mistakes are very costly.

• Transaction systems
Errors in transaction systems such as payment
gateways are also taken very seriously since any
defect might remain undetected while malicious
users may be exploiting it in their favour (e.g. a
few cents’ mistake in the currency exchange
mechanism under particular circumstances). Yet,
in such cases designers value performance very
highly too so sampled, offline or non-blocking
runtime verification might be preferred. An
example of work in this field has been carried out
by the University of Malta in conjunction with Ixaris

Ltd – a virtual credit card provider, processing
thousands of transactions daily.

• Highly-dynamic systems
Runtime verification is also used in highly-dynamic
environments such as web services where the
runtime circumstances are difficult to predict and
mock. Thus, various research groups such as the
Polytechnic of Milan, Italy, have focused on the
monitoring web service compositions, particularly
a WS-BPEL named Tele-Assistance which
enables a hospital to remotely monitor the
condition of patients after being discharged.

Summary and Conclusion

Faced with modern challenges of ensuring the
correctness of computer systems which are
growing ever more complex, runtime monitoring
provides a number of promising solutions:

1. Aids the specification of complex behaviours
by providing compilation from an abstract
language aimed for use by software
developers.

2. Enables the process of weaving-in the code
which checks for the correct behaviour at
runtime.

3. Supports various flavours of runtime
monitoring architectures, designed for
different use cases.

The technique has already been used in a number
of industrial case studies but we aim to encourage
wider adoption by providing support, knowledge
and tools – hopefully alleviating some of the effort
currently put into the creation of highly dependable
systems.

Further reading

1. Gordon Pace, Trusting a Computer with your
Money, Economic Update, January 2011.

2. Christian Colombo, FSM-based Monitoring and
Runtime Verification, Interview on InfoQ,
September 2011.

