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Cyclic Codes � BCH Codes 
 
 
Galois Fields GF(2m) 
 
A Galois field of 2m elements can be obtained using the symbols  0, 1, á, and the 

elements being  0, 1, á, á2, á3, . . . 12 m

   so that field F* is closed under 
multiplication with 2m elements. 
The operator �+� is defined by dividing Xi by p(X) where p(X) is a primitive 
irreducible polynomial in GF(2m). 
 
Xi  =  q(X). p(X) + ai(X)  where  ai(X) is a polynomial of degree (m-1) or less over 
GF(2). The outcome is a set of  (2m �1) non zero polynomials of á over GF(2m) with 
degree (m-1) or less. 
 
Example.. Starting with m = 4, p(X) =  X4 +  X3 + 1, which is a primitive polynomial 
over GF(2) and a  factor of (X15 + 1), Set  p(á) =  á4 +  á3 + 1 = 0.  Hence á4 =  1 + á3 
and  the GF(24) can be constructed and is given by Table 4.1 
 
Elements of  GF(24) using  p(X) =  X4 +  X3 + 1 over GF(24) 
 
 
Power Elements  Polynomial    4-Tuple 
 
 0   0     0 0 0 0 
 1   1     1 0 0 0 
 á        á     0 1 0 0 
 á2              á2     0 0 1 0 
 á3            á3     0 0 0 1 
 á4    1 +              á3    1 0 0 1 
 á5    1 + á +        á3    1 1 0 1 
 á6    1 + á + á2 + á3    1 1 1 1 
 á7    1 + á + á2     1 1 1 0 
 á8           á + á2 + á3    0 1 1 1 
 á9    1 +        á2     1 0 1 0 
 á10            á  +       á3    0 1 0 1 
 á11    1 +         á2 + á3    1 0 1 1 
 á12    1 + á      1 1 0 0 
 á13           á + á2     0 1 1 0 
 á14                  á2 + á3    0 0 1 1 
 

Table 4.1 
 
(X4 +  X + 1) is irreducible over GF(2) and does not have roots over GF(2), but it has 
4 roots over GF(24). These are given by á7 , á11 , á13  and á14 . It can be shown, using 
Table 4.1, that (X + á7 ) (X + á11 ) (X + á13 ) (X + á14 ) =  1 + X + X4. 
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Further Fields 
 
A new field element â is introduced in an extension field of GF(2) with â a root of a 
polynomial f(X) so that f(â) = 0. 

For any l ≥ 0, 
L2 is also a root of f(X) so that f(

L2 ) = 0. The element 
L2  is the 

conjugate of â. This also implies that if â , an element in GF(2m) is a root of f(X) over 
GF(2), then all the distinct conjugates of â, also elements of GF(2m) are roots of f(X). 
 
Example 
Using f(X) = (X4 +  X + 1) (X2 +  X + 1) = (X6 +  X5 + X4  + X3  +1),  á7  is a root. The 

conjugates of á7  are (á7 )2 , 
227 )( , 

327 )( . Note that 
427 )(  is á112 =  á112/ á105 = á7 

and hence closes the group. 
The conjugates of á7  are á14 , á28 /á15 = á13 , and á56 /á45 = á11 . The other 2 primitive 
roots are á5  and á10 . 

Further since â is an element of GF(2m), in general, 112 m

 , and 0112 m

 , and 

the 2m � 1 nonzero elements of GF(2m) form all the primitive roots of  0112 m

X . 
Also since the zero element 0 of GF(2m) is the root of X, then the 2m elements form 

all the roots of  XX
m

2 . 
 
Minimal polynomials 
 
 The field element â can also be a root of a polynomial of degree less than 2m. The 
polynomial of smallest degree over GF(2) for which f(X) = f(â) = 0 is known as the 
minimal polynomial of â, and denoted by Ö(X). This polynomial is also irreducible. 
Further if f(X), a polynomial over GF(2) has â as a root, then f(X) in general is 
divisible by Ö(X), the minimal polynomial. If f(X) itself is an irreducible polynomial 

then f(X) = Ö(X). It follows that the conjugates of â, â2, 
22 , 

32 , . . 
i2  are also 

roots of  Ö(X) = Ö(â). It can be shown that 
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Example: 
For GF(24) and the field elements of Table 4.1, starting from â = á3, we obtain  
â2 = á6, â4 = á12, â8 = á24. These result in the polynomial 
 
(X + á3)(X + 1 + á + á2 + á3)(X + 1 + á)(X + 1 + á2) resulting in 
 
(X2 +(1+ á+ á2)X + 1+ á2)(X2 + (á+ á2)X + 1 + á + á2 + á3) finally resulting in 
 
the minimal polynomial  (X4+ X3+ X2+ X+1). 
 
Another way to obtain the minimal polynomial is the following. Let ã = á in GF(24) 
be used as the primitive element. Hence ã2 = á2, ã4 = á4, ã8 = á8,  and ã16 = á16= ã 
closes the group. Hence Ö(X) of degree 4 must have the following form. 
Ö(X) = a0 + a1X+ a2X

2+ a3X
3+ a4 X

4. 
Using the polynomial representation and substituting for ã = á, 
Ö(X) = a0 + a1á+ a2á2+ a3á3+ a4 á4. 
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This results in 
a0 + a1á+ a2á2+ a3á3+ a4 (á3+1) = 0. This is rearranged to get 
(a0 + a4 ) + a1á+ a2á2+ (a3+ a4) á3 = 0 
 
Hence 
(a0 + a4 ) = 0 
a1 = 0 
a2 = 0 
(a3+ a4) = 0 
 
This results in a3 = a4 = a0 = 1;  a1 = a2 = 0; and therefore the polynomial 
 
(1 + X3 + X4) = Ö(X). The Table 4.2 shows the minimal polynomials with the 
primitive elements as the primitive roots of the minimal polynomials using p(X) =  (1 
+ X3 + X4)  
 
Conjugate roots    Minimal polynomial 
 

0 X   
1 (X+1)  Ö0(X) 

á, á2, á4, á8,     (1 + X3 + X4)  Ö1(X) 
á3, á6, á9, á12,     (X4+ X3+ X2+ X+1) Ö3(X) 
á5, á10,      (X2+X+1)  Ö5(X) 
á7, á11, á13, á14,    (1 + X + X4)  Ö7(X) 
 

Table 4.2 
 

Table 4.2 shows that the degree of each minimal polynomial in GF(24) using (1 + X3 
+ X4) as the primitive polynomial g(X). Note that building up other generator 
polynomials g�(X) from g(X), still uses g(X) so that g�(X) will always include the 
primitive root á.  
 
BCH Code 
 
It is characterised by the following: 
Block length  n = 2m �1; Parity checks (n-k) ≤ mt; Minimum distance  dmin ≥ 2t+1; 
 
The generator polynomial g(X) is specified in terms of its roots in GF(2m). Every 
primitive element ái is a root of a minimal polynomial Öi(X). It can be shown that all 
even powers of ái, belong to a minimal polynomial with a preceding odd power as one 
of its roots. This is illustrated by Table 4.2 above. 
 
BCH Bound: The minimum distance of the code generated by g(X) is greater than the 
largest number of consecutive primitive roots of g(X). Using a generator polynomial 
g(X) =  Ö0(X). Ö1(X). Ö7(X) yields the set of primitive roots whose index is 
 0, 1. 2,   4,  ,  , 7, 8,  ,  ,  11,   , 13, 14. 
Note that there are 5 consecutive primitive roots in the sequence so that g(X) has a 
minimum distance of at least 6. 
Looking at Table 4.2, it can be seen that every odd root i is in the same polynomial as 
2i. Hence t consecutive odd roots guarantee 2t consecutive roots. Also it can be shown 
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that the degree of every divisor of 112 m

X , cannot exceed m. Since at most t 
minimum polynomials are required to guarantee that g(X) has t consecutive odd roots, 
the order of g(X) is m.t and, at most, m.t parity checks are required. 
 
 
Encoding a BCH codeword. 
 
The encoding process is identical to the standard cyclic code. For a k-bit data d(X) the 
resultant parity bits are found from 
 
rem {(X(n-k)..d(X)}/ g(X) which are appended to the front of the d(X) to obtain the 
codeword v(X). 
Every codeword v(X) in a BCH code is a codeword if it is divisible by the GF(2m) 
roots, á, á2, . . .á2t. 
 
 
 
Decoding a BCH codeword. 
 
Assume a codeword v(X) sent, and r(X) is received. Then the error pattern can be 
derived from  r(X) = v(X)  +  e(X). 
The syndrome of a t-correcting BCH code is given by S = (S1, S2, . . S2t), and 
 Si = r(ái) 
 
Divide r(X), in turn, by each of the minimal polynomials comprising g(X). In each 
case a remainder term b(X) is obtained. This remainder is in GF(2). This is substituted  
by the corresponding primitive root belonging to the minimal polynomial. 
 
Example:  Using g(X) = 1 + X3 + X4 in GF(24) the (15,7) code uses as primitive 
polynomials, Ö1(X) = 1 + X3 + X4, and Ö3(X) = (X4+ X3+ X2+ X+1). 
 
This gives g�(X) = 1 + X + X2+ X4+ X8 for a (15,7) code. Using a data pattern 
[1001001] that gives d(X) = 1 + X3+ X6 , a code word is built given by  
v(X) =  X2+ X5+ X8 + X11+ X14 . Let r(X) be  1 + X8 + X11+ X14. This results in an 
e(X) = 1 + X2+ X5 . 
 
To determine the syndrome S = (S1, S2, S3, S4) the r(X) is divided by each of the 
minimal polynomials. Using Ö1(X) = 1 + X3 + X4, the remainder is b1(X) =  (1 + X2 + 
X3). Using the roots of the minimal polynomial, á, á2, á4,  
Hence S1 = 1+ á2 + á3  =    á11   
S2 =  1 + á4 + á6 =  1 + á + á2  = á7  
S4 =  1 + á8 + á12 =  á2 + á3  =    á14 
 
S3 is obtained from Ö3(X) = (X4+ X3+ X2+ X+1). The remainder is b3(X) = (1 + X + 
X2). Using the first root of this minimal polynomial, á3,  
S3 =  1 + á3 + á6 =  á + á2 =  á13 . 
 
Hence S = (á11, á7, á14, á13) 
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The second step, after determining the syndrome in terms of the primitive elements is 
to determine the error location polynomial ó(X) from the syndrome components. 
There are various methods available. They are based on a general solution involving 
the following. Given the v errors, v ≤ t, the error positions are denoted by  

vjjj  ..,, 21   Since the syndromes Si = e(ái), every syndrome is related directly to 
the error parameters. This gives rise to a set of equations 
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Define the error locator polynomial as 
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The primitive element roots of this polynomial are the inverse error location positions. 
It is easy to show from the above the set of Newton Identities given by 
 
S1 + ó1 = 0 
S2 + ó1S1 + 2ó2 = 0 
S3 + ó1S2 + ó2S1 + 3ó3 = 0 
. . . . . . . . . . . . . . . . . . . . 
 
Sv + ó1Sv-1 + . . . .+ óv-1S1 + vóv = 0 
 
 
Note that since in GF(2) 1 + 1 = 2 = 0, iói = ói for i  odd, and 0 for i even. 
 
The Berlekamp-Massey Algorithm will be used for the solution of the Newton 
Identities. 
The goal of the algorithm is to find at iteration (i+1) (connection) polynomial ói+1(X) 
in terms of the error polynomial primitive elements, and given by 

vi
v

iii XXXX )(2)(
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using as the error discrepancy that becomes a correction factor the value, di , using 
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where the upper indices (i) associated with ó indicate the coefficient value associated 
with an appropriate X in the equation ó(X)at the ith iteration. 
If di = 0, then there is no discrepancy at that stage, and the present value of ó(X), 
ó(i)(X), is carried to the next iteration ó(i+1)(X). 
If di ≠ 0, find a previous iteration row, ñ, for which di ≠ 0, and the value of (ñ- lñ) 
where   lñ denotes the order of ó(ñ)(X). Then work out the value of the next iteration 
ó(i+1)(X) using 
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   (4.3) 

The iterations are continued until the quantity, i ≥ li +t �1  becomes valid 
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Example: 
 
The BCH (15,5) code, which has t=3, is generated using  
Ö1(X) = (1 + X3 + X4); Ö3(X) = (X4+ X3+ X2+ X+1); Ö5(X) = (X2+X+1). This results 
in a g(X) =  1 + X2 + X5 + X6 + X8 + X9 + X10 . 
A code polynomial is built using the data pattern [01101] which is d(X) = X + X2 + 
X4 .  The codeword v(X) is built by using X10d(X)/ g(X) to obtain the remainder. In 
this case the remainder is given by (1 + X + X6 + X8 ) so that the codeword v(X) = (1 
+ X + X6 + X8 + X11 + X12 + X14 ). The received word is r(X) = (X + X8 + X11 + X14 ). 
This implies an error polynomial e(X) = 1 + X6 + X12 . Of course the decoder does not 
know this. 
 
The procedure for decoding starts with the syndrome calculation, obtained by dividing 
the received word r(X) by each minimal polynomial in turn to work out the 
corresponding primitive element associated with the syndrome element. In this case 
S = [S1, S2, S3, S4, S5, S6]. 
Since  á, á2, á4, are obtained from the same polynomial Ö1(X) = 1 + X3 + X4, r(X) is 
divided by  Ö1(X), to obtain b1(X) =  1 + X2 + X3 Hence  
S1 = 1 + á2 + á3, and using the GF(24) arithmetic, based on 1 + X3 = X4, and Table 4.1 
S1 = á11 .  Using á2, 
S2 = 1 + á4 + á6 = 1 + á + á2 =  á7 .  Using á4, 
S4 = 1 + á8 + á12 = á2 + á3 = á14 . 
 
á3, á6, are obtained from Ö3(X) = (X4+ X3+ X2+ X+1), to obtain b3(X) = 1+X+X2, and 
using the primitive elements, á3 
S3 = 1 + á3 + á6 = á + á2 =  á13 and using á6 
S6 = 1 + á6 + á12 = 1 + á2 + á3 =  á11 .  
Finally á5 is obtained from  Ö5(X) = (X2+X+1), to obtain b5(X) = 1. Therefore 
S5 = 1. 
 
 
The Berkelamp-Massey Algorithm is now used. 
Initialisation 
Iteration 0: ó(-1)(X) = 1; d-1=0; l-1=0;  i- li=(0-0)=0; since d-1=0; 
  ó(0)(X) = 1; 
Iteration1:  i=0; d0=S1= á11 and using (4.3) 
ó(1)(X) = ó(0)(X) + á11X. Therefore at end of iteration the entry is 
 
1 1+ á11X.  0 1 0 
Check on d1:  d1= S2 + S1ó1

(1) = á7 + á11.á11 = á7 + á22 = á7 + á7 = 0 
 
Iteration 2: i=1; d1= 0; Hence ó(2)(X) = ó(1)(X); l2=1;  i- li= 1; 
 
d2 = S3 + S2ó1

(2) = á13 + á9.á11 = á13 + á18 = á + á2 + á3 = á8. Entry 
 
2 1+ á11X.  á8 1 1 
 
Iteration 3: i=2; d2= á8; Hence update ó(2)(X), using row (iteration) 0, to obtain 
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ó(3)(X) = ó(2)(X) + d2.(d0)

-1.X(2-0). ó(0)(X) = ó(2)(X) + á8. (1/ á11).X2.1 = ó(2)(X) + 
á12.X2. 
 
Hence  ó(3)(X) =  1+ á11X + á12.X2. Entry on Iteration 3 is 
 
3 1+ á11X + á12.X2. 0 2 1 
 
Check on d3: d3= S4 + S3ó1

(3) + S2ó2
(3) = á14 + á13.á11 + á7.á12 = á14 + á9 + á4= 0 

 
Iteration 4: : i=3; d3= 0; Hence ó(4)(X) = ó(3)(X); l4= l3=2;  i- li= 2; 
  Check : l4+ 3 � 1 = 4 . therefore ≤ 3 is not valid. Continue. Current 
entry 
 
4 1+ á11X + á12.X2. d4 2 2 
 
d4= S5 + S4ó1

(4) + S3ó2
(4) = 1 + á14.á11 + á13.á12 = 1 + á25 + á25 = 1 

 
Iteration 5: i=4; d4= 1; Hence update ó(4)(X) to ó(5)(X), using row (iteration) 2, to 
obtain 
ó(5)(X) = ó(4)(X) + d4.(d2)

-1.X(4-2). ó(2)(X) = 1. (1/ á8)X2.( 1+ á11X) 
 = ó(4)(X) + á7X2 + á18X3 
 = 1+ á11X + (á12+ á7)X2 + á18X3 
 = 1+ á11X + á2X2 + á3X3.  Entry for iteration 5 
 
5 1+ á11X + á2X2 + á3X3 0 3 2 
 
Check on d5: d5= S6 + S5ó1

(5) + S4ó2
(5) + S3ó3

(5)= á11 + 1.á11 + á14.á2 + á13.á3 = 0 
 
 
Iteration 6: i=5; d5= 0; Hence ó(6)(X) = ó(5)(X); l6= l5=3;  i- li= 3; 
  Check : l6+ 3 � 1 = 5 . therefore ≤ 5 is true. 
Iteration stopped. 
 
The outcome of the algorithm is 
 
ó(6)(X) = 1+ á11X + á2X2 + á3X3. 
 
The roots of this cubic polynomial are found to be (in this case by a process of trial 
and error on the fifteen primitive elements) 
X = 1; X = á3; X = á9;  (eg for X =1; 1+ á11 + á2 + á3 = 1+ 1 á2 + á3 + á2 + á3 = 0) 
 
The error locations in e(X) are the inverse of these roots. So error locations are at 
position 1, 6, 12. 
This is the expected result. 
 
The overall iterations are given in the Table 4.3 below 
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 I ó(i)(X)    di   li   i- li 
 -1   1    0  0    -1 
 0   1    á11  0     0 
 1 1+ á11X   0  1     0 
 2 1+ á11X   á8  1     1 
 3 1+ á11X + á12.X2.  0  2     1 
 4 1+ á11X + á12.X2.  1  2      2 
 5 1+ á11X + á2X2 + á3X3    0  3      2 
 6 1+ á11X + á2X2 + á3X3   -  -      - 
 
 

Table 4.3 
 
Other BCH Codes 
 
Binary BCH codes with length n ≠ 2m � 1 can be constructed as for those with n = (2m 
� 1).  Let â be an element of order n in GF(2m). Consider a polynomial that has as 
roots â, â2, â3,. . . , â2t. n itself is a factor of  some 2m � 1. All the elements are roots of 
Xn+1. Therefore this is a cyclic code. In particular, for a sequence of 2t roots, the g(X) 
that is the LCM of the minimal polynomials of all the roots, generates a t-error 
correcting BCH code. Since â is not a primitive element of GF(2m) and n ≠ 2m � 1, the 
BCH code generated is called a nonprimitive BCH code. 
 
Non-binary BCH codes � Reed Solomon Codes 
Binary BCH codes can be generalized to any GF(q) where p is a prime number and q 
any power of p to obtain a q-ary code. An (n,k) q-ary cyclic code is generated by a 
polynomial of degree (n-k) with coefficients from GF(q) which is a factor of Xn+1. 
Let á be a primitive element, in GF(qs), where n = qs � 1. For a t error correcting code 
the generator polynomial g(X) has 2t roots from GF(q) given by á, á2, .., á2t. The 
degree of each minimal polynomial is s or less, and hence the number of parity check 
digits generated by by g(X) is no more than 2st. 
The special subclass for which s=1 is the most important subclass of q-ary BCH 
codes. These codes are usually called Reed-Solomon codes. A t-error correcting RS 
code with symbols from GF(q) has the following parameters 
 
Block length   n = q �1 
Number of parity-check digits n-k = 2t 
Minimum distance  dmin = 2t+1. 
 
Using GF(q) = GF(2m), and using á as a primitive element in GF((2m), a Reed-
Solomon code, t-error correcting, can be generated using a  
g(X) = (X+á)(X+á2)( X+á3)�.( X+á2t)  so that 
 
g(X) = g0 + g1X + g2X

2 + � + g2t-1X
2t-1 + X2t,  so that the gi�s are now not from GF(2) 

but from GF(2m). 
Generating a codeword is still the process of dividing X2td(X) by g(X) and using the 
remainder to build up the systematic codeword. 
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Decoding follows the lines of a BCH code involving: 
 

1. Syndrome calculation 
2. Error location using an error location polynomial, and an algorithm for the 

solution such as the Berlekamp-Massey algorithm for the solution of ó(X) 
3. Obtain from the error location polynomial, the error values, Z(X), in terms of 
á�s using Newton�s identities 

4. Finally obtain the error values at the locations obtained from the error location 
polynomial using an equation relating the error locations and Z(X). 

 
 

 
 
 
 
 
 


