Cyclic Codes— BCH Codes

Galois Fields GF(2™)

A Galoisfield of 2™ elements can be obtained using the symbols 0, 1, o, and the

elementsbeing 0, 1, a, o, o, ... @?* sothat field F* is closed under
multiplication with 2™ elements. _

The operator ‘+ is defined by dividing X' by p(X) where p(X) is a primitive
irreducible polynomial in GF(2™).

X' = q(X). p(X) +a(X) where a(X) isapolynomial of degree (m-1) or less over
GF(2). The outcomeisaset of (2™ —1) non zero polynomials of o over GF(2™) with
degree (m-1) or less.

Example.. Starting with m =4, p(X) = X*+ X3+ 1, which is a primitive polynomial
over GF(2) and a factor of (X*> + 1), Set p(o) = o' + a®>+1=0. Hencea’ = 1+ o°
and the GF(2?) can be constructed and is given by Table 4.1

Elements of GF(2* using p(X) = X* + X* + 1 over GF(2?

Power Elements Polynomial 4-Tuple
0 0 0000
1 1 1000
o o 0100
o? o? 0010
o o 0001
ol 1+ o 1001
o’ l1+a+ o’ 1101
of 1+o+a?+d’ 1111
o 1+0+a? 1110
o® o+ o+ o’ 0111
o’ 1+ o2 1010
olf o + o’ 0101
ot 1+ o + o 1011
o? 1+a 1100
o o+ o 0110
o' o+ o 0011

Table 4.1

(X*+ X + 1) isirreducible over GF(2) and does not have roots over GF(2), but it has

4 roots over GF(2%). Thesearegivenby o , o™, o*® and o™* . It can be shown, using

Table4.1, that (X +a’) (X + o) (X + o) (X + ™) = 1+ X + X%

Further Fields

A new field element B isintroduced in an extension field of GF(2) with 3 aroot of a
polynomial f(X) so that f() = 0.

For any | >0, 8% isaso aroot of f(X) so that f(3%) = 0. The element B2 isthe
conjugate of B. This also impliesthat if B, an element in GF(2™) is aroot of f(X) over
GF(2), then all the distinct conjugates of B, also elements of GF(2™) are roots of f(X).

Example

Using f(X) = (X*+ X + 1) (X?+ X + 1) = (X®+ X+ X* + X® +1), o’ isaroot. The
conjugates of o’ are (o)?, (@)%, («”)? . Notethat (a”)? isa*?2= o' ¢'® = ¢’
and hence closes the group.

The conjugates of o are a, o® /o™ = o™, and ™ /a* = o™ . The other 2 primitive
rootsare o® and o™°.

Further since p is an element of GF(2™), in general, % =1, and % *+1=0, and

the 2™ — 1 nonzero elements of GF(2™) form all the primitive rootsof X *+1=0.
Also since the zero element 0 of GF(2™) is the root of X, then the 2" elements form

dl therootsof X% + X .
Minimal polynomials

The field element B can also be aroot of a polynomial of degree lessthan 2™. The
polynomial of smallest degree over GF(2) for which f(X) = f(p) = 0 is known as the
minimal polynomial of 3, and denoted by ®(X). This polynomial is also irreducible.
Further if f(X), apolynomial over GF(2) has § as aroot, then f(X) in general is
divisible by ®(X), the minimal polynomial. If f(X) itself is an irreducible polynomial
then f(X) = ®(X). It follows that the conjugates of B, B2, 8%, B, .. B? aedso
rootsof ®(X) = ®(p). It can be shown that

fO=[(x+5%) = 0(X)

Example:
For GF(2*) and the field elements of Table 4.1, starting from p = o®, we obtain
B2 =a® B* = o'? p® = a*. Theseresult in the polynomial

X+)X +1+a+0®+ad)(X +1+a)(X +1+0? resulting in
(X2 +(1+ at od)X + 1+ a®)(X? + (at+ 0®)X + 1 + o + o + o) finally resulting in
the minimal polynomial (X*+ X3+ X2+ X+1).

Another way to obtain the minimal polynomial is the following. Let y = o in GF(2%)
be used as the primitive element. Hence y? = o?, v* = o*, y® = ®, andy® = =y
closes the group. Hence ®(X) of degree 4 must have the following form.

D(X) = 8 + X+ aX?+ aeX "+ au X*.

Using the polynomial representation and substituting for y = a,

d(X) =a + ot a0+ 830(34' as o’

Thisresultsin
& + ajat aa’+ aga’+ ay (a®+1) = 0. Thisis rearranged to get
(20 + &) + ot apo’+ (8g* &) o° = 0

Hence
(@+a)=0
=0
=0
(3t as) =0

Thisresultsinag=ay =ay = 1; & = & = 0; and therefore the polynomial
(1 + X3+ X* = ®(X). The Table 4.2 shows the minimal polynomials with the

primitive elements as the primitive roots of the minimal polynomials using p(X) = (1
+ X3+ X%

Conjugate roots Minimal polynomial

0 X

1 (X+1) Do(X)
a, o, ot o, 1+ X3+ X4) D,(X)
o, o, o, o? (X% X34+ X2+ X+1) D3(X)
o, o (X2+X+1) ®5(X)
of, ot o3, ot Q1+X+ X4) D7(X)

Table 4.2

Table 4.2 shows that the degree of each minimal polynomial in GF(2%) using (1 + X3
+ X*) as the primitive polynomial g(X). Note that building up other generator
polynomials g’(X) from g(X), still uses g(X) so that g’(X) will always include the
primitive root a.

BCH Code

It is characterised by the following:
Block length n= 2" -1; Parity checks (n-k) < mt; Minimum distance dnn > 2t+1;

The generator polynomial g(X) is specified in terms of its roots in GF(2™). Every
primitive element o' is aroot of aminimal polynomial @;(X). It can be shown that all
even powers of o', belong to a minimal polynomial with a preceding odd power as one
of itsroots. Thisisillustrated by Table 4.2 above.

BCH Bound: The minimum distance of the code generated by g(X) is greater than the
largest number of consecutive primitive roots of g(X). Using a generator polynomial
g(X) = Dg(X). P1(X). D7(X) yields the set of primitive roots whose index is

0,12 4,,,7,8 ,,11, ,13 14
Note that there are 5 consecutive primitive roots in the sequence so that g(X) hasa
minimum distance of at least 6.
Looking at Table 4.2, it can be seen that every odd root i isin the same polynomial as
2i. Hence t consecutive odd roots guarantee 2t consecutive roots. Also it can be shown

that the degree of every divisor of X 2" ™ +1, cannot exceed m. Since at most t

minimum polynomials are required to guarantee that g(X) hast consecutive odd roots,
the order of g(X) ism.t and, at most, m.t parity checks are required.

Encoding a BCH codeword.

The encoding process is identical to the standard cyclic code. For ak-bit data d(X) the
resultant parity bits are found from

rem { (X™-.d(X)}/ g(X) which are appended to the front of the d(X) to obtain the
codeword v(X).

Every codeword v(X) in aBCH code is a codeword if it is divisible by the GF(2™)
roots, a, o, . . .o

Decoding a BCH codeword.

Assume a codeword v(X) sent, and r(X) isreceived. Then the error pattern can be
derived from r(X) =v(X) + gX).

The syndrome of at-correcting BCH codeisgivenby S= (S, S, . . Sx), and

S =r(a)

Divide r(X), in turn, by each of the minimal polynomials comprising g(X). In each
case aremainder term b(X) is obtained. This remainder isin GF(2). Thisis substituted
by the corresponding primitive root belonging to the minimal polynomial.

Example: Using g(X) = 1 + X* + X*in GF(2*) the (15,7) code uses as primitive
polynomials, ®1(X) = 1 + X+ X*, and ®3(X) = (X*+ X+ X%+ X+1).

Thisgivesg’(X) = 1 + X + X% X*+ X8 for a (15,7) code. Using a data pattern
[1001001] that gives d(X) = 1 + X3+ X° , a code word is built given by

V(X) = X% X%+ X8+ XM+ XM Let r(X) be 1+ X2+ XM+ X, Thisresultsin an
eX) =1+ X%+ X>,

To determine the syndrome S = (S1, S, S, S4) the r(X) is divided by each of the
minimal polynomials. Using ®@1(X) = 1 + X3 + X*, the remainder isby(X) = (1 + X? +
X3). Using the roots of the minimal polynomial, a, o, o,

Hence S; = 1+ o+’ = ot
S, = 1+a*+0f= 1+a+0?

_ 7
_ 8, 12_ 2, 3 _
S=1l+a +a=a"+a = a

o
14

S; is obtained from ®3(X) = (X*+ X3+ X%+ X+1). The remainder isbs(X) = (1 + X +
X?). Using the first root of this minimal polynomial, o°,
Ss=1+0*+a’= a+a®= o,

Hence S = ((111, o, o4, oclg)

The second step, after determining the syndrome in terms of the primitive elements is
to determine the error location polynomial o(X) from the syndrome components.
There are various methods available. They are based on a general solution involving
the following. Given the v errors, v <t, the error positions are denoted by

al, a’,..a" SincethesyndromesS = e(a'), every syndromeisrelated directly to
the error parameters. This givesriseto a set of equations

Slzocj1 +al . +al

S, =(a")?+(a”?)?+...+(a™)?

S, =(@")* + () +. 4+ ()

Define the error locator polynomial as

o(X) =] [@+a" X) =l+o,(X)+0,X 2+ -+ 0, X"

1=1
The primitive element roots of this polynomia are the inverse error location positions.
It is easy to show from the above the set of Newton Identities given by

S;+061=0
S$+0615+262=0
S$+061S+0625+303=0

Notethat sinceinGF(2) 1+1=2=0, ic; = for i odd, and O for i even.

The Berlekamp-Massey Algorithm will be used for the solution of the Newton
[dentities. .

The goal of the algorithmis to find at iteration (i+1) (connection) polynomial ¢'*(X)
in terms of the error polynomial primitive elements, and given by

oV (X)=o P X+ X%+ XY

using asthe error discrepancy that becomes a correction factor the value, d; , using
d =S +S0."+S 00+

where the upper indices (i) associated with ¢ indicate the coefficient value associated
with an appropriate X in the equation (X)at the i"" iteration.

If di = 0, then there is no discrepancy at that stage, and the present value of 6(X),
o"(X), is carried to the next iteration o"*9(X).

If d; # 0, find a previous iteration row, p, for which d; # 0, and the value of (p- 1)
where |, denotes the order of o®(X). Then work out the value of the next iteration
o*D(X) using

o (X)=c" (X)+d,d'X' "5 (X)
Iy =max(l;,l, +i-p)

The iterations are continued until the quantity, i > |; +t -1 becomes valid

(4.3

Example:

The BCH (15,5) code, which hast=3, is generated using

O1(X) = (1 + X3+ X¥); D3(X) = (X*+ X3+ X2+ X+1); O5(X) = (X*+X+1). This results
inagX)= 1+ X2+ X+ X+ X8+ X%+ X1,

A code polynomial is built using the data pattern [01101] which isd(X) = X + X2 +

X* . The codeword v(X) is built by using X*°d(X)/ g(X) to obtain the remainder. In
this case the remainder is given by (1 + X + X® + X®) so that the codeword v(X) = (1
+ X + X8+ X8+ XM+ X2+ X)), Thereceived word isr(X) = (X + X2+ X + X*).
This implies an error polynomial e(X) = 1 + X° + X2 . Of course the decoder does not
know this.

The procedure for decoding starts with the syndrome calculation, obtained by dividing
the received word r(X) by each minimal polynomial in turn to work out the
corresponding primitive element associated with the syndrome element. In this case
S=[S1, S, S5, S, S5, S

Since a, o, o, are obtained from the same polynomial ®1(X) =1 + X3+ X* r(X) is
divided by ®4(X), to obtain by(X) = 1+ X? + X*® Hence

S, =1+ o? + o, and using the GF(2”) arithmetic, based on 1 + X° = X* and Table 4.1
S =olt. Using o?,

S=1+ad*+d’=1+a+a’= o'. USingoL4,

_ 8, 12_ 2, 3_ 14
S =l+a +a " =" +o =a .

o, a°, are obtained from ®5(X) = (X*+ X3+ X%+ X+1), to obtain bg(X) = 1+X+X?, and
using the primitive elements, o>

S=1+’+dl=a+0’= (xlgandusingoc6

SG=1+(16+(112=1+(12+0(3: ot

Finally o is obtained from ®s(X) = (X*+X+1), to obtain bs(X) = 1. Therefore

S=1

The Berkelamp-Massey Algorithm is now used.
Initialisation
Iteration 0: 6™Y(X) = 1; d41=0; 14=0; i- l;=(0-0)=0; since d,=0;
o 9(X) = 1;
Iterationl: i=0; do=S;= o™ and using (4.3)
o D(X) = 6O(X) + o™X. Therefore at end of iteration the entry is

1 1+ o™X, 0 1
Checkond;: di=S, +Si6P =a’ +attor =a’+a® =0’ +0a’ =0

lteration 2: i=1; dy= O; Hence cP(X) = 6W(X); I=1; i- = 1;
0= S+ $01? =a® + ’att = a® + a® = a + o + a® = ®. Entry
2 1+ o™X, o 1 1

lteration 3: i=2; d,= a® Hence update 6'?(X), using row (iteration) 0, to obtain

0(X) = 6A(X) + do.(do) " X, 6V(X) = 6(X) + 0. (U o) X212 = 6O(X) +
a X%

Hence 6®(X) = 1+ o™X + o®.X? Entry on Iteration 3 is
3 1+ o™X + X% 0 2 1
Check onds: d3= S, + 8301(3) + S0, =+ 0Bt + o ol =+ o+ 0= 0
Iteration 4: : i=3; ds= 0; Hence 6“(X) = 6®(X); 14= 15=2; i- i= 2;
Check : I,+ 3—1=4. therefore < 3isnot valid. Continue. Current

entry
4 +o"™X +a® X% dy 2 2
d4: S;', + 8461(4) + 3362(4) =1+ (114.(111 + (113.(112 =1+ a25 + (125 =1
Iteration 5: i=4; d4= 1; Hence update 6(X) to 6®(X), using row (iteration) 2, to
obtain
o®(X) = 6W(X) + da.(do) 2XW2. 6D(X) = 1. (1 B)X%(1+ o*?X)

— 0(4)()() +a’X2 + o1B%3

=1+ (lllx + (a12+ (17))(2 + a18x3

= 1+ o'X + o®X? + o®X3. Entry for iteration 5

5 1+ oX + o?X? + o3X3 0 3 2

Check on ds: ds= S + 5501(5) + S5, + &03(5)= o+ Lo+’ +0ta’=0

Iteration 6: i=5; ds= 0; Hence 6©(X) = 6®(X); Ie= 15=3; i- i= 3;
Check : lg+ 3—1=5. therefore<5istrue.
Iteration stopped.

The outcome of the algorithm is

o®(X) = 1+ oX + a®X? + X3,

The roots of this cubic polynomial are found to be (in this case by a process of trial
and error on the fifteen primitive elements)

X=1X=a*%X=0" (egfor X =1; 1+ o + * + o0® = 1+ 1 o + o>+ o + 0> = 0)
The error locations in &(X) are the inverse of these roots. So error locations are at
position 1,6, 12.

Thisis the expected result.

The overdl iterations are given in the Table 4.3 below

G(l)(x)
1
1
1+ o™X
1+ !X
1+ oaX + a2 X2
1+ aX + a2 X2
1+ aX + a?X? + o3X3
1+ aMX + a®X? + o3X3

' OPFP OR OQ'_‘OQ_
[

CDU'I-POONI—‘O“__
©
" WONDNPEPPOO=

Table4.3
Other BCH Codes

Binary BCH codes with length n # 2™ — 1 can be constructed as for those with n = (2™
—1). Let B be an lement of order n in GF(2™). Consider a polynomial that has as
roots B, B B3, . ., B2 nitself isafactor of some 2™ — 1. All the elements are roots of
X"+1. Therefore thisis a cyclic code. In particular, for a sequence of 2t roots, the g(X)
that is the LCM of the minimal polynomials of all the roots, generates a t-error
correcting BCH code. Since B is not a primitive element of GF(2™) and n# 2™ — 1, the
BCH code generated is called a nonprimitive BCH code.

Non-binary BCH codes — Reed Solomon Codes

Binary BCH codes can be generalized to any GF(q) where p is a prime number and q
any power of p to obtain a g-ary code. An (n,k) g-ary cyclic code is generated by a
polynomia of degree (n-k) with coefficients from GF(q) which is a factor of X"+1.
Let a be a primitive element, in GF(q®), where n = g°— 1. For at error correcting code
the generator polynomial g(X) has 2t roots from GF(q) given by a, ¢ .., «®. The
degree of each minimal polynomial is s or less, and hence the number of parity check
digits generated by by g(X) is no more than 2<t.

The special subclass for which s=1 is the most important subclass of g-ary BCH
codes. These codes are usualy called Reed-Solomon codes. A t-error correcting RS
code with symbols from GF(q) has the following parameters

Block length n=q-1
Number of parity-check digits n-k = 2t
Minimum distance Omin = 2t+1.

Using GF(qg) = GF(2™), and using o as a primitive element in GF((2™), a Reed-
Solomon code, t-error correcting, can be generated using a
g(X) = (X+0)(X+a?)(X+ad)....(X+0?) so that

g(X) = go + g1X + goX? + ... + goriX? ! + X#, 0 that the g’s are now not from GF(2)
but from GF(2").

Generating a codeword is still the process of dividing X*d(X) by g(X) and using the
remainder to build up the systematic codeword.

Decoding follows the lines of a BCH code involving:

1. Syndrome calculation

2. Error location using an error location polynomial, and an algorithm for the
solution such as the Berlekamp-Massey algorithm for the solution of 6(X)

3. Obtain from the error location polynomial, the error values, Z(X), in terms of
a’susing Newton’s identities

4. Finaly obtain the error values at the locations obtained from the error location
polynomial using an equation relating the error locations and Z(X).

