
 1

Cyclic Codes � BCH Codes

Galois Fields GF(2m)

A Galois field of 2m elements can be obtained using the symbols 0, 1, á, and the

elements being 0, 1, á, á2, á3, . . . 12 m

 so that field F* is closed under
multiplication with 2m elements.
The operator �+� is defined by dividing Xi by p(X) where p(X) is a primitive
irreducible polynomial in GF(2m).

Xi = q(X). p(X) + ai(X) where ai(X) is a polynomial of degree (m-1) or less over
GF(2). The outcome is a set of (2m �1) non zero polynomials of á over GF(2m) with
degree (m-1) or less.

Example.. Starting with m = 4, p(X) = X4 + X3 + 1, which is a primitive polynomial
over GF(2) and a factor of (X15 + 1), Set p(á) = á4 + á3 + 1 = 0. Hence á4 = 1 + á3
and the GF(24) can be constructed and is given by Table 4.1

Elements of GF(24) using p(X) = X4 + X3 + 1 over GF(24)

Power Elements Polynomial 4-Tuple

 0 0 0 0 0 0
 1 1 1 0 0 0
 á á 0 1 0 0
 á2 á2 0 0 1 0
 á3 á3 0 0 0 1
 á4 1 + á3 1 0 0 1
 á5 1 + á + á3 1 1 0 1
 á6 1 + á + á2 + á3 1 1 1 1
 á7 1 + á + á2 1 1 1 0
 á8 á + á2 + á3 0 1 1 1
 á9 1 + á2 1 0 1 0
 á10 á + á3 0 1 0 1
 á11 1 + á2 + á3 1 0 1 1
 á12 1 + á 1 1 0 0
 á13 á + á2 0 1 1 0
 á14 á2 + á3 0 0 1 1

Table 4.1

(X4 + X + 1) is irreducible over GF(2) and does not have roots over GF(2), but it has
4 roots over GF(24). These are given by á7 , á11 , á13 and á14 . It can be shown, using
Table 4.1, that (X + á7) (X + á11) (X + á13) (X + á14) = 1 + X + X4.

 2

Further Fields

A new field element â is introduced in an extension field of GF(2) with â a root of a
polynomial f(X) so that f(â) = 0.

For any l ≥ 0,
L2 is also a root of f(X) so that f(

L2) = 0. The element
L2 is the

conjugate of â. This also implies that if â , an element in GF(2m) is a root of f(X) over
GF(2), then all the distinct conjugates of â, also elements of GF(2m) are roots of f(X).

Example
Using f(X) = (X4 + X + 1) (X2 + X + 1) = (X6 + X5 + X4 + X3 +1), á7 is a root. The

conjugates of á7 are (á7)2 ,
227)( ,

327)( . Note that
427)( is á112 = á112/ á105 = á7

and hence closes the group.
The conjugates of á7 are á14 , á28 /á15 = á13 , and á56 /á45 = á11 . The other 2 primitive
roots are á5 and á10 .

Further since â is an element of GF(2m), in general, 112 m

 , and 0112 m

 , and

the 2m � 1 nonzero elements of GF(2m) form all the primitive roots of 0112 m

X .
Also since the zero element 0 of GF(2m) is the root of X, then the 2m elements form

all the roots of XX
m

2 .

Minimal polynomials

 The field element â can also be a root of a polynomial of degree less than 2m. The
polynomial of smallest degree over GF(2) for which f(X) = f(â) = 0 is known as the
minimal polynomial of â, and denoted by Ö(X). This polynomial is also irreducible.
Further if f(X), a polynomial over GF(2) has â as a root, then f(X) in general is
divisible by Ö(X), the minimal polynomial. If f(X) itself is an irreducible polynomial

then f(X) = Ö(X). It follows that the conjugates of â, â2,
22 ,

32 , . .
i2 are also

roots of Ö(X) = Ö(â). It can be shown that







1

0

2)()()(
L

i

XXXf
i



Example:
For GF(24) and the field elements of Table 4.1, starting from â = á3, we obtain
â2 = á6, â4 = á12, â8 = á24. These result in the polynomial

(X + á3)(X + 1 + á + á2 + á3)(X + 1 + á)(X + 1 + á2) resulting in

(X2 +(1+ á+ á2)X + 1+ á2)(X2 + (á+ á2)X + 1 + á + á2 + á3) finally resulting in

the minimal polynomial (X4+ X3+ X2+ X+1).

Another way to obtain the minimal polynomial is the following. Let ã = á in GF(24)
be used as the primitive element. Hence ã2 = á2, ã4 = á4, ã8 = á8, and ã16 = á16= ã
closes the group. Hence Ö(X) of degree 4 must have the following form.
Ö(X) = a0 + a1X+ a2X

2+ a3X
3+ a4 X

4.
Using the polynomial representation and substituting for ã = á,
Ö(X) = a0 + a1á+ a2á2+ a3á3+ a4 á4.

 3

This results in
a0 + a1á+ a2á2+ a3á3+ a4 (á3+1) = 0. This is rearranged to get
(a0 + a4) + a1á+ a2á2+ (a3+ a4) á3 = 0

Hence
(a0 + a4) = 0
a1 = 0
a2 = 0
(a3+ a4) = 0

This results in a3 = a4 = a0 = 1; a1 = a2 = 0; and therefore the polynomial

(1 + X3 + X4) = Ö(X). The Table 4.2 shows the minimal polynomials with the
primitive elements as the primitive roots of the minimal polynomials using p(X) = (1
+ X3 + X4)

Conjugate roots Minimal polynomial

0 X
1 (X+1) Ö0(X)

á, á2, á4, á8, (1 + X3 + X4) Ö1(X)
á3, á6, á9, á12, (X4+ X3+ X2+ X+1) Ö3(X)
á5, á10, (X2+X+1) Ö5(X)
á7, á11, á13, á14, (1 + X + X4) Ö7(X)

Table 4.2

Table 4.2 shows that the degree of each minimal polynomial in GF(24) using (1 + X3
+ X4) as the primitive polynomial g(X). Note that building up other generator
polynomials g�(X) from g(X), still uses g(X) so that g�(X) will always include the
primitive root á.

BCH Code

It is characterised by the following:
Block length n = 2m �1; Parity checks (n-k) ≤ mt; Minimum distance dmin ≥ 2t+1;

The generator polynomial g(X) is specified in terms of its roots in GF(2m). Every
primitive element ái is a root of a minimal polynomial Öi(X). It can be shown that all
even powers of ái, belong to a minimal polynomial with a preceding odd power as one
of its roots. This is illustrated by Table 4.2 above.

BCH Bound: The minimum distance of the code generated by g(X) is greater than the
largest number of consecutive primitive roots of g(X). Using a generator polynomial
g(X) = Ö0(X). Ö1(X). Ö7(X) yields the set of primitive roots whose index is
 0, 1. 2, 4, , , 7, 8, , , 11, , 13, 14.
Note that there are 5 consecutive primitive roots in the sequence so that g(X) has a
minimum distance of at least 6.
Looking at Table 4.2, it can be seen that every odd root i is in the same polynomial as
2i. Hence t consecutive odd roots guarantee 2t consecutive roots. Also it can be shown

 4

that the degree of every divisor of 112 m

X , cannot exceed m. Since at most t
minimum polynomials are required to guarantee that g(X) has t consecutive odd roots,
the order of g(X) is m.t and, at most, m.t parity checks are required.

Encoding a BCH codeword.

The encoding process is identical to the standard cyclic code. For a k-bit data d(X) the
resultant parity bits are found from

rem {(X(n-k)..d(X)}/ g(X) which are appended to the front of the d(X) to obtain the
codeword v(X).
Every codeword v(X) in a BCH code is a codeword if it is divisible by the GF(2m)
roots, á, á2, . . .á2t.

Decoding a BCH codeword.

Assume a codeword v(X) sent, and r(X) is received. Then the error pattern can be
derived from r(X) = v(X) + e(X).
The syndrome of a t-correcting BCH code is given by S = (S1, S2, . . S2t), and
 Si = r(ái)

Divide r(X), in turn, by each of the minimal polynomials comprising g(X). In each
case a remainder term b(X) is obtained. This remainder is in GF(2). This is substituted
by the corresponding primitive root belonging to the minimal polynomial.

Example: Using g(X) = 1 + X3 + X4 in GF(24) the (15,7) code uses as primitive
polynomials, Ö1(X) = 1 + X3 + X4, and Ö3(X) = (X4+ X3+ X2+ X+1).

This gives g�(X) = 1 + X + X2+ X4+ X8 for a (15,7) code. Using a data pattern
[1001001] that gives d(X) = 1 + X3+ X6 , a code word is built given by
v(X) = X2+ X5+ X8 + X11+ X14 . Let r(X) be 1 + X8 + X11+ X14. This results in an
e(X) = 1 + X2+ X5 .

To determine the syndrome S = (S1, S2, S3, S4) the r(X) is divided by each of the
minimal polynomials. Using Ö1(X) = 1 + X3 + X4, the remainder is b1(X) = (1 + X2 +
X3). Using the roots of the minimal polynomial, á, á2, á4,
Hence S1 = 1+ á2 + á3 = á11
S2 = 1 + á4 + á6 = 1 + á + á2 = á7
S4 = 1 + á8 + á12 = á2 + á3 = á14

S3 is obtained from Ö3(X) = (X4+ X3+ X2+ X+1). The remainder is b3(X) = (1 + X +
X2). Using the first root of this minimal polynomial, á3,
S3 = 1 + á3 + á6 = á + á2 = á13 .

Hence S = (á11, á7, á14, á13)

 5

The second step, after determining the syndrome in terms of the primitive elements is
to determine the error location polynomial ó(X) from the syndrome components.
There are various methods available. They are based on a general solution involving
the following. Given the v errors, v ≤ t, the error positions are denoted by

vjjj  ..,, 21 Since the syndromes Si = e(ái), every syndrome is related directly to
the error parameters. This gives rise to a set of equations



























tjtjtj
t

jjj

jjj

v

v

v

S

S

S

222
2

222
2

1

)()()(

)()()(

21

21

21















Define the error locator polynomial as





v

l

v
v

j XXXXX l

1

2
21)(1)1()( 

The primitive element roots of this polynomial are the inverse error location positions.
It is easy to show from the above the set of Newton Identities given by

S1 + ó1 = 0
S2 + ó1S1 + 2ó2 = 0
S3 + ó1S2 + ó2S1 + 3ó3 = 0
.

Sv + ó1Sv-1 ++ óv-1S1 + vóv = 0

Note that since in GF(2) 1 + 1 = 2 = 0, iói = ói for i odd, and 0 for i even.

The Berlekamp-Massey Algorithm will be used for the solution of the Newton
Identities.
The goal of the algorithm is to find at iteration (i+1) (connection) polynomial ói+1(X)
in terms of the error polynomial primitive elements, and given by

vi
v

iii XXXX)(2)(
2

)(
1

)(1)(  

using as the error discrepancy that becomes a correction factor the value, di , using
 

)(
21

)(
11

i
i

i
iii SSSd 

where the upper indices (i) associated with ó indicate the coefficient value associated
with an appropriate X in the equation ó(X)at the ith iteration.
If di = 0, then there is no discrepancy at that stage, and the present value of ó(X),
ó(i)(X), is carried to the next iteration ó(i+1)(X).
If di ≠ 0, find a previous iteration row, ñ, for which di ≠ 0, and the value of (ñ- lñ)
where lñ denotes the order of ó(ñ)(X). Then work out the value of the next iteration
ó(i+1)(X) using

),max(

)()()(

1

)(1)()1(


















illl

XXddXX

ii

i
i

ii

 (4.3)

The iterations are continued until the quantity, i ≥ li +t �1 becomes valid

 6

Example:

The BCH (15,5) code, which has t=3, is generated using
Ö1(X) = (1 + X3 + X4); Ö3(X) = (X4+ X3+ X2+ X+1); Ö5(X) = (X2+X+1). This results
in a g(X) = 1 + X2 + X5 + X6 + X8 + X9 + X10 .
A code polynomial is built using the data pattern [01101] which is d(X) = X + X2 +
X4 . The codeword v(X) is built by using X10d(X)/ g(X) to obtain the remainder. In
this case the remainder is given by (1 + X + X6 + X8) so that the codeword v(X) = (1
+ X + X6 + X8 + X11 + X12 + X14). The received word is r(X) = (X + X8 + X11 + X14).
This implies an error polynomial e(X) = 1 + X6 + X12 . Of course the decoder does not
know this.

The procedure for decoding starts with the syndrome calculation, obtained by dividing
the received word r(X) by each minimal polynomial in turn to work out the
corresponding primitive element associated with the syndrome element. In this case
S = [S1, S2, S3, S4, S5, S6].
Since á, á2, á4, are obtained from the same polynomial Ö1(X) = 1 + X3 + X4, r(X) is
divided by Ö1(X), to obtain b1(X) = 1 + X2 + X3 Hence
S1 = 1 + á2 + á3, and using the GF(24) arithmetic, based on 1 + X3 = X4, and Table 4.1
S1 = á11 . Using á2,
S2 = 1 + á4 + á6 = 1 + á + á2 = á7 . Using á4,
S4 = 1 + á8 + á12 = á2 + á3 = á14 .

á3, á6, are obtained from Ö3(X) = (X4+ X3+ X2+ X+1), to obtain b3(X) = 1+X+X2, and
using the primitive elements, á3
S3 = 1 + á3 + á6 = á + á2 = á13 and using á6
S6 = 1 + á6 + á12 = 1 + á2 + á3 = á11 .
Finally á5 is obtained from Ö5(X) = (X2+X+1), to obtain b5(X) = 1. Therefore
S5 = 1.

The Berkelamp-Massey Algorithm is now used.
Initialisation
Iteration 0: ó(-1)(X) = 1; d-1=0; l-1=0; i- li=(0-0)=0; since d-1=0;
 ó(0)(X) = 1;
Iteration1: i=0; d0=S1= á11 and using (4.3)
ó(1)(X) = ó(0)(X) + á11X. Therefore at end of iteration the entry is

1 1+ á11X. 0 1 0
Check on d1: d1= S2 + S1ó1

(1) = á7 + á11.á11 = á7 + á22 = á7 + á7 = 0

Iteration 2: i=1; d1= 0; Hence ó(2)(X) = ó(1)(X); l2=1; i- li= 1;

d2 = S3 + S2ó1

(2) = á13 + á9.á11 = á13 + á18 = á + á2 + á3 = á8. Entry

2 1+ á11X. á8 1 1

Iteration 3: i=2; d2= á8; Hence update ó(2)(X), using row (iteration) 0, to obtain

 7

ó(3)(X) = ó(2)(X) + d2.(d0)

-1.X(2-0). ó(0)(X) = ó(2)(X) + á8. (1/ á11).X2.1 = ó(2)(X) +
á12.X2.

Hence ó(3)(X) = 1+ á11X + á12.X2. Entry on Iteration 3 is

3 1+ á11X + á12.X2. 0 2 1

Check on d3: d3= S4 + S3ó1

(3) + S2ó2
(3) = á14 + á13.á11 + á7.á12 = á14 + á9 + á4= 0

Iteration 4: : i=3; d3= 0; Hence ó(4)(X) = ó(3)(X); l4= l3=2; i- li= 2;
 Check : l4+ 3 � 1 = 4 . therefore ≤ 3 is not valid. Continue. Current
entry

4 1+ á11X + á12.X2. d4 2 2

d4= S5 + S4ó1

(4) + S3ó2
(4) = 1 + á14.á11 + á13.á12 = 1 + á25 + á25 = 1

Iteration 5: i=4; d4= 1; Hence update ó(4)(X) to ó(5)(X), using row (iteration) 2, to
obtain
ó(5)(X) = ó(4)(X) + d4.(d2)

-1.X(4-2). ó(2)(X) = 1. (1/ á8)X2.(1+ á11X)
 = ó(4)(X) + á7X2 + á18X3
 = 1+ á11X + (á12+ á7)X2 + á18X3
 = 1+ á11X + á2X2 + á3X3. Entry for iteration 5

5 1+ á11X + á2X2 + á3X3 0 3 2

Check on d5: d5= S6 + S5ó1

(5) + S4ó2
(5) + S3ó3

(5)= á11 + 1.á11 + á14.á2 + á13.á3 = 0

Iteration 6: i=5; d5= 0; Hence ó(6)(X) = ó(5)(X); l6= l5=3; i- li= 3;
 Check : l6+ 3 � 1 = 5 . therefore ≤ 5 is true.
Iteration stopped.

The outcome of the algorithm is

ó(6)(X) = 1+ á11X + á2X2 + á3X3.

The roots of this cubic polynomial are found to be (in this case by a process of trial
and error on the fifteen primitive elements)
X = 1; X = á3; X = á9; (eg for X =1; 1+ á11 + á2 + á3 = 1+ 1 á2 + á3 + á2 + á3 = 0)

The error locations in e(X) are the inverse of these roots. So error locations are at
position 1, 6, 12.
This is the expected result.

The overall iterations are given in the Table 4.3 below

 8

 I ó(i)(X) di li i- li
 -1 1 0 0 -1
 0 1 á11 0 0
 1 1+ á11X 0 1 0
 2 1+ á11X á8 1 1
 3 1+ á11X + á12.X2. 0 2 1
 4 1+ á11X + á12.X2. 1 2 2
 5 1+ á11X + á2X2 + á3X3 0 3 2
 6 1+ á11X + á2X2 + á3X3 - - -

Table 4.3

Other BCH Codes

Binary BCH codes with length n ≠ 2m � 1 can be constructed as for those with n = (2m
� 1). Let â be an element of order n in GF(2m). Consider a polynomial that has as
roots â, â2, â3,. . . , â2t. n itself is a factor of some 2m � 1. All the elements are roots of
Xn+1. Therefore this is a cyclic code. In particular, for a sequence of 2t roots, the g(X)
that is the LCM of the minimal polynomials of all the roots, generates a t-error
correcting BCH code. Since â is not a primitive element of GF(2m) and n ≠ 2m � 1, the
BCH code generated is called a nonprimitive BCH code.

Non-binary BCH codes � Reed Solomon Codes
Binary BCH codes can be generalized to any GF(q) where p is a prime number and q
any power of p to obtain a q-ary code. An (n,k) q-ary cyclic code is generated by a
polynomial of degree (n-k) with coefficients from GF(q) which is a factor of Xn+1.
Let á be a primitive element, in GF(qs), where n = qs � 1. For a t error correcting code
the generator polynomial g(X) has 2t roots from GF(q) given by á, á2, .., á2t. The
degree of each minimal polynomial is s or less, and hence the number of parity check
digits generated by by g(X) is no more than 2st.
The special subclass for which s=1 is the most important subclass of q-ary BCH
codes. These codes are usually called Reed-Solomon codes. A t-error correcting RS
code with symbols from GF(q) has the following parameters

Block length n = q �1
Number of parity-check digits n-k = 2t
Minimum distance dmin = 2t+1.

Using GF(q) = GF(2m), and using á as a primitive element in GF((2m), a Reed-
Solomon code, t-error correcting, can be generated using a
g(X) = (X+á)(X+á2)(X+á3)�.(X+á2t) so that

g(X) = g0 + g1X + g2X

2 + � + g2t-1X
2t-1 + X2t, so that the gi�s are now not from GF(2)

but from GF(2m).
Generating a codeword is still the process of dividing X2td(X) by g(X) and using the
remainder to build up the systematic codeword.

 9

Decoding follows the lines of a BCH code involving:

1. Syndrome calculation
2. Error location using an error location polynomial, and an algorithm for the

solution such as the Berlekamp-Massey algorithm for the solution of ó(X)
3. Obtain from the error location polynomial, the error values, Z(X), in terms of
á�s using Newton�s identities

4. Finally obtain the error values at the locations obtained from the error location
polynomial using an equation relating the error locations and Z(X).

