Signals

Continuous time or discrete time
|s the signal continuous or sampled in time?

Continuous valued or discrete valued
Can the signal take any value or only discrete values?

Deterministic versus random

Can the ‘shape’ and the values of the signal be described
and analysed by linear system techniques or do the values ook
like a sequence of random numbers?
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Frequency

* Continuous time signals can be
characterised by a set of frequency
components whose value can be to Iinfinity

* Discrete time signals can be characterised
oy a limited set of frequencies limited to
nalf the sampling frequency
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Freqguency In discrete time signals

A discrete-time sinusoidal signal is given by

X(n) = A cos(on + 0) where

nisan integer variable (the sample number), A isthe
amplitude, o is the frequency in radians per sample, 0 is a phase offset
In radians
The normalised frequency range isfrom —nx to +=n radians

A continuous sinusoid of 2 kHz sampled at 8000 samples per
second has a normalised (wrt sampling frequency) frequency of
2000 . 27 = /2 radians per sample
8000
Discrete time sinusoids whose frequencies are separated by an
Integer multiple of 2m are identical.
The highest rate of oscillation in a discrete time sinusoid Is at
o=m (or®m=-m) pim_09_DSP_03



Freqguency In discrete time
signals

A discrete time sinusoid is periodic only if itsfrequency f isa
rational number

f, = k/N where N isusually the fundamental period
and k is an integer

A set of harmonically related complex exponentialsis given by
s(n) = @&k k=0,=+1,+2, ..
Using f, = 1/N as the fundamental frequency

() = €700 = g2 5(1) = 5 (n)

Thismeans that there are only N distinct periodic complex exponentials
In the set.
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Aliasing
A continuous time signal that has a frequency component value

higher than half the sampling frequency is distorted when sampl ed.

The frequency component is transformed (aliased) into alower
frequency component altering (distorting) the original waveform.

To avoid frequency aliasing every digital system must be preceded

by a low pass analog filter with cutoff at half the intended sampling
frequency of the analog-to-digital converter.
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Quantising

Since the continuous value is (normally) discretised thereis an
error within the discrete system.

Setting a discrete step of A the quantisation error is within the
range - A/2 to A/2

The mean square error power Is P, = A?

12

Assuming arange +A and b bits in the word then A = 2A/2°
Hence

Pq = AZ@

22b

The average signal power is A?/2 . Therefore the signal-to-
guantisation noise ratio (SQNR) is given by

P;=3.2%

P, 2
The SONR increases approximately 6dB for every bit added to the

varAvA | AanAth



Discrete signals

|mpulse (unit sample)

Unit step signal

Unit ramp signal

Exponential

o(n)=1 n=0
=0 otherwise

un)=1ns0
=0n<0

r(n=nns0
=0n<0

X(n)=a"
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Classification of discrete signals

Energy signalsand power signals E= DI x(n) |?

Many signals having infinite energy have afinite average power

Given by
P = lim —— X(N
N—o 2N + 1n_z_:,\|, (T

If Eisfinite P=0. But if E isinfinite average power may be
Finite or infinite. If Pisfinite and non-zero it iscalled a
Power signal
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Periodic signals are given by x(n+N) = x(n).
If the energy over one period isfinite the signal is apower signal.
However the energy of the periodic signal isinfinite.
Symmetric X(-n) = x(n)
Antisymmetric X(-n) = - x(n)
Signals are shifted in time by replacing n with n —k

Given x(n), x(n-2) is x(n) delayed by two unitsin time.
X(n+3) 1sx(n) advanced by 3 units of time
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Operations on Sequences

Addition: The sum of two sequences X,(n) and X,(n) Is
y(n) =X,(n) +Xx,(n) foral n
Multiplication y(n) = x,(n) . x,(n) foral n

Scaling y(n) =A. x(n)
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Block diagram representations

X,(0)
Adder oy (+) Y(N) = X,(N) + X,(N)
Multiplier X(n) @ y(n) =ax(n)
X0 (%) y(n) = %,(n) . X,(n)
X,(1)

Unit delay x| 1 y(n) = x(n-1)
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Classification of sequences

Timeinvariant vs time variant

Linear vs non linear systems

Causal vs non causal systems

Stable vs unstable systems

For most of our analysis we assume that the sequences we are

working with belong to the class of linear, time-invariant (L TI)
Sy StemS. pjm_09 _DSP_12



LTIl sequences

A sequence x(n) may be represented in terms of impul se responses by

K =o0

x(n) = > x(k).5(n—k)

K=—o0

Generalising to an arbitrary transfer function h(n), the response y(n)
For an input x(n) isgiven by

y(n) = fx(k).h(n “K) = fh(k).x(n k)

y(n) =x(n) * h(n) = h(n) * x(n)
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LTI systems

An LTI system can have

A Finite Impulse Response (FIR) or an Infinite Impulse Response (11R)
Systems whose output depend only on present and past inputs are FIR.
Systems who depend also on past outputs are [ IR. An FIR system is also

anonrecursive system. A system that depends on past outputsis a
recursive system.

=N k=M
In general y(n) =- > a.y(n-k)+ > b .x(n-k)
k=1 k=1

If the g, s are 0 the system is an FIR non-recursive system.
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LTI system Properties

Commutative X(n)*nh(n) = h(n)*x(n)
Associative  [x(n)*(h,(n)]*h,(n) = x(n)* [h(n)]*h,(n)]

Distributive  x(n)* [h,(n)+h,(n)] = x(M)h,(n) + x(n)* h,(n)
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Implementation of Discrete
Time Systems

y(n) = -ay(n-1) + bx(n) + bx(n-1)

x(n)

@D
ARV R I
7-1 7-1
bl | < _al
@ @
+ V() "
X(n) Y__ Y 0
Z-1\ 7-1
— -
@D
@ b ¥
R { y(n)
X(n) Z
'a:L bl

y(n)

y(n)
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Second Order system

Structures
(@) ————®—0
T
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Z-Transform

N=00

X(2)= ) x(n)z™"

N=—0o0

Since the z-transform is a power series, it exists only for values of
z for which the series converges. Hence every z-transform ha Region
Of Convergence

For an FIR system the ROC is the entire z-plane with possibly the
Exception of z=0 and/or z= infinity
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Characteristic ROC for Finite
Duration Signals
causa

I Entire z-plane except z=0
‘J l 1. .

anticausal Entire z-plane except x = infinity
I I I I @ L @

Two-sided Enti_re _z-_pl ane except z=0 and
Z = Infinity




Characteristic ROC for Infinite
Duration Signals

‘JI L1 —d\ =

anticausal

:IH... - —

twosided |

R<[]
BII IIII: Q e

Iz| <,




One sided z-transform

Thisisgivenby x(z=S xmz"

It does not contain information of x(n) n<0. It is unique for causal
signals,. The ROC must be the exterior of acircle which can extend

To z=0. Hence the ROC isimplicit.
Most of the properties of the two sided z-transform carry over into

The one sided z-transform
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Properties of the z-transform

Linearity if x(n) = ax,(n) + ax,(n) then X(z) = a,X,(2) +a,X,(2)
Time shifting x(n-k) = zk X(2)
Scaling ax(n) = X(a'z)
Timereversal x(-n) = X(z?)
Differentiation in z-domain nx(n) = -z dX(z)
dz
Convolution if x(n)=x,(n) * x,(n) then X(z2)= X,(2) . X,(2)
Multiplication if x(n) = x,(n) X,(n) then X(z) = X,(2) * X,(2)



Poles and Zeroes

R

k=0

o "~ N
X(Z) Zl_akz—k
k=1

H(2)

In general the numerator power series has as roots the zeroes
of X(z) while the denominator roots are the poles of X(z).
Two important special forms are when all g_are zero. In this case

the solution is an all zero system and has afinite duration
Impul se response.
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Pole Location and Time Domain Behaviour

M.LLL 1
%‘L'-L X(Z):l_az_l
O<axl
4k Y

/

o
AN AT
NP,




Complex Conjugate Poles

Sinusoidal decay




Pole Location and Frequency Domain Behaviour

N
NI

N A
N L

Ay
NI




Pole and Zero Location and Frequency Domain behaviour

bandpass bandstop Notch filter
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Pole and Zero location of filters — All pass filter

(1/r, w,)

1™
D
o

(1/r, -wy
(r*—2rcosw,z* + z7°)
(1- 2rcosw,z™ +1°2°%)

H(z) =
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Minimum and Maximum Phase

An FIR system with M zeros can be characterised by

H (W) = by (1-z& ™)1~ 2,6 ™) (1- 2, € ™)

Where z. denote the zeros. If all the zeros are inside the unit circle, each term

Corresponding to a real valued zero undergoes a net phase change of zero
between w=0 and w=Tr. Similarly each pair of complex conjugate zeroes will
undergo a net phase change of zero. System called MINIMUM PHASE

When all the zeroes are outside the unit circle. A real valued zero contributes a net
Phase change of 1 radians and a complex conjugate pair a net phase change of
21 radians over the range w=0 to w=TT, which is the largest possible phase
Change. System called MAXIMUM PHASE.

Magnitude response remains the same if one zero at z, inside unit circle is

Reflected outside the unit circle at 1/ z,. But phase change alters
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Sampling in Time and Frequency

Continuous Line
Periodic Spectrum ‘ I !
Continuous Continuous
Aperiodic Spectrum
Sampled Line
Periodic i Spectrum

Repetitive
Sampled Continuous
Aperiodic Spectrum

Repetitive
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Discrete Fourier Transform

This result requires that the time record length L is less or equal to N, and the
Frequency spectrum accuracy of 211/N requires N non-zero time samples.
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Properties of the DFT

The most important property relates to circular shift. This property comes from
the fact that the time record of an N-point DFT is a periodic sequence x,(n) of

Period N.
Shifting the periodic sequence x,(n) by k units to the right is equivalent to

x(n) = x,(n-k) = x(n-k, modulo N)
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Circular Shift

X,(N)
x(n)
1 4 -3 1
X,(n-2)
-4 -2 2 4 6
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Circular Shift

x(n) X(1) X (1) x((n-2))s

X(2) p& X2 x (0)

X(3) X (3)



Convolution with DFT’s

%.() : X,(K)
X,(n) > X,(K)
X,(N) * X,(N) > Xy (K). X,(K)

Multiplication of two DFT’s implies convolution of two periodic
time sequences.
This results in CIRCULAR CONVOLUTION
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Circular Convolution

X3 (k) — X1(k)-X2 (k)

X (M) = 3 % (M, (M- 1)), -+ m=01- N1

This is not linear convolution. Note that in this case x,(n) is of length N, x,(n) is
also of length N, and the result x,(n) is also of length N.

In linear convolution the result of convolving a sequence of length N, with one
of length N, is an output sequence of length N, + N, — 1.
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Linear Convolution using the
DFT

For a signal of length N, passed through a filter of length N, the

linear convolution resultsin N; + N, — 1.

Therefore EACH of the two time signals are brought to a length of
at least N, + N, — 1by padding zeroes after the non-zero samples.

Since both signals are of length N, + N, — 1, the result of the
circular convolution Has also N, + N, — 1points.

This circular convolution is however equivalent to a linear
convolution
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Long Input sequences

When the input sequence to be filtered is very long, it is
necessary to break the Signal into segments, do the processing,
and then reunite again the segments.

The overall effect must however be the same as if the signal
filtered is continuous.

This requires consideration both of valid samples in the output, as
well as of the time For processing with respect to a real time
application.

Two methods are used

OVERLAP SAVE
OVERLAP ADD
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Overlap and Save Method

L — 1 zeroes Filter with M points and L-1 zeroes
< B «—L > « L >
RN Long input sequence segmenéed into L point segments
M-1
N %)
NN
NN

In this case the first segment has M-1 zeroes pre-added. Each new
segment makes use of M-1 samples from the previous segment, so that
every segment is L+M-1 samples long as required for linear convolution.
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Overlap and Save method

Y L >
D L > < L >
\
Discard first M-1 output samples
from each output segment
NNR0
N Y,(n)

~
N N y5(n)

When the valid samples from each segment are abutted the result is a
linear convolution of the long sequence with the filter
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Overlap and Add method

X,(n) M-1 zeroes

X,(N)

X5(N)

In this case each segment has M-1 zeroes appended to make up the

necessary length of L+M-1 for linear convolution
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Overlap and Add method

v

y,(n)

\<
o~
N
—~~
-]
N

y5(n)

In this case the result of the circular convolution is all valid for the
resultant linear convolution. The end (M-1 samples) part of a segment
IS added to the front part of the subsequent segment to give the proper
result for that part
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Number of samples in the time
sequence and its frequency DFT
response

In the analogue domain a periodic waveform is assumed to have a line
frequency spectrum assuming the time waveform is infinite in length. A
discrete sequence x(n) having L non zero samples can be considered as an

infinite sequence x(n) multiplied by
r(n) 1 0<n<L

0 otherwise

If x(n) has a frequency transform X(k) and r(n) has a frequency
transform R(k), then the frequency transform x(n). r(n) is given
by X(k)*R(k) where * denotes convolution
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Frequency Transform of a
Rectangular Window

=0 M = 31
2
— __,m,.
g M = 61
E—lmL NoteL isM infigure
~150 : . : ‘
0 0.1 0.2 0.3 0.4 0.5 f
Normalized frequency
= 1-e ™ sin(wlL /2
i —jo(L-1)/2
R@)=2 e’ = ( _-w) _ SMOLIZ o
= 1-¢™ sin(w/ 2)

This has the first zero at wL/2 =1 orw =2 11/L
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Spectral Leakage

Windowing reduces spectral resolution.

%é spectrum W (w) of the rectangular window sequence has its first zero crossing
at w = /L. Now if o — an) < 2n/L, the two window functions W(ew — ;) and
W(w — wy) overlap and, as a consequence, the two spectral lines in x(n) are not
distinguishable, Only if (& — @) 2 27/L will we see two separate lobes in the
spectrum X(w). Thus our ability to resolve spectral lines of different frequencies
is limited by the window main lobe width. Figure 5.13 illustrates the magnitude
spectrum |X(w)|, computed via the DFT, for the sequence

x{n) = cosawgn + cosenn + COSunn (5.4.8)
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6+ T Main lobe not sufficient to

E Distinguish ©1 and »2 when
g L isonly 25.
0 x *
2
Frequency
" Two frequencies o1 and ©2

are distinguished when L
1S 100. ( 2n/L issmaller) . The
Spectrum has also leaked all

over the frequency range.

Frequency

The convolution X (k) * R(k) resultsin a smearing of the ideal
line frequency spectrum, so that the frequency spectrum is
spread and distorted. Thisis known as spectral leakage.
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Hamming and Hanning
Windows

h(n) = 0.54 — 0.46 cos [2nn/(M-1)] - Hamming function

h(n) =0.5[1 - cog2rxn/(M-1)] - Hanning function

M is the window length in samples



Time and Frequency Response

Magnitnde
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Sampling Requirements of
Bandpass Signals

Nyquisl zomes

4
i 5 | e . / g |
| T & and | zrd | 4ih _
~lml | as A @ Integer band
4 -B (] g
bl
| G

§ Ar -2 : 22 138 4B F e POS|t|0n| ng
(F)
F =mB
| H
0 B F a r
ich

LA
| . Note for m
§ H ?' 5.‘.‘.._;,..1:‘:;' 3d | I.JF; even the
MRS VNS Y W Inversion of
Figure 6.4.1 Tustration of bandpass sign:r;:;nmpling for intcgar: band: posicioning The baseband
Spectral image
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Sampling Requirements for

Bandpass Signals

2F,

A

-
%

A

K+1

IX, (P
|-:— B +| ‘—(— B +‘
o' | S
_F" F.f, Fr' FH F
(a)
XA
I (k—1)th replica kth replica
/—\ T ‘\“ /l—-\ ;,. \,“‘ 2 F H
_IL'r_ 0 ‘F.; F k
> - D)F, ————
- 2 -
< 2F;, -
< KF, -
(b)

Figure 6.4.2 Illustration of bandpass signal sampling for arbitrary band positioning.
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Choosing a Sampling Frequency for the Bandpass Signal

Fi

Figure 6.4.3 Allowed (white) and forbidden (shaded) sampling frequency re-
grinns Tor handpass signals. The minimum sampling frequency F, = 285, which
corresponds Lo the corners of the alias-fres wedaes, is passible [or mieger
positioned bands only.

EhmEinEaEmpﬁngFreqmm::ﬁ '[t:appmciatctheimp]icuﬁunsuft:mdiiiﬂn;{ﬁ.i‘li!ﬁ
and (6.4.12), we depict them graphically in Figure 6.4.3, a8 suggested by Vaughan e
al. (1991). The plot shows the sampling frequency, normalized by 5. as 8 functics
of the band position, Fy /B, This is facilitated by rewriting (6.4.71) as follows:

E-ﬁi{i(&-l) (5423
B2 EEE=L\R :

ER TR P

Lo )

The shaded arcas represent sampling rates thal resolt in aliasing, The allowed ramse
of sampling frequencies is inside the white wedges. For &k = 1, we obtain 2Fy =
F; = eo, which is the sampling theorem For lowpass sagnals Each wedge inthe
corTespords (e a different valwe of &
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Choosing a Sampling Frequency for the Bandpass Signal

In practice aguard band is necessary. Thisresultsin

: 2F] opl
Ei = F, o= i "'l where & = L --EJ

K 7 il
P, = Fr— Al
where Fio=tu | ARy

B =M4+AR

apr I
Ab, - =it TE o Ap + ARy
gt = i
and From the shaded crthegonal wiangles in Flgors 6.4.4, we ohtain

[ _I
Al = ﬁ—z A

o
ARy="AFy
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Proakisand Monolakis_10.2

Multirate DSP - Decimation

h(n) v(n) .| Downsampler y(m)
+D
F;
F,=-=
T
Figure 10.2 Decimation by a factor D.
— U(MD)

y(m)

I

Zh(k)x(mD — k)
k=0



Multirate DSP - Decimation

5(n) = {v(n), n=0,+D,+2D,...

0, otherwise 102.4)

Clearly, #(n) can be viewed as a sequence obtained by multiplying v(n) with a
periodic train of impulses p(n), with period D, as illustrated in Fig. 10.3. The
discrete Fourier series representation of p(n) is

pn) = If pli (10.2.5)
D= e
Hence
v(n) = v(n)p(n) (10.2.6)
and .
y(m) = i(mD) = v(mD)p(mD) = v(mD) (10.2.7)
Y(z) = i o(m)z™/P it lD_IH —j2nk/D 1/D —j2nk/D _1/D
= = D & p(e z/7)X(e 7o)
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Multirate DSP - Decimation
The ideal lowpassfilter is given by

1, lw| < m/D
H — =
B [ 0, otherwise

Since the sampling rates are related by the expression

Fy
F}Iz-f__)

Thus, as expected, the frequency range 0 < |ox| < 7/D is stretched into the
corresponding frequency range 0 < |o,| =7 by the downsampling process.

v = o (§)(3)

I
o =
Bt
e
o|&
e’
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Multirate DSP - Decimation

X(o )

=

I
0

!HDI:WJH

(B

| Ve )|

o]k

bl

| ¥iey) |

Bl

e

Ceky

ey

Figure 10.4 Spectra of signals in the
decimation of x(n) by a factor D.



Multirate DSP - Interpolation

Let v(m) denote a sequence with a rate F, — I s which is obtained from
x(n) by adding 7 — 1 zeros between successive values of x(n). Thus

) x(m/I), m=0,+I 421 ...
Lim) = lU, otherwise

and its sampling rate is identical to the rate of y(m). This sequence has a z-
transform

(10.3.1)

Vi(z)

Il
]
=
3
5

]

= Z x(m)z~™ (10.3.2)
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Multirate DSP - Interpolation
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Multirate DSP - Interpolation
A lowpassfilter isthen used given by

R 2 oy A 1035
Hi(w,) = ‘ 0, otherwise ( )

where C is a scale factor required to properly normalize the output sequence y(m).
Consequently, the output spectrum is

CX@,]), 02y =27/l 10.3.6
¥ (wy) = lg! } otherwise b
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Multirate DSP — Conversion by I/D

x(n) Upsampler

Rate'=Fx

11

v(k)

Proakisand Monolakis_10.7

Lowpass
filter
h(l)

w(l)

Rate = IF, = F,

Downsampler
1D

ym)

1

Figure 10.7 Method for sampling rate conversion by a factor I/D.



Multirate DSP — Conversion by I/D

In the time domain, the output of the upsampler is the sequence

_[x@/n, 1=0,41,421,...
Ui { 0, otherwise (1042
and the output of the linear time-invariant filter is
w(l) = Z h(l — k)v(k)
e 10.4.3)

- Z h(l — kDx(k)

k=—00
Finally, the output of the sampling rate converter is the sequence {y(m)}, which is
obtained by downsampling the sequence {w(l)} by a factor of D. Thus

y(m) = w(mD)

00 (10.4.4)
= Z h(mD — kDx (k)

=00
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Multirate DSP — Conversion by I/D

It is illuminating to express (10.4.4) in a different form by making a change

in variable. Let 5
k= LEFJ —n (10.4.5)

where the notation |r| denotes the largest integer contained in ». With this change
in variable, (10.4.4) becomes

y(m) = }{i‘ h (mD - {QJ I +nf) % (F}’EJ —n) (10.4.6) |

n=—00

We note that =
b r"TJ ] =mD  modulo I

= (mD);
Consequently, (10.4.6) can be expressed as
i D
ym) = Y _ h(l + (mD)px Q’"TJ - n) (10.4.7)
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Multirate DSP — Conversion by I/D

o= 5 0 |24 ([52] )

=0

x{n) 1

2 \,\ -
3 i ...@_» Downsampler

s J D
I e
I 2 l [
Upsampler h(1)
+
K o1 ’
h(2)
+
’ h(M — 2) -
l e +
Z_]
— M1

Figure 10.8 Direct-form realization of FIR filter mn sampling rate conversion by
factor 7/D.
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Multirate DSP — Decimation by D

Decimation after calculating the output - inefficient

x(n) h(0) y(m)

J,D e

A(1)

h(2)

h(M — 2)

Y

(O~ O0—0)

h(M — 1)

(a)
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Multirate DSP — Decimation by D

Efficient Decimation file structure

x(n) R(0) y(m)
| = = @
7!

k(1)
D -
1
h(2)
D
{
et .
h(3)
LD
' hiM -2
| \D ( ) e
z—'l.
h(M — 1)
b

(b)

Figure 10.9 Decimation by a factor D.
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Multirate DSP — Interpolation by I

Interpolation at input before filter - inefficient

x(n) Upsampler | v(n) h(0)
11 r i
Z_I
k(1)
._
51
h(2)
h{M — 2)
i o = +
Z_l
(M — 1)
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Multirate DSP — Interpolation by I

Efficient Interpolation within the filter structure

x(r) hg(_l}

h(1)

¥(m)
11 =’/:-\

\f/

h(2)

1 {J‘D

h(M — 1)

Proakisand
Monolakis_10.12
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Figure 10.12 Efficient realization of an interpolator.



Polyphase filter structures - Interpolation

pe(n) = hik +nl) k=0ptsid —1

b i PR NE |
where K = M/I is an integer.

x(n)
o pu{n}
= py(n)
o Pz(-'i-]
Rate = F, = IF;
e pj" N IEH} ]
Rate=F, Rate=F,

Figure 10.14 Interpolation by use of polyphase filters.
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Polyphase filter structures - Decimation

p@m)=hk+nD)  k=0,1,....,D—1

=01 .. K—=1

where K = M/D is an integer when M is selected to be a multiple of D. The

commutator rotates in a counterclockwise direction starting with the filter py(n) at
m =10,

(10.5.4)

y(m)
= poln)
Rate = F,. /D
.- pi(n)
® paln)
x(n) +
. Pp_ 1(n) —T
Ratf-' - FI

Figure 10.15 Decimation by use of polyphase filters.
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Polyphase filter structures

Although the two commutator structures for the interpolator and the deci-
mator just described rotate in a counterclockwise direction, it is also possible to
derive an equivalent pair of commutator structures having a clockwise rotation.
In this alternative formulation, the sets of polyphase filters are defined to have
impulse responses

pm)=hnl -k)  k=0,1,...,1-1 (10.5.5)

pim)=h@D-k)  k=0,1,...,D-1 (10.5.6)
for the interpolator and decimator, respectively.



Sampling Rate Conversion by 1/D

xim) Coefficient storage

==X ' gm0 | n=01,...,K—1
Input , ; |
buffer of i _ : !
length D ] g(n, 1) B=0 LK =1 |
[ i i :

v o) : 8(”12) H:U!II"*jK_1 i

T e 5
of b5 n : L
length K : | i
—_—t ] g

K : em,I—-1| n=01, K -1

E
|

A
I
=

Output ) I
- buffer of | YU o Rate = (—) Fy
length I =

Figure 10.16 Efficient implementation of sampling-rate conversion by block pro-
cessing.



