
  

Signals

Continuous time or discrete time
Is the signal continuous or sampled in time?

Continuous valued or discrete valued
Can the signal take any value or only discrete values?

Deterministic versus random
Can the �shape� and the values of the signal be described 

and analysed by linear system techniques or do the values look
like a sequence of random numbers?
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Frequency

� Continuous time signals can be 
characterised by a set of frequency 
components whose value can be to infinity

� Discrete time signals can be characterised 
by a limited set of frequencies limited to 
half the sampling frequency
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Frequency in discrete time signals
A discrete-time sinusoidal signal is given by

x(n) = A cos(ùn + è)  where
n is an integer variable (the sample number), A is the

amplitude, ù is the frequency in radians per sample, è is a phase offset
in radians
The normalised frequency range is from �ð to +ð radians

A continuous sinusoid of 2 kHz sampled at 8000 samples per
second has a normalised (wrt sampling frequency) frequency of

2000  .  2 ð   = ð/2 radians per sample
8000

Discrete time sinusoids whose frequencies are separated by an 
integer multiple of  2ð are identical.
The highest rate of oscillation in a discrete time sinusoid is at 

ù = ð  ( or ù = -ð ) pjm_09_DSP_03



  

Frequency in discrete time 
signals

A discrete time sinusoid is periodic only if its frequency f is a
rational number 

f0  = k/N  where N is usually the fundamental period
and k is an integer

A set of harmonically related complex exponentials is given by
sk(n)  =  ej2ðkf

0
n   k = 0 , ±1, ±2, ..

Using f0 = 1/N as the fundamental frequency

sk+N(n) = ej2ðn(k+N)/N = ej2ðn. sk(n) = sk(n)

This means that there are only N distinct periodic complex exponentials
in the set. 

pjm_09_DSP_04



  

Aliasing

A continuous time signal that has a frequency component value 
higher than half the sampling frequency is distorted when sampled.

The frequency component is transformed (aliased) into a lower 
frequency component altering (distorting) the original waveform.

To avoid frequency aliasing every digital system must be preceded
by a low pass analog filter with cutoff at half the intended sampling
frequency of the analog-to-digital converter.
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Quantising
Since the continuous value is (normally) discretised there is an
error within the discrete system.
Setting a discrete step of Ä the quantisation error is within the
range  - Ä/2  to Ä/2
 The mean square error power is Pq = Ä2

  12
Assuming a range ±A and b bits in the word then Ä = 2A/2b

Hence
Pq = A2/3
         22b

The average signal power is A2/2 . Therefore the signal-to-
quantisation noise ratio (SQNR) is given by

PS = 3 . 22b

Pq       2
The SQNR increases approximately 6dB for every bit added to the
word length. pjm_09_DSP_06



  

Discrete signals

Impulse (unit sample) ä(n) = 1  n = 0
       = 0  otherwise

Unit step signal u(n) = 1 n  0
        = 0 n < 0

Unit ramp signal r(n) = n n  0
       = 0 n < 0

Exponential x(n) = an 
pjm_09_DSP_07



  

Classification of discrete signals

Energy signals and power signals  E =  




n

n

nx 2|)(|

Many signals having infinite energy have a finite average power
Given by

P = 



 

Nn

Nn
N

nx
N

2|)(|
12

1
lim

If E is finite P = 0. But if E is infinite average power may be
Finite or infinite. If P is finite and non-zero it is called a
Power signal
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Periodic signals are given by x(n+N) = x(n).
If the energy over one period is finite the signal is a power signal.
However the energy of the periodic signal is infinite.

Symmetric x(-n) = x(n)

Antisymmetric x(-n) = - x(n)

Signals are shifted in time by replacing n with n �k
Given x(n), x(n-2) is x(n) delayed by two units in time.

x(n+3) is x(n) advanced by 3 units of time
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Operations on Sequences

Addition: The sum of two sequences x1(n) and x2(n) is

y(n) = x1(n)  + x2(n)  for all  n

Multiplication  y(n) = x1(n)  . x2(n)  for all n 

Scaling   y(n)  = A. x(n) 
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Block diagram representations

Adder    +

Multiplier ax(n) y(n) = a.x(n)

x1(n)

x2(n) y(n) = x1(n) + x2(n)

xx1(n)

x2(n)

y(n) = x1(n) . x2(n)

Unit delay z-1x(n) y(n) = x(n-1)
pjm_09_DSP_11



  

Classification of sequences

Time invariant  vs  time variant

Linear vs non linear systems

Causal  vs  non causal systems

Stable  vs  unstable systems

For most of our analysis we assume that the sequences we are 
working with belong to the class of linear, time-invariant (LTI)
systems. pjm_09_DSP_12



  

LTI sequences

A sequence x(n) may be represented in terms of impulse responses by

Generalising to an arbitrary transfer function h(n), the response y(n) 
For an input x(n) is given by











k

k

k

k

knxkhknhkxny )().()().()(







k

k

knkxnx )().()( 

y(n) = x(n) * h(n) = h(n) * x(n)
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LTI systems
An LTI system can have

A Finite Impulse Response (FIR) or an Infinite Impulse Response (IIR)
Systems whose output depend only on present and past inputs are FIR.
Systems who depend also on past outputs are IIR. An FIR system is also
a nonrecursive system. A system that depends on past outputs is a 
recursive system.

In general 









Mk

k
k

Nk

k
k knxbknyany

11

)(.)(.)(

If the ak �s are 0 the system is an FIR non-recursive system.
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LTI system Properties

Commutative x(n)*h(n) = h(n)*x(n)

Associative [x(n)*(h1(n)]*h2(n) = x(n)* [h1(n)]*h2(n)]

Distributive x(n)*[h1(n)+h2(n)] = x(n)h1(n) + x(n)*h2(n)
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Implementation of Discrete 
Time Systems

y(n) = -a1y(n-1) + b0x(n) + b1x(n-1)

Z-1

+ +
Z-1

x(n) b0

b1

v(n)

-a1

y(n)

Z-1 Z-1

-a1

v(n)

b1

y(n)

+ +
x(n) b0

+

-a1

Z-1

+
x(n)

b1

b0

y(n)
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Second Order system 
Structures

+ +

+
Z-1

Z-1

+

x(n)

-a1

-a2

b0

b1

b2

y(n)

pjm_09_DSP_17



  

Z-Transform







n

n

nznxzX )()(

Since the z-transform is a power series, it exists only for values of
 z for which the series converges. Hence every z-transform ha Region
Of Convergence

For an FIR system the ROC is the entire z-plane with possibly the
Exception of z=0 and/or z= infinity
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Characteristic ROC for Finite 
Duration Signals

Entire z-plane except z=0

causal

anticausal Entire z-plane except x = infinity

Two-sided Entire z-plane except z=0 and
z = infinity
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Characteristic ROC for Infinite 
Duration Signals

causal
|z| > r1

anticausal
|z| < r2

twosided

R2<|z|<r1
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One sided z-transform

This is given by 





n

n

nznxzX
0

)()(

It does not contain information of x(n) n<0. It is unique for causal 
signals,. The ROC must be the exterior of a circle which can extend
To z=0. Hence the ROC is implicit.
Most of the properties of the two sided z-transform carry over into 
The one sided z-transform
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Properties of the z-transform

Linearity  if x(n) = a1x1(n) + a2x2(n) then X(z) = a1X1(z) +a2X2(z)
Time shifting x(n-k) = z-k X(z)
Scaling an x(n) = X(a-1 z)
Time reversal x(-n) = X(z-1)
Differentiation in z-domain nx(n) = -z dX(z)

      dz
Convolution if x(n)=x1(n) * x2(n) then X(z)= X1(z) . X2(z)
Multiplication if x(n) = x1(n) x2(n)  then X(z) = X1(z) * X2(z)
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Poles and Zeroes

 

In general the numerator power series has as roots the zeroes
of X(z) while the denominator roots are the poles of X(z).
Two important special forms are when all ak are zero. In this case 
the solution is an all zero system and has a finite duration
impulse response.
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Pole Location and Time Domain Behaviour

11

1
)( 


az
zX

X

0 < a <1

X

-1 < a < 0

X

a = 1
X

a = -1
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Complex Conjugate Poles

x

x

x

x

Sinusoidal decay

sinusoidal
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Pole Location and Frequency Domain Behaviour
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Pole and Zero Location and Frequency Domain behaviour
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Pole and Zero location of filters � All pass filter
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Minimum and Maximum Phase
An FIR system with M zeros can be characterised by

)1()1)(1()( 210
jw

M
jwjw ezezezbwH   ⋯

Where zi denote the zeros. If all the zeros are inside the unit circle, each term
Corresponding to a real valued zero undergoes a net phase change of zero
 between ù=0 and ù=ð. Similarly each pair of complex conjugate zeroes will
undergo a net phase change of zero. System called MINIMUM PHASE

When all the zeroes are outside the unit circle. A real valued zero contributes a net
Phase change of ð radians and a complex conjugate pair a net phase change of
2ð radians over the range ù=0 to ù=ð, which is the largest possible phase
Change. System called MAXIMUM PHASE.
Magnitude response remains the same if one zero at zk inside unit circle is
Reflected outside the unit circle at 1/ zk. But phase change alters
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Sampling in Time and Frequency
Continuous 
Periodic

Line 
Spectrum

Continuous 
Aperiodic

Continuous 
Spectrum

Sampled 
Periodic

Line 
Spectrum 
Repetitive

Sampled 
Aperiodic

Continuous 
Spectrum 
Repetitive

sine

s ine
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Discrete Fourier Transform
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This result requires that the time record length L is less or equal to N, and the 
Frequency spectrum accuracy of 2ð/N requires N non-zero time samples.

pjm_09_DSP_31



  

Properties of the DFT

The most important property relates to circular shift. This property comes from 
the fact that the time record of an N-point DFT is a periodic sequence xp(n) of
Period N.
Shifting the periodic sequence xp(n) by k units to the right is equivalent to

x�(n) =  xp(n-k) = x(n-k, modulo N) 
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Circular Shift
x(n)

xp(n)

0 1 2 3 -4 -3 -1 0 2 4 6

-4 -2 0 2 4 6

xp(n-2)

0 1 2 3

x�(n)
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Circular Shift

(0)x1

2

3

4

x(1)

x(2)

x(3)

x(n) 3

4

2

1

x� (1)

x� (0)x� (2)

x� (3)

x�(n)

x(n) x((n-2))4
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Convolution with DFT�s

x1(n) X1(k)

x2(n) X2(k)

x1(n) * x2(n) X1(k). X2(k)

Multiplication of two DFT�s implies convolution of two periodic
 time sequences.
This results in CIRCULAR CONVOLUTION
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Circular Convolution









1

0
213

213

1,1,0))((.)()(

)(.)()(
N

n
N Nmnmxnxmx

kXkXkX

⋯⋯

This is not linear convolution. Note that in this case x1(n) is of length N, x2(n) is
also of length N, and the result x3(n) is also of length N.
In linear convolution the result of convolving a sequence of length N1 with one 
of length N2, is an output sequence of length N1 + N2 � 1.
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Linear Convolution using the 
DFT

For a signal of length N1 passed through a filter of length N2 the
linear convolution  results in N1 + N2 � 1.
Therefore EACH of the two time signals are brought to a length of 
at least N1 + N2 � 1by padding zeroes after the non-zero samples.
Since both signals are of length N1 + N2 � 1, the result of the 
circular convolution Has also N1 + N2 � 1points.
This circular convolution is however equivalent to a linear 
convolution
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Long input sequences
When the input sequence to be filtered is very long, it is 
necessary to break the Signal into segments, do the processing, 
and then reunite again the segments.
The overall effect must however be the same as if the signal
 filtered is continuous.
This requires consideration both of valid samples in the output, as 
well as of the time For processing with respect to a real time 
application.
Two methods are used

OVERLAP SAVE

OVERLAP ADD
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Overlap and Save Method

L L L

M-1

x1(n)

x2(n)

x3(n)

In this case the first segment has M-1 zeroes pre-added. Each new 
segment makes use of M-1 samples from the previous segment, so that 
every segment is L+M-1 samples long as required for linear convolution.

L � 1 zeroes Filter with M points and L-1 zeroes

Long input sequence segmented into L point segments
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Overlap and Save method
L

L L

y1(n)

y2(n)

y3(n)

Discard first M-1 output samples 
from each output segment

When the valid samples from each segment are abutted the result is a 
linear convolution of the long sequence with the filter
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Overlap and Add method

L L L

x1(n) M-1 zeroes

x2(n)

x3(n)

In this case each segment has M-1 zeroes appended to make up the 
necessary length of L+M-1 for linear convolution
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Overlap and Add method

L LL

y1(n)

y2(n)

y3(n)

In this case the result of the circular convolution is all valid for the 
resultant linear convolution. The end (M-1 samples) part of a segment 
is added to the front part of the subsequent segment to give the proper 
result for that part
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Number of samples in the time 
sequence and its frequency DFT 

response

In the analogue domain a periodic waveform is assumed to have a line 
frequency spectrum assuming the time waveform is infinite in length. A 
discrete sequence x(n) having L non zero samples can be considered as an 
infinite sequence x(n) multiplied by

r(n) 1    0 < n < L 

0    otherwise

If x(n) has a frequency transform X(k) and r(n) has a frequency 
transform R(k), then the frequency transform x(n). r(n) is given 
by X(k)*R(k) where * denotes convolution 
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Frequency Transform of a 
Rectangular Window
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This has the first zero at ùL/2 = ð  or ù = 2 ð/L 
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Windowing reduces spectral resolution.
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Spectral Leakage



  

Main lobe not sufficient to
Distinguish ù1 and ù2 when
L is only 25.

Two frequencies ù1 and ù2
are distinguished when L
is 100. ( 2ð/L is smaller) . The
Spectrum has also leaked all

over the frequency range. 
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The convolution X(k) * R(k) results in a smearing of the ideal 
line frequency spectrum, so that the frequency spectrum  is 
spread and distorted. This is known as  spectral leakage.



  

Hamming and Hanning 
Windows 

h(n) = 0.54 � 0.46 cos [2ðn/(M-1)]  -  Hamming function

h(n) = 0.5[1  - cos[2ðn/(M-1)]  -   Hanning function

M is the window length in samples
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Time and Frequency Response

Time shape (a) and frequency
Response of Hanning (b) and
Hamming (c)

(a)

(b) (c)
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Sampling Requirements of 
Bandpass Signals

Integer band
Positioning
F

H
= mB

Note for m
even the 
Inversion of
The baseband
Spectral image
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Sampling Requirements for 
Bandpass Signals

2FH

k
⩽F S⩽

2FL

k+1
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Choosing a Sampling Frequency for the Bandpass Signal
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Choosing a Sampling Frequency for the Bandpass Signal

In practice a guard band is necessary. This results in

where

and
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Multirate DSP - Decimation

Proakisand Monolakis_10.2



  

Multirate DSP - Decimation

Proakisand Monolakis_10



  

Multirate DSP - Decimation

The ideal lowpass filter is given by

Proakisand Monolakis_10



  

Multirate DSP - Decimation

X(ù
x
)

Proakisand Monolakis_10.4



  

Multirate DSP - Interpolation

Proakisand Monolakis_10



  

Multirate DSP - Interpolation

Proakisand Monolakis_10.5



  

Multirate DSP - Interpolation

A lowpass filter is then used given by
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Multirate DSP � Conversion by I/D

Proakisand Monolakis_10.7



  

Multirate DSP � Conversion by I/D

Proakisand Monolakis_10



  

Multirate DSP � Conversion by I/D

Proakisand Monolakis_10



  

Multirate DSP � Conversion by I/D

Proakisand Monolakis_10.8



  

Multirate DSP � Decimation by D

Decimation after calculating the output - inefficient

Proakisand Monolakis_10.9



  

Multirate DSP � Decimation by D

Efficient Decimation file structure

Proakisand Monolakis_10.9



  

Multirate DSP � Interpolation by I

Interpolation at input before filter - inefficient

Proakisand 
Monolakis_10.11



  

Multirate DSP � Interpolation by I

Efficient Interpolation within the filter structure

Proakisand 
Monolakis_10.12



  

Polyphase filter structures - Interpolation

Proakisand 
Monolakis_10.14



  

Polyphase filter structures - Decimation

Proakisand 
Monolakis_10.15



  

Polyphase filter structures  



  

Sampling Rate Conversion by I/D


