
		
Extracting	Runtime	Monitors	from	Tests:		
An	Overview	and	a	Way	Forward	
Abigail	Cauchi,	Luke	Chircop,	Chris4an	Colombo,	Adrian	Francalanza,	Mark	Micallef,	and	Gordon	Pace	
	

Project	GOMTA	financed	by	the	Malta	Council	for	Science	&	
Technology	through	the	Na4onal	Research	&	Innova4on	
Programme	2013	



Why	generate	monitors	from	tests?	
• Monitors	can	provide	extra	assurance	at	run4me	

•  Industry	already	invests	a	lot	in	tes4ng		
			(but	liPle	in	run4me	verifica4on)	

• Crea4ng	monitors	aRer	crea4ng	tests	feels	repe44ve/waste	

		



Veri@ication	–	A	language	problem	

		

All	behaviours	

Good	
behaviours	



Testing	

		

All	behaviours	

Good	
behaviours	
Test	some	
behaviours	



Runtime	veri@ication	

		

All	behaviours	

Good	
behaviours	

Run4me		
behaviours	



Testing	

		

All	behaviours	

Good	
behaviours	

An	asser4on	per	
checked	behaviour		

Test	some	
behaviours	



Runtime	veri@ication	

		

All	behaviours	

Good	
behaviours	

Run4me		
behaviours	

One	“asser4on”	for	all	
behaviours!	



Generating	runtime	veri@iers	from	tests	

		

All	behaviours	

Good	
behaviours	

Test	some	
behaviours	

		

All	behaviours	

Good	
behaviours	

Approximate	a	decision	
procedure	for	all	behaviours	

from	individual	ones	



Why	is	it	dif@icult?	

		

All	behaviours	

Good	
behaviours	

Test	some	
behaviours	

		

All	behaviours	

Good	
behaviours	

Typical	language	inference	challenges:		
•  Few	examples	
•  Usually	no	nega4ve	examples	



Why	not	use	test	assertions	directly?	

Sequence	of	
Method	

Invoca4ons	

Asser4ons	

PaPern		
Matching	

Asser4ons	

vs	

Test	 Run4me	Verifier	



Test	assertions	are	typically	very	speci@ic	
@Test 
public void testWithdraw(){ 

 Account a = new Account(); 
 a.setBalance(100); 

 a.withdraw(60); 

 assertEquals(a.getBalance(),40); 
} 



Idealistic	test	assertions	
@Test 
public void testWithdraw(){ 

 initialBalance = 100; 
 withdrawAmount = 60; 

 Account a = new Account(); 

 a.setBalance(initialBalance); 
 a.withdraw(withdrawAmount ); 

assertEquals(a.getBalance(),initialBalance-withdrawAmount); 
} 



What	if	you	insist	on	using	assertions?	
•  There	might	be	other	hidden	assump4ons:	
• Assump4ons	on	the	global	state	(shared	data	structures,	files,	
etc)	
• Assump4ons	on	the	control/data	flow	leading	up	to	the	
asser4on	(test	setup,	method	call	sequence	in	test,	etc)	



A	look	at	related	approaches	
Tes4ng	to	more	“generalised”	tes4ng	
1.  EUnit	à	QuickCheck	(Thomas	Arts	et	al.)	
2.  Gherkin	à	QuickCheck	(Chris4an	Colombo	et	al.)		

Tes4ng	to	RV	
3.  QuickCheck	à	Larva	(Gordon	Pace	and	Kevin	Falzon)	

Tes4ng	to	Regression	tes4ng/Debugging	
4.  Invariant	detec4on	with	Daikon	(Pastore	et	al.)	



1.	EUnit	à	QuickCheck	
• Generates	QuickCheck	automaton	from	sequences	of	method	calls	
• Uses	algorithm	to	learn	automata	
• Uses	learned	automaton	to	improve	testsuite	



Points	to	consider	
• Assumes	the	availability	of	nega4ve	traces	
• Not	usually	present	in	testsuites	

•  Suitable	for	tes4ng,	probably	also	for	RV	if	nega4ve	traces	are	
available	



2.	Gherkin	à	QuickCheck	
•  Similar	to	previous	but	state	iden4fica4on	is	easier	as	more	
explicit	in	Gherkin	tests	



Standard	Business	Speci@ications	



Standard	Business	Speci@ications	

States	



Standard	Business	Speci@ications	

States	

Ac4ons	



Standard	Business	Speci@ications	

Post	Condi4on	

Pre	Condi4on	



Automatically	Generated	QC	Model	



Points	to	consider	
•  The	higher	the	tes4ng	level,	the	more	useful	for	RV	



3.	QuickCheck	à	Larva		
•  Translates	QC	automata	into	Larva	script	
• Main	challenge	is	to	make	sure	you	match	corresponding	entry	
and	exit	points	
•  recursiveMethod()		-entry	
•  recursiveMethod()		-entry	
•  recursiveMethod()		-exit	

•  recursiveMethod()		-exit	



Points	to	consider	
•  It	is	easy	to	go	from	Model-Based	Tes4ng	to	RV	
• Model-Based	Tes4ng	not	very	commonplace	



4.	Invariant	detection	with	Daikon	
• Detect	invariants	from	running	testsuite	
•  Filter	out	invariants	which	no	longer	hold	in	modified	testsuite	
• Use	model	checking	to	detect	invariants	which	are	violated	in	
update	



Points	to	consider	
• How	can	we	adapt	it	to	RV?	



Approach	1:	Gherkin	à	QC	à	Larva	
• We	know	how	to	go	from	Gherkin	to	QC	
• We	know	how	to	go	from	QC	to	Larva	
• Go	from	Gherkin	to	Larva	



Approach	2:	Infer	invariants	
• Daikon	–	an	invariant	genera4on	tool	

Data	
traces	

Invariants	

Original	
program	

Tests	

Infer	
invariants	

Instrument	
and	run	



Approach	2:	Infer	invariants	
• Daikon	–	an	invariant	genera4on	tool	



Approach	2:	Infer	invariants	

Data	
traces	

Invariants	

Original	
program	

Tests	

Infer		
invariants	

Instrument	
and	run	

Program	with	
run4me	
monitors	

Generate	and	
instrument	
monitors	



Approach	2:	Infer	invariants	

PaPern	match	on	deposit	
+	

Check	postcondi4ons	if	
precondi4ons	hold	



Two	main	challenges 		
• Make	monitors	useful	
• Weaken	precondi4ons	
•  Tighten	postcondi4ons	

• Avoid	false	nega4ves	



Challenge	–	Weaken	preconditions	

Is	this	deliberate?	



Challenge	–	Weaken	preconditions	

Is	this	deliberate?	

Missing	test	cases?	



Challenge	–	Weaken	preconditions	

Remove	such	invariants	



Challenge	–	Weaken	preconditions	

Remove	such	invariants	

Set	appropriate	threshold	



A	test	case	improvement	problem	

Generate	
invariants	

Improve	
testsuite	

Insight	on	testsuite	Refined	invariants	

Intelligent	test	sugges4on	
(boundary	value	analysis,	etc)	



A	test	case	improvement	problem	

Generate	
invariants	

Improve	
testsuite	

Insight	on	testsuite	Refined	invariants	

Use	as		
monitors	

When	sa4sfied	



A	test	case	improvement	problem	

Generate	
invariants	

Improve	
testsuite	

Insight	on	testsuite	Refined	invariants	

Use	as		
monitors	

Muta4on	
tes4ng	

When	sa4sfied	



Challenge	–	Avoiding	false	negatives	

		

All	behaviours	

Good	
behaviours	



Challenge	–	Avoiding	false	negatives	

amount	>	orig(this.balance)	



Challenge	–	Avoiding	false	negatives	

amount	>	orig(this.balance)	

Generate	test	cases	which	
purposefully	try	to	violate	
the	postcondi4on	



Approach	3:	Combine	testing	and	RV	by	
design	
•  Specifica4on	of	tests	and	monitors	in	a	single	language		
(like	property-based	tes4ng	but	allowing	some	proper4es	to	be	
specified	by	examples)	
•  If	a	precise	specifica4on	is	available,	generate	test	cases	
automa4cally	
•  If	not,	have	test	cases	and	specifica4ons	specified	separately	



Approach	3:	Combine	testing	and	RV	by	
design	
•  Specifica4on	of	tests	and	monitors	in	a	single	language		
(like	property-based	tes4ng	but	allowing	some	proper4es	to	be	
specified	by	examples)	
•  If	a	precise	specifica4on	is	available,	generate	test	cases	
automa4cally	
•  If	not,	have	test	cases	and	specifica4ons	specified	separately	

E.g.,	balance’=balance	+	deposit	
Automa4cally	generates		
200	=	150	+	50		
350	=	290	+	60	

E.g.,	balance’	>=	0	



Conclusion	
• Genera4ng	monitors	from	tests	is	hard!	
•  3	approaches	being	explored	
•  S4ll	a	lot	of	ques4ons!	


