
Runtime Verification
for Protocol Implementation

Secure Communication in the Quantum Era (SPS G5448)
Project Meeting, September 26th, 2019

Christian Colombo
Mark Vella

Steps led by UM
2B - Identify protocol-level security mechanisms

(March 2020 → March 2021)

3B - Deploy implementation-level security mechanisms

(October 2020 → October 2021)

Progress
Identification of protocol-level security mechanisms (2B)

Identified different level at which RV can be useful

Design of runtime verification architecture at these various levels (2B)

Including enforcement of a Trusted Domain through RV

Preliminary implementation of the top level (3B)

Levels of abstraction of security threats

(High level) Wrong protocol
implementation

The protocol implementation might deviate
from the verified (theoretical) design

Low level threats
Arithmetic overflows, undefined downcasts,
and invalid pointer references

Hardware
Can hardware be trusted?
Side Channel attacks?

 Malware, Data leaks, etcMedium level threats

Design using RV
Use some specialised hardware to isolate sensitive processes

Place monitors at strategic points

Design of architecture

Design of architecture Check for data leaks
(medium level)

Check code while executing
(low and high level)

Preliminary implementation case study

Firefox implementation
(C code)

Web server

Elliptic Curve
Diffie-Hellman
Exchange (ECDHE)

Preliminary implementation
Setup using Binary-level instrumentation

Firefox implementation
(C code)

Web server

Binary instrumentation

Preliminary implementation
Setup using Binary-level instrumentation

Through which monitors can gain visibility

Firefox implementation
(C code)

Web server

Binary instrumentation Runtime
Verification

Properties verified (High level) on ECDHE
Digital certificate verification is done (in order to authenticate public keys sent
by peers)

Validation of remote peer's public key on each exchange is done (unless the
session is aborted)

Once master secret is established, private keys should be scrubbed from
memory (to limit the impact of memory leak attacks such as Heartbleed,
irrespective of whether the session is aborted)

Feasibility study of approach

Is the approach possible for a realistic code base?

Is the approach feasible in terms of overheads?

Used the Firefox case study on top 100 Alexa sites

Feasibility study

Firefox implementation
(C code)

Web server

Binary instrumentation Runtime
Verification

Feasibility study

Firefox implementation
(C code)

Web server

Binary instrumentation Runtime
Verification

Challenge: Threads didn’t
correspond to sessions

Challenge: efficiency vs precision
How do you keep track which method calls belong to which session?

Firefox is built for efficiency not monitorability

Two options:

Trace all method calls

Change Firefox implementation

Challenge: efficiency vs precision
How do you keep track which method calls belong to which session?

Another option:

Trace only the methods of interest

Use a heuristic (around 98% effectiveness)

What does the specification language look like?

Overheads measurement

Overheads measurement

0.05 ms per page

Lessons learnt
Good start with promising results - approach seems feasible

Beware:

Program comprehension is required, both for setting up function hooks as
well as to enable individual TLS session monitoring

Real-world code tends to be written in a manner to favor efficient execution
rather than monitorability (eg, was difficult to keep track of particular
sessions on the server)

Moving forward

Implementation on SEcube Development Kit
Key generation will take place on dedicated HW

While still monitoring the protocol execution

Design of architecture

Plan
Identification of (the actual) protocol-level properties (D1) deadline Dec 2019

Implementation

Setup with SEcube hardware (next step with Peter)

Monitoring our “quantum” protocol with this setup

Low level runtime verification (using existing libraries)

Taint inference

