
Secure Cryptographic Protocol
Execution based on
Runtime Verification

Secure Communication in the Quantum Era (SPS G5448)
February 5th, 2020

Christian Colombo
Mark Vella

Cryptographic Protocols
Design

Proofs to validate design against threat models

Implementation

Difficult to make it fully secure…
So many things can go wrong!

Levels of abstraction of security threats

(High level) Wrong protocol
implementation

The protocol implementation might deviate from
the verified (theoretical) design

Low level threats
Arithmetic overflows, undefined downcasts,
and invalid pointer references

Hardware
Can hardware be trusted?
Side Channel attacks?

 Malware, Data leaks, etcMedium level threats

It is difficult to make implementation fully secure…

but we can raise the bar as much as possible.

Our strategy

Isolate!

Design of architecture

Our strategy

Isolate!

Monitor!

Monitor for data leaks
(medium level)

Monitor code while executing
(High level)

Preliminary case study

Firefox implementation
(C code)

Web server

Elliptic Curve
Diffie-Hellman
Exchange (ECDHE)

Preliminary implementation
Setup using Binary-level instrumentation

Firefox implementation
(C code)

Web server

Binary instrumentation

Preliminary implementation
Setup using Binary-level instrumentation

Through which monitors can gain visibility

Firefox implementation
(C code)

Web server

Binary instrumentation Runtime
Verification

Properties verified (High level) on ECDHE
Digital certificate verification is done (in order to authenticate public keys sent
by peers)

Properties verified (High level) on ECDHE
Validation of remote peer's public key on each exchange is done (unless the
session is aborted)

Properties verified (High level) on ECDHE
Once master secret is established, private keys should be
scrubbed from memory (to limit the impact of memory
leak attacks such as Heartbleed, irrespective of whether
the session is aborted)

Feasibility study of approach

Is the approach possible for a realistic code base?

Is the approach feasible in terms of overheads?

Used the Firefox case study on top 100 Alexa sites

Feasibility study

Firefox implementation
(C code)

Web server

Binary instrumentation Runtime
Verification

Overheads measurement

Overheads measurement

0.05 ms per page

Lessons learnt
Good start with promising results - approach seems feasible

Beware:

Program comprehension is required, both for setting up function hooks as
well as to enable individual TLS session monitoring

Real-world code tends to be written in a manner to favor efficient execution
rather than monitorability (eg, was difficult to keep track of particular
sessions on the server)

Secure Communication in the Quantum Era
NATO Science for Peace and Security Programme, Project no. G5448

Partners:

Slovakia - Slovak University of Technology

Malta - University of Malta

Spain - Universidad Rey Juan Carlos

US - Florida Atlantic University

http://re-search.info/

http://re-search.info/

