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ABSTRACT
In recent years the PC has been replaced by mobile devices for
many security sensitive operations, both from a privacy and a
financial standpoint. Therefore the stark increase in malware tar-
geting Android, the mobile OS with the largest market share, was
bound to happen. While device vendors are taking their precau-
tions with app-store and on-device scanning, limitations abound,
mainly related to the malware signature-based detection approach.
This situation calls for an additional protection layer that detects
unknown malware that breaches existing countermeasures.

In this work we propose SpotCheck, an anomaly detector in-
tended to run on Android devices. It samples app executions and
submits any suspicious apps to more thorough processing by mal-
ware sandboxes. We compare Kernel Principal Component Analysis
(KPCA) and Variational Autoencoders (VAE) on app execution rep-
resentations based on the well-known system call traces, as well as
a novel approach based on memory dumps. Results show that when
using VAE, SpotCheck attains a level of effectiveness comparable
to what has been previously achieved for network anomaly detec-
tion. Even more interesting, the KPCA anomaly detector managed
comparable effectiveness even for the experimental memory dump
approach. Overall, these promising results present a solid platform
upon which to strive for an improved design.
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1 INTRODUCTION
Mobile malware is an ever-increasing concern given the sensitive
data and transactions nowadays stored and carried out on mobile
devices, surpassing PC usage in many ways. Android is the leader
in the mobile OS market [8], and therefore the surge in malware
targeting it in recent years comes as no surprise [22]. Google’s
official, and arguably the largest, source of Android apps have long
taken the provisions of preventing malware to get to mobile devices
in the first place through app scanning during the upload stage.
Malware sandbox execution is a key enabler technology, combining
static and dynamic code analysis, while attempting to be resilient to
evasion techniques [23]. This protection layer complements other
security mechanisms, such as digitally signed apps and highlighting
of all those permissions considered to be dangerous. Google Play
Protect1 complements app store scanning at the device level, while
in recent Android versions dangerous permissions require explicit
user activation, possibly each time they are requested2. Yet, despite
all these countermeasures there is no guarantee that malware won’t
get installed and eventually executed anyway. Certificate-based app
tampering verification has been bypassed through implementation
vulnerabilities [16, 27]. Furthermore, app execution obfuscation
of sorts have been used to thwart sandbox detection [14], while
recent malware showed that the accessibility permission is all that
a malware actually needs to grant itself all the rest [24]. Social
engineering tricks typically provide the missing pieces of the puzzle
to put a successful attack together.

Existing limitations call for further security in-depth. Since the
signature-based approach poses the main limitation, an effective
additional layer must provide anomaly detection [11]. Anomaly
detection builds a model of normal behavior by relying solely on
a sufficiently large sample of benign apps. At runtime, those apps
that deviate significantly from this model are flagged as suspicious,
presenting possible malware. This contrasts with signature-based
approaches that are devised to recognize known malware and their
variants. Machine learning plays a central role through various
clustering, classification and dimensionality reduction algorithms
[4]. In this work we consider two options: Kernel PCA (KPCA) and
Variational Autoencoders, for shallow and deep learning respec-
tively [1], both previously experimented with for network anomaly
detection.

As shown in Figure 1, SpotCheck is intended to operate on sam-
ples of on-device app execution segments, submitting apps with a
sufficiently high anomaly score for deeper inspection by malware
analysis. Rather than a standalone alert-raising monitor, SpotCheck
acts as a precursor to malware triage. State-of-the-art malware
analysis leverages machine learning to classify suspicious binaries

1see https://www.android.com/play-protect/
2see https://developer.android.com/guide/topics/permissions/overview
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Figure 1: SpotCheck for Android: on-device anomaly detec-
tion, submitting suspicious apps for further analysis.

according to malware families, with deep learning-based classifi-
cation operating on system call traces being particularly effective
[10], prior to manual analysis by experts. SpotCheck aims to benefit
from machine learning in a similar manner, using dynamic analysis
to capture app behaviour in an obfuscation resilient manner. The
well-established system call trace representation of app behaviour,
as well as a more experimental process memory dump approach
are taken into consideration. SpotCheck takes a sampling approach,
conducting anomaly detection on execution segments. The net ben-
efit of this precursor step to malware analysis is two-fold: first it can
prioritize over which samples are submitted for malware analysis;
secondly, by providing the associated anomalous execution trace
along with the app itself, malware analysis can be more focused.

Experimentation was carried out with datasets comprising apps
from Google Play and Virustotal. Results show that the use of KPCA
and VAE for Android anomaly detection compares well to the net-
work anomaly detection case. KPCA’s performance is even more
interesting for memory dumps, increasing its detection effective-
ness even further. The corresponding VAE approach however was
less effective, yet this is a deep learning model that calls for further
exploration. Overall, we make the following contributions:

• We show that Kernel PCA and VAE’s effectiveness for An-
droid anomaly detection is comparable to the use of VAE for
network anomaly detection;
• We propose an experimental memory dump representation
for app behaviour, and which can be combined effectively
with Kernel PCA anomaly detection;
• Two datasets, for benign and malicious app behavior, rep-
resented as system call traces and process memory dumps
respectively.

2 BACKGROUND
SpotCheck’s key design decisions concern the anomaly detection
model and app behaviour representation.

2.1 Anomaly detection
The core premise of malware anomaly detection is that malware
should look and/or behave differently from benign apps [4]. There-
fore anomaly detection firstly has to model benign behavior, and
secondly it needs some form of similarity measure from which to
compute an anomaly score for the monitored apps. In proximity-
based models malware is identified in terms of isolated datapoints,
or else by forming its own clusters. Distance or density-based ones
take a localized approach by considering only the closest points
within a feature space, with malware expected to be excessively
distant from the closest benign datapoint, or else located within a
sparsely populated sub-space. These two approaches represent most
of state-of-the-practice in network intrusion and fraud detection
[5].

Spectral and statistical methods provide two further options.
Spectral methods combine dimensionality reduction with deviation-
based anomaly detection. In this approach, app (static or dynamic)
features are mapped to a lower dimensional space using lossy com-
pression. Principal Component Analysis [2] and Autoencoders (AE)
[1] are common techniques. Whether using principal components
or neural network weights, as computed/optimized from a benign-
only dataset, a higher reconstruction error is expected for malware
samples, therefore resulting in larger deviations from the input sam-
ples. Statistical models, on the other hand, assume that datapoints
are sampled from a specific probability distribution. A datapoint
is anomalous if its probability for that particular distribution falls
below a certain threshold. While offering an intuitive approach to
anomaly detection, the problem of probability distribution parame-
ter estimation with high dimensional data, possibly including latent
variables (i.e. the cause for anomaly is not even directly captured
by the available, visible, dimensions), is not a trivial task [12]. Yet,
this is exactly the problem addressed by VAEs.

2.2 Representing app behavior
SpotCheck takes a dynamic analysis approach to represent app
behavior. Obfuscating malicious intent from dynamic analysis is
harder compared to static analysis. While tricks, such as delaying
of malicious code execution or detection of malware sandboxes,
are still possible [14], ultimately malware has to run, especially
whenever it gets installed on a target victim device. At that point,
the necessary system calls have to be made and any supporting
data objects are created in process memory as a result of Android
API invocation. Capturing malware behaviour as sequence of func-
tion/system calls is a well-established technique [21]. Call tracing
probes are also typically included as part of malware sandboxes,
e.g. MobFS’s API monitor3. An alternative approach to monitoring
app execution through call sequences is to analyze the residue of
that execution within process memory. That residue is made of
the various data structures/objects that define the app state as a
result of trace execution. Memory forensics [3], or the analysis of
physical memory dumps, has received increased attention since
the onset of advanced malware that does not leave any traces on
disk. It has since become an essential tool for incident response.
Yet this type of memory analysis is not suitable for non-rooted
stock Android phones. Physical memory dumps require either the
3https://github.com/MobSF/Mobile-Security-Framework-MobSF
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loading of kernel modules [25], or else the availability of Linux’s
/dev/kmem device file [28]. The latter option is no longer available
to apps on non-rooted devices, while the former requires firmware
replacement.

Process-level memory dumps, on the other hand, are unencum-
bered by these restrictions. In fact most stock Android devices
come equipped with a runtime that supports an extended version
of HPROF memory dumps4, originally created for Java virtual ma-
chines. Specifically, HPROF dumps contain the garbage-collected
heap, complete with class definitions for all object instances present
in the dump. Full process heap dumps may also be supported. Arti-
facts from HPROF dumps are suitable for the purpose of capturing
individual app behaviour, yet challenges abound. While classic
memory forensics focuses on long-lived kernel-level dumps, heap
objects may be short-lived [26], and therefore it may be the case
that a substantial portion of app execution residue is lost by the time
an HPROF dump is taken. Therefore, the timing of dump triggers
is critical.

3 SPOTCHECK’S ARCHITECTURE
SpotCheck’s key components are:

(1) Sampling of app execution, both in terms of system call
traces and process memory dumps;

(2) A model of normal behavior synthesized from call
traces/dumps using either KPCA or VAE; and a

(3) Distance metric for computing anomaly scores.

3.1 Sampling app execution
Since monitoring the entire app’s execution is infeasible, we opt
for sampling. The intuition is that when monitoring multiple runs,
the sampling approach will eventually hit the sought after, discrim-
inating, runtime behavior. We decide to explore both system call
traces and process memory dumps to represent behaviour. The
prior approach serves as baseline, being well-established for secu-
rity monitoring purposes. The latter is an experimental lightweight
approach that avoids code instrumentation, yet it relies on iden-
tifying those discriminating data objects in-memory, and which
may be short-lived. In this mode, the need to capture representative
execution samples becomes even more critical.

System call traces. Capturing Android app execution in terms of
Linux system calls has been already widely explored for Android
malware classification [10]. In fact, the system call layer provides
a stable choke-point for higher-level Android API calls, that may
vary across versions. We opt for a system call histogram, with
each feature vector attribute representing the number of times its
corresponding system call has been called. This is a common way to
represent features derived from executables [19]. We avoid reliance
on the exact sequence of system calls, e.g. through call graphs, since
this approach would increase vector dimensions significantly and
would therefore require a much larger sample of benign apps, at
least one for each type of app in existence. The finalized feature
vector structure for the system call histogram representation is the
86-feature vector:

4https://developer.android.com/studio/profile/memory-profiler

𝑥
𝑑𝑒𝑓
= < 𝑎𝑐𝑐𝑒𝑝𝑡, 𝑎𝑐𝑐𝑒𝑠𝑠, 𝑏𝑖𝑛𝑑, 𝑐ℎ𝑑𝑖𝑟, ...,𝑤𝑟𝑖𝑡𝑒𝑣 >

where each feature is a system call count, possibly spanning
multiple processes for the same app, for some execution sample.

Process memory dumps. The HPROF memory dump format pro-
vides an obvious choice in this case. Yet, choosing data objects with
a high discriminating potential is not trivial. Unlike call traces there
is no previous work to provide guidance. Among all Android and
Java framework objects we opt for those service classes returned by
android.content.Context.getSystemService(). These classes
act as interfaces to services hosted by Android’s system server and
other native processes hosting Android services, e.g. the Telephony
process. These processes implement all Android system services,
accessible through the android.os namespace, and which in turn
invoke ioctl() system calls into the binder IPC framework5. The
primary assumption here is that since malware uses Android per-
missions in a different/suspicious manner, so are the resulting sys-
tem service calls. As of its conception, the memory dump approach
is bound to be more limited than the comprehensive system call
tracing approach, given it has to rely solely on in-memory residue
of execution traces.

The finalized feature vector structure for the HPROF histogram
representation is the 72-feature vector:

𝑥
𝑑𝑒𝑓
= < 𝐴𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦𝑀𝑎𝑛𝑎𝑔𝑒𝑟, ...,𝑊 𝑖𝑛𝑑𝑜𝑤𝑀𝑎𝑛𝑎𝑔𝑒𝑟 >

where once again each feature is for individual apps, possibly
spanning multiple processes.

In both representations features are scaled using an Attribute
Ratio method that normalizes counts as a fraction of the total counts
per vector: 𝑥

𝑑𝑒𝑓
= < 𝑎𝑖/| |𝑥 | |1, ..., 𝑎𝑛/| |𝑥 | |1 >. The normalized total of

counts is therefore 1 per datapoint (| |𝑥 | |1 = 1), offsetting irregulari-
ties derived from sampling executions of different lengths.

3.2 Kernel Principal Component Analysis
(KPCA) for anomaly detection

KPCA is a non-linear variant of classic PCA and is what makes it
suitable for anomaly detection, as shown for the case of network
anomaly detection [2]. Like its linear counterpart it performs dimen-
sionality reduction in a way that maximises information retention,
expressed in terms of variance. Either eigen or singular value de-
composition can be used to map from the original 𝑛-dimension
feature space to a latent 𝑟 -dimension one. By setting 𝑟 to 2 or 3 it is
possible to visualise high-dimensional datasets. Sticking to eigen-
decomposition (slower for PCA, but the only option for efficient
KPCA), given a (centered) dataset 𝑋𝑛 , the covariance matrix 𝑋𝑇 .𝑋
is first computed, followed by its eigendecomposition to𝑊 .𝜆.𝑊 −1.
The columns in𝑊 store the orthogonal eigenvectors, indicating
directions of most variance. 𝜆 is a diagonal matrix of eigenvalues.
𝑊𝑟 is the result of reordering𝑊 according to 𝜆, with the columns
associated with the largest eigenvalue order left-most, and subse-
quently dropping all but the first 𝑟 columns. Latent space mapping
is computed as 𝑍𝑟 =𝑊𝑟 .𝑋 , while the inverse transform comprises
𝑋 = 𝑍𝑟 .𝑊

𝑇
𝑟 . Note that𝑊𝑇

𝑟 .𝑊𝑟 is the identity matrix only when
𝑟 = 𝑛, and therefore constitutes a lossy transform otherwise.
5https://source.android.com/devices/architecture/hidl/binder-ipc
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Algorithm 1: SpotCheck’s KPCA anomaly detector
Input: Mode [SysCall trace | HPROF dump], Threshold 𝛼 ,
Benign Apps 𝑋 , Monitored Apps 𝑥 (1) , ..., 𝑥 (𝑁 ) ∈ 𝑋 ′
Output: 𝑀𝑆𝐸 (𝑥 (𝑖 ) , 𝑥 (𝑖 ) ) Anomaly_Scores []

1 𝑊𝑟 ,𝑊
𝑇
𝑟 ← Eigendecomposition (𝑋 )

2 𝛾 ← Grid_Search (𝑋 )
3 Anomaly_Scores [] = {}

4 for 𝑖 ← 1 to 𝑁 do
5 𝑧 (𝑖 ) ← KPCA_Transform(𝑥 (𝑖 ) ,𝑊𝑟 , 𝛾 )
6 𝑥 (𝑖 ) ← KPCA_Transform−1 (𝑧 (𝑖 ) ,𝑊𝑇

𝑟 )
7 ReconErr = 𝑀𝑆𝐸 (𝑥 (𝑖 ) , 𝑥 (𝑖 ) )
8 if (ReconErr > 𝛼 ) then
9 Anomaly_Scores []← (𝑥 (𝑖 ) , ReconErr,Anomaly)

10 else
11 Anomaly_Scores []← (𝑥 (𝑖 ) , ReconErr,Normal)

12 return Anomaly_Scores []

KPCA provides non-linearity by means of kernel methods, i.e. re-
taining eigenvector orthogonality, but introducing linear separabil-
ity directly in 𝑋𝑛 by mapping it to a higher dimension 𝑋𝑚 = 𝜙 (𝑋𝑛),
where𝑚 > 𝑛. The caveat is the increased computational work for
producing the covariance matrix. As with other kernel methods
this issue is addressed with the kernel trick, i.e. using a kernel
function 𝑘 (𝑋 ) = 𝜙 (𝑋𝑇 ) .𝜙 (𝑋 ) in the 𝑛-dimensional space. If it can
be assumed that the higher-dimensional space follows a Gaussian
distribution, the radial basis function (rbf) kernel can be used:

𝑘 (𝑥,𝑦) 𝑑𝑒𝑓= 𝑒−𝛾 | |𝑥−𝑦 | |
2
,where 𝛾 =

1
2𝜎2

> 0

with𝛾 presenting a learnable parameter corresponding to a train-
ing dataset𝑋 . An optimal𝛾 is typically computed using a grid search
with the mean squared error (MSE) used as the reconstruction error.
The premise for using KPCA for anomaly detection is that, during
testing, data points 𝑥 (𝑖) form a different distribution than one from
which the training dataset is derived, return a higher reconstruction
error.

The KPCA anomaly detector is shown in Algorithm 1. The train-
ing dataset 𝑋 , composed solely of benign apps, is used for comput-
ing𝑊𝑟 and𝑊𝑇

𝑟 , as well as for searching for the optimal 𝛾 (lines
1-2). For each monitored app 𝑥 (𝑖) ∈ 𝑋 ′, its latent representation in
𝑟 -dimensions, 𝑧 (𝑖) , is computed and subsequently recovered as 𝑥 (𝑖)

(lines 5-6). Due to the lossy transforms involved, 𝑥 (𝑖) ≠ 𝑥 (𝑖) and
their mean squared error (MSE) is taken as the reconstruction error
(line 7). Whenever this error exceeds a threshold 𝛼 , 𝑥 (𝑖) is flagged
as anomalous (lines 8-11).

3.3 Anomaly detection with Variational
Autoencoder (VAE) for anomaly detection

VAEs [12] approximate a probability distribution 𝑃 (𝑋 ) to fit a data
sample 𝑋 using neural networks as shown in Figure 2. The decoder
network 𝑔𝜃 (𝑋 |𝑧) learns to generate datapoints similar to 𝑋 using a
prior distribution defined over a much simpler latent space 𝑃 (𝑧),
namely the standard isotropic Gaussian N(0, 𝐼 ). In the latent space
datapoints 𝑧 have a reduced dimension and are considered indepen-
dent. In a typical Variational Inference fashion, the original feature
space is assumed to follow a multivariate Gaussian (for continuous

Figure 2: VAE topology: an encoder followed by a stochastic
decoder, optimized wrt reconstruction probability 𝑃 (𝑋 ).

data) or Bernoulli (for binary) distributions. The complex relation-
ship between the latent and original spaces is captured by 𝜃 , the
weights for 𝑔() [7].

The chosen VAE optimization process needs to maximize 𝑃 (𝑋 ),
the reconstruction probability i.e. the probability of computing a
distribution that is most likely to in turn produce 𝑋 , and which is
exactly what renders VAEs suitable for anomaly detection. This way
𝑔() is bound to produce outputs similar to 𝑋 seen during training,
but not to inputs taken from different distributions. 𝑔()’s outputs,
denoted by𝑋 , represents a generated datapoint for a given 𝑧. When-
ever considering a single datapoint, 𝑋 automatically represents the
mean of the assumed distribution. When assuming a (multivariate)
Gaussian, however, one needs to also consider 𝜎2, the covariance.
This can either be represented as an additional output to 𝜇 = 𝑋

[12], or else is taken to be a fixed hyperparameter [7]. The role of
the encoder 𝑓𝜙 (𝑧 |𝑋 ) is to compute 𝑄 (𝑧 |𝑋 ) in a way that is as close
as possible to 𝑃 (𝑧 |𝑋 ), or the probability distribution in the latent
space that is most likely to reproduce 𝑋 .

Rather than composing 𝑓𝜙 (𝑧 |𝑋 ) directly with 𝑔𝜃 (𝑋 |𝑧), an in-
termediate function 𝑧 = ℎ𝜙 (𝜖, 𝑋 ) is used instead for sampling
datapoints 𝑧 in the latent space. 𝑓𝜙 (𝑧 |𝑋 ) computes 𝜇𝑧 and 𝜎2𝑧 ,
the mean and covariance of the latent space respectively. Here

ℎ𝜙 (𝜖, 𝑋 )
𝑑𝑒𝑓
= 𝜇𝑧 (𝑋 ) + 𝜎𝑧 (𝑋 ) .𝜖 and 𝜖 ∼ N(0, 𝐼 ). In this manner no

learnable weight is associated with a stochastic node, and back-
propagation can proceed as usual. The resulting loss function is the
negative of an objective function called the evidence lowerbound
(ELBO):

−𝑣𝑒 𝐸𝐿𝐵𝑂 𝑑𝑒𝑓
= D𝐾𝐿 (𝑄 (𝑧 |𝑥 (𝑖) ) | |N (0, 𝐼 ))−E𝑄 (𝑧 |𝑥 (𝑖 ) ) [𝑙𝑜𝑔 𝑃 (𝑥 (𝑖) |𝑧)]

and which is defined in a way to keep 𝑙𝑜𝑔 𝑃 (𝑋 ) close to 0, over
choices for 𝜙, 𝜃 . The first term on the right hand-side of Equation
3.3 is the Kullback-Leibler divergence between 𝑄 (𝑧 |𝑋 ) and the
simplified distribution 𝑃 (𝑧) = N(0, 𝐼 ). This term penalizes any
encodings produced by 𝑄 (𝑧 |𝑋 ) not following the assumed simple
latent distribution, and which acts as a regularization term. The
second term is the reconstruction error as defined using cross-
entropy, or the expected encoding length needed to encode the
reproduced 𝑋 (as defined by the distribution parameters captured
by 𝑋 ) using 𝑄 (𝑧 |𝑋 )’s encoding.



SpotCheck: On-Device Anomaly Detection for Android SINCONF ’20, November 04–07, 2020, Istanbul, Turkey

Algorithm 2: SpotCheck’s VAE anomaly detector
Input: Mode [SysCall trace | HPROF dump], Threshold 𝛼 ,
Benign Apps 𝑋 , Monitored Apps 𝑥 (1) , ..., 𝑥 (𝑁 ) ∈ 𝑋 ′
Output: 𝑃 (𝑥 (𝑖 ) ) Anomaly_Scores []

1 𝜙, 𝜃 ← Mini_Batch (𝑋 )
2 Anomaly_Scores [] = {}

3 for 𝑖 ← 1 to 𝑁 do
4 𝜇

𝑧 (𝑖 ) , 𝜎
2
𝑧 (𝑖 )
← 𝑓𝜙 (𝑧 |𝑥 (𝑖 ) )

5 for 𝑙 ← 1 to 𝐿 do
6 𝑧 (𝑖,𝑙 ) ∼ N(𝜇

𝑧 (𝑖 ) , 𝜎
2
𝑧 (𝑖 )
)

7 𝜇
�̂� (𝑖,𝑙 ) , 𝜎

2
�̂� (𝑖,𝑙 )

← 𝑔𝜃 (𝑥 (𝑖,𝑙 ) |𝑧 (𝑖,𝑙 ) )

8 ReconProb = 𝑃 (𝑥 (𝑖 ) ) ← 1
𝐿

𝐿∑
𝑙=1
𝑃 (𝑥 (𝑖,𝑙 ) ; 𝜇

�̂� (𝑖,𝑙 ) , 𝜎
2
�̂� (𝑖,𝑙 )

)

9 if (ReconProb < 𝛼 ) then
10 Anomaly_Scores []← (𝑥 (𝑖 ) , ReconProb,Anomaly)
11 else
12 Anomaly_Scores []← (𝑥 (𝑖 ) , ReconProb,Normal)

13 return Anomaly_Scores []

SpotCheck’s anomaly detector, shown in Algorithm 2 is an adap-
tation of an existing one used for network anomaly detection [1].
As per its KPCA counterpart it is trained solely on benign call
traces/dumps, but this time anomaly scores are based on the recon-
struction probability 𝑃 (𝑥 (𝑖) ) (lines 9-12), in turn hinging on the
learned 𝜙, 𝜃 (line 1). We take two approaches for dealing with the
computed covariance 𝜎2 at the feature space: a) as a learned layer,
or as a b) hyperparameter fixed at 1. In both cases we assume a
Gaussian distribution since we are dealing with continuous values
(scaled frequencies in the 0-1 range). In the first case, for 𝐿 = 1,
−E𝑄 (𝑧 |𝑥 (𝑖 ) ) [𝑙𝑜𝑔 𝑃 (𝑥 (𝑖) |𝑧)] becomes [17]:

𝑁𝐿𝐿𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 =
∑
𝑖

𝑙𝑜𝑔 𝜎2
𝑥 (𝑖 )

2
+
(𝑥 (𝑖) − 𝜇𝑥 (𝑖 ) )2

2𝜎2
𝑥 (𝑖 )

In the second case, fixing 𝜎2 = 1 renders the terms in Equation
13 with 𝜎2 constant, resulting in:

𝑁𝐿𝐿𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛,𝜎2=1 =
∑
𝑖

(𝑥 (𝑖) − 𝜇2
𝑥 (𝑖 )
)

and which reduces to the commonly-used mean squared error
(MSE). Therefore we use MSE as the loss function in this case. The
KL divergence term has the closed-form [12]:

D𝐾𝐿 (𝑄 (𝑧 |𝑥 (𝑖) ) | |N (0, 𝐼 )) =
1
2

∑
𝑖

(1 + 𝑙𝑜𝑔 (𝜎2
𝑧 (𝑖 )
) − 𝜇2

𝑧 (𝑖 )
− 𝜎2

𝑧 (𝑖 )
)

We opt for the adam optimizer, with 𝐿 = 1 as originally suggested
[12]. Three encoder topologies are considered: 50-25, which is a
baseline proportional to the one used for network anomaly detec-
tion [1]; an experimental 50-35-25 (gradual dimensionality reduc-
tion); and 50-25-2 that favours latent space visualization. Topologies
are reversed for decoding. ReLU activation is used for all layers ex-
cept for 𝜎2 (𝑋 ), which uses linear activation as originally suggested
[12], with a bias term of 1 × 10−4 to avoid a divide by zero when
computing 𝑁𝐿𝐿𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 . 𝜇 (𝑋 ) uses sigmoid activation followed by
feature scaling to match input feature scaling.

Lines 3-12 take the trained VAE and a set of input traces/dumps
in order to compute anomaly scores. For each 𝑥 (𝑖) , the latent space
𝜇𝑧 (𝑖 ) , 𝜎

2
𝑧 (𝑖 )

vectors are computed (line 4) and then used to sample 𝐿
𝑧 (𝑖,𝑙) points in latent space directly fromN(𝜇𝑧 (𝑖 ) , 𝜎2𝑧 (𝑖 ) ) (line 6). We
set 𝐿 = 128 in order to match the training batch size. The feature
space distribution parameters are taken as the mean of all predicted
individual datapoints (lines 7 and 8).

4 EXPERIMENTATION
SpotCheck experimentation concerned comparing Kernel PCAwith
VAE across the two chosen representations. A total of 3K apps were
used: 2K benign apps downloaded from Google Play, and 1K mali-
cious apps obtained from VirusTotal6 under the academic collabo-
ration scheme. The machine learning components were prototyped
with Python 3.0 using Scikit-learn 0.22.2 and Keras 2.4.3/TensorFlow
2.3. App execution sampling uses Android Studio’s 4.0 emulator
with an Android Pie image (API level 28), Android Debug Bridge
(adb) version 1.0.41, and Exerciser Monkey to simulate app inter-
actions. Apps were downloaded from Google Play using gplaycli
3.29. System call tracing was implemented with frida-server 12.10.4.
HPROF dumpswere taken using adb, while EclipseMAT 1.10/calcite
v1.4 plugin was used for dump parsing.

4.1 Datasets
Two datasets7, one for each representation type, were created.
While both datasets are derived from a total of 3K apps, in re-
ality a significantly higher amount of app executions was necessary.
In the case of benign apps, a number of them did not result in
meaningful runtime behavior from simulated interactions. As for
malicious apps, a good number number of these were only pro-
vided in compiled bytecode form (dex) rather than executable apks.
Others returned certificate failures due to them actually being (ma-
licious) updates, or simply evaded our emulated environment. For
each app, the android device emulator was started with a fresh state
using the -no-snapshot -wipe-data flags. Once started, each app
was subjected to: Dynamic instrumentation for system call trac-
ing; Component traversal, as suggested in related work [10], to
maximize runtime behavior coverage; and subsequently, a total of
200 (repeatable) pseudo-random UI events were sent. The complete
cycle/app took approximately 8-10 minutes to complete on a Linux
mint 20 host machine 5.4.0-39-generic kernel, Intel© Core™ i7 CPU
960 @ 3.20GHz × 4 processor, 15.6 GiB RAM, and NVIDIA GF116
GPU.

Figure 3 visualizes the dataset features for both representations in
terms of mean (scaled) frequencies per system call/service class, and
for both benign apps and malware. The system call histogram are
characterized by a few dominant calls. In each case the three most
frequent calls are write, read, and ioctl; and which correspond to
input/output/ipc respectively, with write being particularly more
frequent for malware than benign. gettimeofday and recvfrom
are more frequent in benign apps. On the other hand close and
writev rank higher for malware. mmap and munmap rank high in
both cases, but even more so in malware.

6https://www.virustotal.com/
7Available at https://github.com/mmarrkv/spotcheck_ds
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Figure 3: Scaled mean frequencies for system call trace (top)
and process memory dump (bottom) features, for benign
(left) and malware (right) apps.

In the case of benign HPROF dumps there are no dominat-
ing attributes, with the most frequent service class instances cor-
respond to AudioManager, DisplayManager, TelephonyManager
and UserManager. On the contrary, TelephonyManager domi-
nates for malware apps, and which more than doubles the be-
nign app frequency. The number of AccessibilityManager
instances are also doubled, although not being as domi-
nant as the previous class. Other system classes with a
high frequency for malware are: AlarmManager, AudioManager,
ConnectivityManager, DisplayManager, InputMethodManager
and SubscriptionManager.

4.2 Results
Figure 4 shows a comparison of the classification accuracy obtained
for KPCA and the 6 VAE configurations, across both app execution
representations. We consider the AUC ROC as well as the f1 score,
both common ways to measure classifier accuracy. In the case of f1
scores we consider step-wise anomaly thresholds and report the
precision/recall for the maximum score obtained. The KPCA imple-
mentation uses the RBF kernel in order to match the VAEs Gaussian
approximation. The Grid Search for 𝛾 uses 3-fold cross-validation
in the 0.01-0.5 range. A two dimensional latent space is adopted for
visualisation benefits. For VAE we try out 6 configurations in total.
Configurations 1-3 use the negative log likelihood for Gaussian
(NLL) usage in the loss function, and the 50-25, 50-35-25 and 50-25-
2 topologies respectively. Configurations 4-6 follow the same order,
but this time making use of the Mean Squared Error (MSE) loss
function. In all cases 2,000 epochs was sufficient for loss function
convergence. A 70/15/15 test/validation/test split is used for the
benign datasets. Given the anomaly detection context, the malware
datasets were only used for testing.

Starting with system call traces, the main observation is the
very similar AUC ROC across the KPCA and all VAE configu-
rations, falling within the 0.691 - 0.708 range, with the maxi-
mum score belonging to KPCA. However, in the case of f1 scores

KPCA outperforms VAE substantially, obtaining 0.864/0.766/0.99
f1/precision/recall. The similar f1 scores across the VAE con-
figurations, in the ranges of 0.509-0.513/0.577-0.624/0.435-0.455
for f1/recall/precision, justify the 2-dimensional (2D) latent layer
topologies (3 & 6). The NLL/MSE approaches return similar scores.
The 3 plots in Figure 5 (top) show the 2D latent space visualizations
for the configurations having a 2-dimensional latent space, and
which provide further insight into the obtained scores. In all cases
there is substantial overlap in compressed latent spaces, with some
visible separability emerging only for outliers. In the case of the
VAE’s latent spaces, it is visible that points are normally distributed,
rather than simply compressed to a latent dimension. Interestingly,
in the case of the NLL variant there is lower dispersion as compared
to the MSE one. This fact is evidenced by the more compact x-axis
(not visible) and follows directly the NLL loss function attempting
to reconstruct the variance of the input dataset. Overall, all three
visualizations highlight the difficult task at hand for both machine
learning options in discriminating between benign/malicious apps.

Onto process memory dumps (Figure 5 - bottom), it is surprising
to observe a more extensive visible separability across the two
classes for the KPCA. As for the VAE the situation remains similar
to system call traces. These observations translate to the KPCA’s
f1 shooting up to 0.88 for 0.97/0.8 recall/precision. At least from a
KPCA point of view, these results show promise for the Android
system service class representation derived fromHPROF dumps. Yet,
the very similar VAE AUC ROC range, 0.68-0.72, and f1 score range,
0.45-.052, excluding topology 6, indicate that we cannot dismiss
VAE as yet. For VAE it is noteworthy that: i) All configurations
register a substantial increase in recall (0.81-0.9) however at the
cost of a dip in precision (0.34-0.37); ii) Topology 6, that makes use
of the MSE loss function, is less accurate, and therefore indicating
that there could be cases where fixing 𝜎2

𝑥
may not be a good idea.

4.3 Discussion
KPCA & VAE for Android anomalous system call trace detection.

KPCA and VAE were chosen as starting points for SpotCheck given
the promising results demonstrated for network traffic [1, 2]. Over-
all, the accuracy scores obtained by both KPCA andVAE for Android
anomaly detection, using the Linux system call trace representation,
compare well to those obtained for network anomaly detection us-
ing the NSL-KDD benchmark [1]. In that case the registered AUC
ROC for KPCA/VAE across the DoS-Probe-R2L-U2R attack cat-
egories was 0.590/0.795-0.821/0.944-0.712/0.777-0.712/0.782. The
main difference in our case being KPCA outperforming VAE, es-
pecially when considering the 0.861 vs 0.513 f1 scores. In the case
of network anomaly detection, the only particularly higher score
compared to Android was registered for the Probe category. This
is a very particular type of attack (pre-step) which is significantly
noisier than normal traffic. Concluding, both KPCA and VAE can
be considered to have been successfully ported from the network
traffic context, and therefore, when evolving SpotCheck’s architec-
ture further, none of the anomaly detectors is to be unnecessarily
overlooked, at least for the system call trace representation.

Process memory dumps. When designing SpotCheck we also
experimented with the possibility of detecting anomalies inside
HPROF dumps. As of the onset, this approach has the disadvantage



SpotCheck: On-Device Anomaly Detection for Android SINCONF ’20, November 04–07, 2020, Istanbul, Turkey

KPCA VAE-1 VAE-2 VAE-3 VAE-4 VAE-5 VAE-6
0

0.2

0.4

0.6

0.8

1

Anomaly detector (for system calls)

A
cc
ur
ac
y
m
et
ric

AUC ROC
F1 score
Recall
Precision

KPCA VAE-1 VAE-2 VAE-3 VAE-4 VAE-5 VAE-6
0

0.2

0.4

0.6

0.8

1

Anomaly detector (for memory dumps)

A
cc
ur
ac
y
m
et
ric

AUC ROC
F1 score
Recall
Precision

Figure 4: Classification accuracy for system call traces (left) and memory dumps (right).

Figure 5: Latent space visualization - KPCA, VAE-NLL, VAE-MSE for system calls (top) and memory dumps (bottom).

of having to work solely with the residue of execution, rather than
directly monitoring it. Yet, in combination with the system service
call representation, the KPCA detector registers better effective-
ness. On the contrary, all VAE configurations have their precision
impacted. While the obtained AUC ROC scores do not allow us
to commit exclusively to KPCA as of this point, results do call for
experimenting with further VAE topologies, at least where HPROF
dumps are concerned. Furthermore, results justify the additional
learning required to also compute 𝜎2

𝑥
.

Improving app behavior representation. Despite the obtained com-
parable effectiveness as per the network traffic context, along with a
successful application to process memory dumps, the current AUC
ROC scores leave room for improvement. A compelling idea in this
regard is to combine the call tracing and memory dump approaches
into a single online object collection. The combined approach entails
tracing just the getSystemService() API call, and at which point
to dump the corresponding service class instance from memory.
In doing so, this combined approach addresses the requirement

to time memory dumps in a way to coincide with the in-memory
presence of the sought-after heap objects.

5 RELATEDWORK
The use of machine learning for computer security is nowadays
the state-of-the-practice [5], with early successes in spam detection
using Naives Bayes classification being followed by applications
in intrusion detection, malware analysis and fraud detection. The
use of deep learning is a more recent effort. Plain Autoencoders
(AE) for malware detection take a spectral approach to malware
detection [20]. Stacking multiple AEs and appending with fully
connected layers, forming a deep belief network, provide effec-
tive architectures for malware classification [9, 10]. For network
anomaly detection VAEs give better results than AEs [1], with a
particular study suggesting that models may be improved further
with supervised learning [15]. In a context where deep learning is
under the spotlight, experimentation with kernel methods is still
ongoing and yielding promising results [2].
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On other hand, the use of machine learning for memory forensics
is still in its early stages of experimentation, with efforts working
directly with raw process memory [13] also being proposed. With
SpotCheck we avoid working with raw images of any sort in a con-
text where routines to decode assembly instructions, or parse data
objects, are readily-available. If we had to work with raw images,
a deep network would have to dedicate a number of layers just
to learn these routines. Yet, the overall net benefit of such an ap-
proach is unclear given the well-specified nature and availability of
these decoders/parsers. A similar discussion applies to approaches
attempting to apply the popular Convolutional Neural Networks
(CNN) [6, 18] over visualisations of executable binaries. The main
risk here is that malware can in practice employ multiple stages of
unpacking/dynamic loading, rendering this approach only effective
to detect unpackers/deobfuscators, but which however may also be
employed by benign apps.

6 CONCLUSIONS & FUTUREWORK
In this paper we proposed SpotCheck, an on-device anomaly de-
tector for Android malware. Anomaly scores are computed from
samples of app execution, captured either using the well-established
system call trace method, or the more experimental process mem-
ory dumps in HPROF format. Anomalies are submitted for deeper
inspection by malware analysis. Results obtained from experimen-
tation with 3K apps show that we manage to reproduce the level of
effectiveness within an Android anomaly detection context, what
previously had been done with VAEs for network anomaly detec-
tion. Even better results are produced using KPCA.

Moreover, a major result of this work concerns the effectiveness
of Android system service classes, as derived from the memory
dumps, for anomaly detection. When provided as input to the KPCA
detector, the overall effectiveness improves further still. While re-
sults are less exciting for VAE over memory dumps, they provide an
avenue for further exploration, especially given that the obtained
effectiveness results leave room for improvement. Another explo-
ration avenue is planned along the lines of combining the system
call trace and memory dumps representations into a single one,
comprising the timely dumps of individual memory objects. Finally
we need to close the loop by considering how existing malware
analysis sandboxes can benefit from the identified anomalous execu-
tion traces. In this regard we intend to experiment with execution
markers, i.e. instrument apps in a way to specify the execution
paths associated with the detected anomalies.

ACKNOWLEDGMENTS
This work is supported by the LOCARD Project under Grant H2020-
SU-SEC-2018-832735.

REFERENCES
[1] Jinwon An and Sungzoon Cho. 2015. Variational autoencoder based anomaly

detection using reconstruction probability. Special Lecture on IE 2, 1 (2015), 1–18.
[2] Christian Callegari, Lisa Donatini, Stefano Giordano, and Michele Pagano. 2018.

Improving stability of PCA-based network anomaly detection by means of kernel-
PCA. International Journal of Computational Science and Engineering 16, 1 (2018),
9–16.

[3] Andrew Case and Golden G Richard III. 2017. Memory forensics: The path
forward. Digital Investigation 20 (2017), 23–33.

[4] Varun Chandola, Arindam Banerjee, and Vipin Kumar. 2009. Anomaly detection:
A survey. ACM computing surveys (CSUR) 41, 3 (2009), 1–58.

[5] Clarence Chio and David Freeman. 2018. Machine learning and security: Protecting
systems with data and algorithms. " O’Reilly Media, Inc.".

[6] Zhihua Cui, Fei Xue, Xingjuan Cai, Yang Cao, Gai-geWang, and Jinjun Chen. 2018.
Detection of malicious code variants based on deep learning. IEEE Transactions
on Industrial Informatics 14, 7 (2018), 3187–3196.

[7] Carl Doersch. 2016. Tutorial on variational autoencoders. arXiv preprint
arXiv:1606.05908 (2016).

[8] GlobalStats. [n.d.]. Mobile Operating System Market Share Worldwide. https:
//gs.statcounter.com/os-market-share/mobile/worldwide[Accessed:02.09.2020]

[9] William Hardy, Lingwei Chen, Shifu Hou, Yanfang Ye, and Xin Li. 2016. DL4MD:
A deep learning framework for intelligent malware detection. In Proceedings of
the International Conference on Data Mining (DMIN). The Steering Committee of
The World Congress in Computer Science, Computer . . . , 61.

[10] Shifu Hou, Aaron Saas, Lifei Chen, and Yanfang Ye. 2016. Deep4MalDroid: A deep
learning framework for android malware detection based on linux kernel system
call graphs. In 2016 IEEE/WIC/ACM International Conference on Web Intelligence
Workshops (WIW). IEEE, 104–111.

[11] Hahnsang Kim, Joshua Smith, and Kang G Shin. 2008. Detecting energy-greedy
anomalies and mobile malware variants. In Proceedings of the 6th international
conference on Mobile systems, applications, and services. 239–252.

[12] Diederik P Kingma and Max Welling. 2013. Auto-encoding variational bayes.
arXiv preprint arXiv:1312.6114 (2013).

[13] MAAjay Kumara and CD Jaidhar. 2017. Leveraging virtual machine introspection
with memory forensics to detect and characterize unknown malware using
machine learning techniques at hypervisor. Digital Investigation 23 (2017), 99–
123.

[14] Yonas Leguesse, Mark Vella, and Joshua Ellul. 2017. AndroNeo: Hardening An-
droid Malware Sandboxes by Predicting Evasion Heuristics. In IFIP International
Conference on Information Security Theory and Practice. Springer, 140–152.

[15] Manuel Lopez-Martin, Belen Carro, Antonio Sanchez-Esguevillas, and Jaime
Lloret. 2017. Conditional variational autoencoder for prediction and feature
recovery applied to intrusion detection in IoT. Sensors 17, 9 (2017), 1967.

[16] Michael Mimoso. [n.d.]. Android Vulnerability Enables Malicious Updates to
Bypass Digital Signatures. https://threatpost.com/android-vulnerability-enables-
malicious-updates-to-bypass-digital-signatures/101200/[Accessed:02.09.2020]

[17] David A Nix and Andreas S Weigend. 1994. Estimating the mean and variance
of the target probability distribution. In Proceedings of 1994 ieee international
conference on neural networks (ICNN’94), Vol. 1. IEEE, 55–60.

[18] Rachel Petrik, Berat Arik, and Jared M Smith. 2018. Towards Architecture and
OS-Independent Malware Detection via Memory Forensics. In Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications Security.
2267–2269.

[19] Joshua Saxe and Konstantin Berlin. 2015. Deep neural network based malware de-
tection using two dimensional binary program features. In 2015 10th International
Conference on Malicious and Unwanted Software (MALWARE). IEEE, 11–20.

[20] Joshua Saxe and Hillary Sanders. 2018. Malware Data Science: Attack Detection
and Attribution. No Starch Press.

[21] Madhu K Shankarapani, Subbu Ramamoorthy, Ram SMovva, and SrinivasMukka-
mala. 2011. Malware detection using assembly and API call sequences. Journal
in computer virology 7, 2 (2011), 107–119.

[22] Sophos. [n.d.]. Sophos 2020 Threat Report. https://www.enterpriseav.com/
datasheets/\sophoslabs-uncut-2020-threat-report.pdf[Accessed:02.09.2020]

[23] Michael Spreitzenbarth, Felix Freiling, Florian Echtler, Thomas Schreck, and
Johannes Hoffmann. 2013. Mobile-sandbox: having a deeper look into android
applications. In Proceedings of the 28th Annual ACM Symposium on Applied Com-
puting. 1808–1815.

[24] Lukas Stefanko. [n.d.]. Insidious Android malware gives up all malicious
features but one to gain stealth. https://www.welivesecurity.com/2020/05/
22/insidious-android-malware-gives-up-all-malicious-features-but-one-gain-
stealth/[Accessed:02.09.2020]

[25] Joe Sylve, Andrew Case, Lodovico Marziale, and Golden G Richard. 2012. Acqui-
sition and analysis of volatile memory from android devices. Digital Investigation
8, 3-4 (2012), 175–184.

[26] Mark Vella and Vishwas Rudramurthy. 2018. Volatile memory-centric investiga-
tion of SMS-hijacked phones: a Pushbullet case study. In 2018 Federated Conference
on Computer Science and Information Systems (FedCSIS). IEEE, 607–616.

[27] Peng Xiao, Aimin Pan, Lei Long, and Yang Song. [n.d.]. Android Vul-
nerability Enables Malicious Updates to Bypass Digital Signatures.
https://threatpost.com/android-vulnerability-enables-malicious-updates-
to-bypass-digital-signatures/101200/[Accessed:02.09.2020]

[28] Haiyu Yang, Jianwei Zhuge, Huiming Liu, and Wei Liu. 2016. A tool for volatile
memory acquisition from Android devices. In IFIP International Conference on
Digital Forensics. Springer, 365–378.

https://gs.statcounter.com/os-market-share/mobile/worldwide [Accessed: 02.09.2020]
https://gs.statcounter.com/os-market-share/mobile/worldwide [Accessed: 02.09.2020]
https://threatpost.com/android-vulnerability-enables-malicious-updates-to-bypass-digital-signatures/101200/ [Accessed: 02.09.2020]
https://threatpost.com/android-vulnerability-enables-malicious-updates-to-bypass-digital-signatures/101200/ [Accessed: 02.09.2020]
https://www.enterpriseav.com/datasheets/\sophoslabs-uncut-2020-threat-report.pdf [Accessed: 02.09.2020]
https://www.enterpriseav.com/datasheets/\sophoslabs-uncut-2020-threat-report.pdf [Accessed: 02.09.2020]
https://www.welivesecurity.com/2020/05/22/insidious-android-malware-gives-up-all-malicious-features-but-one-gain-stealth/ [Accessed: 02.09.2020]
https://www.welivesecurity.com/2020/05/22/insidious-android-malware-gives-up-all-malicious-features-but-one-gain-stealth/ [Accessed: 02.09.2020]
https://www.welivesecurity.com/2020/05/22/insidious-android-malware-gives-up-all-malicious-features-but-one-gain-stealth/ [Accessed: 02.09.2020]
https://threatpost.com/android-vulnerability-enables-malicious-updates-to-bypass-digital-signatures/101200/ [Accessed: 02.09.2020]
https://threatpost.com/android-vulnerability-enables-malicious-updates-to-bypass-digital-signatures/101200/ [Accessed: 02.09.2020]

	Abstract
	1 Introduction
	2 Background
	2.1 Anomaly detection
	2.2 Representing app behavior

	3 SpotCheck's architecture
	3.1 Sampling app execution
	3.2 Kernel Principal Component Analysis (KPCA) for anomaly detection
	3.3 Anomaly detection with Variational Autoencoder (VAE) for anomaly detection

	4 Experimentation
	4.1 Datasets
	4.2 Results
	4.3 Discussion

	5 Related work
	6 Conclusions & future work
	Acknowledgments
	References

