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B. Cyclic Codes 
 
A cyclic code is a linear block code with the further property that a shift of a 
codeword results in another codeword. 
These are based on polynomials whose elements are coefficients from GF(2). These 
polynomials can be added, (subtracted), multiplied and (divided) in the usual way, 
remembering that 1+1=0=1-1;  1*1=1. 
 
There are 2 basic properties of polynomials over GF(2). 
 

1. A polynomial of degree m is irreducible over GF(2), if it is not divisible by 
any other polynomial of degree less than m over GF(2). 

2. Further, an irreducible polynomial of degree m, is said to be a primitive 
polynomial, if it is divisible by the polynomial Xn + 1, where n = (2m � 1), and 
is not divisible by any polynomial of degree less than (2m � 1). 

 
Primitive polynomials are the generator polynomials of cyclic codes. 
 
The Galois field over GF(2), (with elements 0 and 1), can be extended to one of 
2m elements, GF(2m). These will be developed when dealing with BCH codes. 
 
The generator polynomial of a cyclic code has the following properties. 
(i) For an (n,k) code the degree of g(X) is (n-k) = m and n =  (2m � 1). 
(ii) g(X) must have the element 1 as its first element. 
(iii) g(X) is a primitive polynomial of Xn +1; 
(iv) every codeword has degree that is (n-1) or less 
(v) every codeword is a multiple of g(X), the multiple being all possible 

polynomials of degree m or less. 
 
Example: The polynomial X7 + 1 has three factors given by 
 
   (1+X)(1+X+X3)(1+X2+ X3) 
 
All three are irreducible. However (1+X) is not primitive. Both polynomials of degree 
3 can be used as generator polynomials for a (7,4) cyclic code. 
 
 
Systematic code 
 
Given a g(X), the code can be put into systematic form, using the following steps: 
 

(i) Premultiply the message u(X) by X(n-k). 
(ii) Obtain the remainder r(X), that gives the parity-check bits, by dividing  

X(n-k).u(X)  by the g(X) 
(iii) Combine r(X) and X(n-k).u(X) to obtain the code polynomial 

r(X)  +  X(n-k).u(X) 
 

The format of this systematic code is [P , U] where P are the parity bits and U are the 
data bits. 
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Using as g(X), (1+X2+ X3) the systematic code is obtained as follows. Note that the 
polynomial is in reverse order ie  1100 is 1+X   and NOT X3 + X2 . 
 
Message Codeword  Polynomial 
 
0000  000 0000  0.g(X) 
1000  101 1000  1.g(X) 
0100  111 0100  1+X+ X2+ X4 = (1+ X).g(X) 
1100  010 1100  X + X3+ X4 =  X.g(X) 
0010  110 0010  1 + X + X5  =  (1 + X+ X2). g(X) 
1010  011 1010  X + X2 + X3 + X5 =  (X+ X2).g(X) 
0110  001 0110  X2 + X4 + X5 =  X2.g(X) 
1110  100 1110  1 + X3 + X4 + X5 =  (1 + X2).g(X) 
0001  011 0001  X + X2 + X6 =  (X + X2 + X3 ).g(X) 
1001  110 1001  1 + X + X3 + X6 = (1 + X + X2 + X3 ).g(X) 
0101  100 0101  1 + X4 + X6 = (1 + X2 + X3 )g(X) 
1101  001 1101  X2 + X3 + X4 + X6 = (X2 + X3 ).g(X) 
0011  101 0011  1 + X2 + X5 + X6 = (1 + X3).g(X) 
1011  000 1011  X3 + X5 + X6 = (X3).g(X) 
0111  010 0111  X + X4 + X5 + X6 = (X + X3).g(X) 
1111  111 1111  1+X+X2+X3+X4+X5+X6 = (1 + X + X3).g(X) 
 
 
Generator and Parity-Check Matrices 
 
A generator polynomial g(X) of order (n-k) can be made to span the code C of 
dimension n, by shifting the g(X) , k positions (rows). For example for the g(X) above 
the Generator Matrix, G is given by 
 

G = 









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
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

1101000

0110100

0011010

0001101

  G is not in systematic form, but can be using row operations.using 

row1+row2 for row2; rows 1,2,and 3 for row3, and rows 2,3,and 4 for row 4 resulting 
in 

G = 



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
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

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

1000110

0100011

0010111

0001101

which is now in systematic form. 

Since g(X) is a factor of (Xn + 1), 
   (Xn + 1) = g(X). h(X) 
 
where h(X) has degree k of the form h(X) = h0 + h1X+ . . .  + hkX

k  and h0 = hk = 1. 
h(X) is the parity polynomial of the code, and Xk h(X-1) is a polynomial that generates 
an (n,n-k) cyclic code. It is defined as 
 Xk h(X-1) =  hk + hk-1X+ . . .  + h0X

k.  It can be shown that every code vector in 
the code of g(X) is orthogonal to every row of the matrix H generated by  Xk h(X-1), 
and therefore H is the parity-check matrix for G.  
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Starting from (X7 + 1) and g(X) = (1+X2+ X3) it follows that h(X) is given by 
h(X) =  1 + X2 + X3 + X4  and  X4 h(X-1) =  1 + X + X2 + X4 Hence H is obtained as 
 

H = 

1011100

0101110

0010111

 H is an (n, n-k) matrix in this case a (7,3) matrix. Adding row 1,row 

3 in row3 for a systematic form H, given by 

H = 

1001011

0101110

0010111

. It can easily be shown that the syndrome of any code vector from 

the code polynomials above results in v.HT = 0, and s =[0 0 0] 
 
Encoding of a cyclic code 
 
A shift register system based on g(x) is used to generate a code word, Figure 4.1 

 
Figur 4.1 

Note the connections of XOR�s at position 2 and position3. The data bits are passed to 
the output and into the feedback register system, msb first. Then the switch is moved 
to the feedback register output and the parity bits are passed out. 
 
For an input 1011 the system shifts are 
 
   Registers 
Initial   0 0 0 
Shift 1       1  1 0 1 
Shift 2        1  0 1 0 
Shift 3        0  0 0 1 
Shift 4        1  0 0 0 
 
Final codeword is  0 0 0 1 0 1 1 
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Syndrome Computation 
 
Given a received word r(X), the syndrome is obtained as the remainder of r(X)/g(X). 
The remainder must be a polynomial of degree (n-k-1) or less. 
With cyclic codes the syndrome can be obtained through a feedback shift register 
circuit quite similar to the encoder. 
The syndrome circuit for the (7,4) code with g(X) = (1 + X2 + X3) is shown below. 
Note that the received word is input from the left, unlike the data bits input from the 
right in the circuit of Figure 4.1. 

  
Given the received n-tuple r(X) = [1 0 0 1 0 1 1] the register contents results in 
 
 Shift  Input   Register Contents 
      0 0 0 
 1  1   1 0 0 
 2  1   1 1 0 
 3  0   0 1 1 
 4  1   0 0 0 
 5  0   0 0 0 
 6  0   0 0 0 
 7  1   1 0 0 
 8  -   0 1 0 
 
 
The resulting syndrome is [1 0 0] . Note that a cyclic shift of the syndrome results in 
the syndrome for the cyclic shift of the received word given by X.r(X) 
Because of the cyclic shift property a cyclic code is capable of detecting any error 
burst of length (n-k) or less, including the end-around bursts. 
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Cyclic Codes Decoding 
 
Cyclic codes can be decoded in the same way as linear block codes, using the 
standard array and the coset leaders, as error vectors, in relation to the syndrome 
pattern obtained after decoding. This still requires a decoding table to associate the 
syndrome to its corresponding error pattern. 
Because of the cyclic nature, the error pattern and its corresponding syndrome are 
obtained directly either through dividing by g(x) or the syndrome circuit. The 
syndrome error pattern table for the (7,4) code with g(X) = (1 + X2 + X3) is shown 
below. Ei represents the error bit in the received r(X). For no errors s = [000]. 
 
 

E6  = [011] 
E5 =  [110] 
E4 =  [111] 
E3 = [101] 
E2 = [001] 
E1 = [010] 
E0 = [100] 
 

A decoding circuit can be designed to automatically detect, and correct a single-bit 
error based on the cyclic property. The pattern for E6 = [011] is used to compare to 
the syndrome of the particular bit error. The stored received word is shifted out bit by 
bit, as the syndrome pattern obtained is compared. Based on s = E6, since the 
syndrome si represented by the i-th shift of the s, corresponds to the syndrome of the 
ri(X) the i-th shift of the received word r(X), the error bit can be corrected as the 
received word is passed out from the buffer. The circuit is shown in Figure 4.3 below. 
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This type of decoder is also known as a Meggitt Decoder.  
 
Another important property of a cyclic code is the capability of detecting burst errors. 
An (n.k) cyclic code can detect any error burst, of length (n-k) nor less, including end 
around bursts. 
For example the CRC check based on  
 g(X) = 1 + X2 + X15 + X16  
with n = 216 � 1 = 32767; n-k = 16; and k = 32751  
is capable of detecting all error bursts of 16 or less.   
 
Cyclic Hamming Codes 
A cyclic Hamming code of length 2m �1, with m≥3 is generated by a primitive 
polynomial p(X) of degree m. Note that since the degree of g(X) is (n-k) = (m � 1) , 
the number of information bits k is  2m � m �1 
In general the codeword is obtained, using a generator polynomial p(X) from 
 
Xm+i = ai(X).p(X) + bi(X) where the remainder  bi(X), of degree (m-1) or less forms 
the parity checks, with at least two 1�s. 
Given H = {Im Q} where Q is an m x (2m � m �1) matrix, the bi(X)�s form the 
columns of Q.  
 
For example using the primitive polynomial 1+X+X3 a (7,4) cyclic Hamming code 
can be generated. This code can correct one bit in error. 
 
Modified Hamming Code 
 
A Hamming  code H = [Im Q] can be modified to H� = [Im Q�] where Q� consists of  
2m � m (instead of 2m � m � 1) columns. 
This new code is capable of correcting single errors and detecting double errors. In 
terms of cyclic codes this is obtained by modifying g(X) to g�(X) = (1+X) g(X). The 
minimum distance of the resulting code is 4. 
The decoding circuit of the single correcting code is modified as follows. 
Let r(X) be the received word. 

(i) Divide Xm. r(X) by g(X)  to obtain a remainder that is the syndrome s(X) 
of degree m-1 or less 

(ii) Divide r(X) by (X+1) to obtain a remainder, ñ, whose value is either 0 or 
1. 

The detection circuit has the following scheme. 
Step 1 if ñ = 0, and s(X) = 0 then the r(X) is a codeword c(X) 
Step 2 if ñ = 1, and s(X) ≠ 0, one error has occurred and it can be corrected 
Step 3 if ñ = 0, and s(X) ≠ 0, two errors are detected, hence alarm signal of a 

detected but uncorrectable error pattern. 
Step 4 if ñ = 1, and s(X) = 0, there are at least 3 errors such that r(X) has been 

changed to a c(X). Indication of an undetectable error. 
 
 
Probability of undetectable error. 
 

The extended code C� with minimum distance 4, consists of the even weighted code 
vectors of the original code C, with minimum distance 3.  



 7

The original weight distribution polynomial, for the Hamming Code, (n, k) is given by 
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and the weight distribution of the new code C�, A�(z), is made up of the even 
power terms of A(z), given by A�(z) = ½[A(z) + A(-z)], and using A(z) above to 
obtain 
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  and (4.2) Pu(E) can be calculated in terms of A�(z). 
This can also be calculated from the dual code. The dual of a distance 4 Hamming 
code has a weight distribution B�(z) given by 
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 Using (3.9) and (4.4) Pu(E) can be calculated. In terms of B�(z). 
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It can be shown that Pu(E) in (4.5)  satisfies the upper bound 2-(n-k) ( =  2-(m+1)) 

 
Shortened Cyclic Codes 
 
An (n,k) cyclic code can be altered to an (n-l, k-l) code, shortened by l bits. This 
code is strictly  a shortened cyclic code. It consists of a subset of the original 
codewords of degree (n-i) or less, still using the same g(X) and generating the 
same syndrome during decoding. 
However, when decoding, the (n-l) shifts that are used to input the received word, 
still require a further l-shifts to align to the syndrome pattern, and eventually to an 
error position Xn-l-i.  
To remove the extra shifts, either the connections to the syndrome register, or the 
syndrome pattern can be shifted to the appropriate start pattern, to align the 
syndrome pattern to the first potential error bit. 
Figure 4.4 shows the decoding circuit for a (31,26) cyclic code with the AND gate 
looking for the first error pattern 00001. 
When Figure 4.4 is adapted to a shortened cyclic code (28,23) with l =3, the new 
start syndrome, for the same circuit but having a 28-bit shift register, is given by 
01000 
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