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Notice that the limits of the sum above have not been stated explicitly. They depend
on the sizes of vectors x and h. Since our independent variable is the time t, it is
convenient to assume that the inputs (and, as a result, also the outputs) come at all
times t = ..., -2, -1, 0,1,2, Thus, we use the notation

x = (. . . , a, b, c, d, e, . . .),

where the central value c is the input at time zero [c = x(O)], values d and e are the
inputs at times 1 and 2, respectively, and b = x(-I) and a = x(-2). In practice, the
inputs are always finite, so the infinite vector x will have only a finite number of nonzero
elements.

Deeper insight into the behavior of a linear filter can be gained by considering
the simple input x = (...,0,0,1,0,0,.. .). This input is zero at all times except at
t = O. It is called a unit pulse or a unit impulse. Even though the limits of the sum
in the convolution have not been specified, it is easy to see that for any n there is only
one nonzero term in the sum, so y(n) = h(n)x(O) = h(n). We say that the output
y(n) = h(n) at time n is the response at time n to the unit impulse x(O) = 1. Since the
number of filter coefficients h( i) is finite, the filter is a finite impulse response, or FIR.

Figure 4.18 shows the basic idea of a filter bank. It shows an analysis bank consisting
of two filters, a lowpass filter Ho and a highpass filter Hi. The lowpass filter employs
convolution to remove the high frequencies from the input signal x and let the low
frequencies go through. The high pass filter does the opposite. Together, they separate
the input into frequency bands.

I

I

I

I

I

-IJ=
° -1.2 quantize_~

input x compress ~Joutput x
Hi -1.2 or save -~

Figure 4.18: A Two-Channel Filter Bank.

The input x can be a one-dimensional signal (a vector of real numbers, which is what
we assume in this section) or a two-dimensional signal, an image. The elements x(n) of
x are fed into the filters one by one, and each filter computes and outputs one number
y(n) in response to x(n). The number of responses is therefore double the number of
inputs (because there are two filters), an unfortunate result, since we are interested
in compression. To correct this situation, each filter is followed by a downsampling
process where the odd-numbered outputs are thrown away. This operation is also called
decimation and is represented by the boxes marked "+2". After decimation, the number
of outputs from the two filters together equals the number of inputs.

Example: It is easy to construct a filter bank where the lowpass part produces
averaging and the highpass part produces differences, essentially generating the Haar
transform ofthe input. The filter coefficients for the lowpass filter are h(O) = h(l) = 1/2
and the ones for the high pass filter are h(O) = -1/2 and h(l) = 1/2. Applying these

filters to the one-dimensional input sequence

(x(0),...,x(7)) = (255,224,192,159,127,95,63,32)
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produces the sequence of averages a( i)

1 1
a(O) = -x(O) + x( -1) = - (255+ 0) = 127.5,2 2

1 1
a(l) = -x(l) + x(O) = -(224 + 255) = 239.5,2 2

1 1
a(2) = -x(2) + x(l) = -(192 + 224) = 208,2 2

1 1
a(3) = -x(3) + x(2) = -(159 + 192) = 175.5,2 2

1 1

a(4) = 2x(4) + x(3) = 2(127 + 159) = 143,
1 1

a(5) = 2x(5) + x(4) = 2(95 + 127) = 111,
1 1

a(6) = 2x(6) + x(5) = 2(63 + 95) = 79,
1 1

a(7) = -x(7) + x(6) = -(32 + 63) = 47.5,2 2
1 1

a(8) = -x(8) + x(7) = - (0 + 32) = 16,2 2

and the sequence of differences d(i)

1 1
d(O) = --x(O) + x( -1) = -( -255 + 0) = -127.5,2 2

1 1
d(l) = --x(l) + x(O) = -(-224 + 255) = 15.5,2 2

1 1
d(2) = --x(2) + x(l) = -(-192 + 224) = 16,2 2

1 1
d(3) = - -x(3) + x(2) = - (-159 + 192) = 16.5,2 2

1 1
d(4) = --x(4) + x(3) = -( -127 + 159) = 16,2 2

1 1
d(5) = - -x(5) + x( 4) = - (-95 + 127) = 16,2 2

1 1
d(6) = --x(6) + x(5) = -(-63 + 95) = 16,2 2

1 1
d(7) = --x(7) + x(6) = -(-32 + 63) = 15.5,2 2

1 1
d(8) = - -x(8) + x(7) = - (-0 + 32) = 16.2 2

After decimation, the first sequence is reduced to (239.5,175.5,111,47.5) and the second
sequence is reduced to (15.5, 16.5, 16, 15.5). These values can be concatenated to produce
the combined sequence (239.5,175.5,111,47.5,15.5,16.5,16,15.5), which is identical to
that produced by Equation (4.1).
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Reconstructing the original sequence is done by upsampling (inserting zeros), fol-
lowed by the synthesis filter bank, which is different from the analysis filter bank. The
lowpass synthesis filter uses the two filter coefficients 1 and 1 to produce the four recon-
structed values y(O), y(2), y(4), and y(6), while the highpass synthesis filter uses the
two filter coefficients 1 and -1 to produce the four reconstructed values y(l), y(3), y(5),
and y(7). These eight values are then interleaved to reconstruct the original sequence.

y(O)= a(l) + d(l) = (239.5+ 15.5) = 255,
y(2) = a(3) + d(3) = (175.5+ 16.5) = 192,
y(4) = a(5) + d(5) = (111+ 16) = 127,
y(6) = a(7) + d(7) = (47.5+ 15.5) = 63,

y(l) = a(l) - d(l) = (239.5- 15.5) = 224,
y(3) = a(3) - d(3) = (175.5- 16.5) = 159,
y(5) = a(5) - d(5) = (111- 16) = 95,
y(7) = a(7) - d(7) = (47.5- 15.5) = 32.

Filter banks are a general way of looking at the Haar transform, but they are the
key to designing other, more sophisticated discrete wavelet transforms. This technique
is discussed in Section 4.5.

The reason for having a bank of filters as opposed to just one filter is that several
filters working together, with downsampling, can exhibit behavior that is impossible to
obtain with just a single filter. The most important feature of a filter bank is its ability
to reconstruct the input from the outputs Hox and Hlx, even though each has been
decimated.

Downsampling is not time invariant. After downsampling, the output is the even-
numbered values y(O), y(2), y(4),..., but if we delay the inputs by one time unit, the
new outputs will be y(-l), y(l), y(3),..., and these are different from and independent
of the original outputs. These two sequences of signals are two phases of vector y.

The outputs of the analysis bank are called subband coefficients. They can be
quantized (if lossy compression is acceptable), and they can be compressed by means
of RLE, Huffman, arithmetic coding, or any other method. Eventually, they are fed
into the synthesis bank, where they are first upsampled (by inserting zeros for each odd-
numbered coefficient that was thrown away), then passed through the inverse filters Fo
and FI, and finally combined to form a single output vector x. The output of each
analysis filter (after decimation) is

(.,t.y)= (oo., y( -4), y( -2), y(O), y(2), y(4),oo .).

Upsampling inserts zeros for the decimated values, so it converts the output vector
above to

(ty) = (..., y( -4),0, y( -2),0, y(O),0, y(2), 0, y(4), 0,.. .).

Downsampling causes loss of data. Upsampling alone cannot compensate for it,
because it simply inserts zeros for the missing data. In order to achieve lossless re-

,..-
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construction of the original signal x, the filters have to be designed such that they
compensate for this loss of data. One feature that is commonly used in the design
of good filters is orthogonality. The Haar analysis filter bank uses the two coefficients
(1/2,1/2) in the lowpass filter and the two coefficients (-1/2,1/2) in the highpass filter.
The dot product of these two 2-element vectors is (1/2,1/2). (-1/2,1/2) = O. Similarly,
the Haar synthesis filter bank uses the two sets (1,1) and (1, -1) of orthogonal filter
coefficients.

Figure 4.19 shows a set of orthogonal filters of size 4. The filters of the set are
orthogonal because their dot product is zero:

(a, b, c, d) . (d, -c, b, -a) = O.

I
I
I
I

,
I

Notice how similar Ho and Fo are (and also HI and FI). It still remains, of course,
to choose actual values for the four filter coefficients a, b, c, and d. A full discussion
of this topic is outside the scope of this book, but Section 4.5 illustrates some of the
methods and rules used in practice to determine the values of various filter coefficients.
An example is the Daubechies D4 filter, whose values are listed in Equation (4.12).

~ a, b, c, d HEJ- hh -lt2x(n)
1 d -c b -a Kill- -lt2, , ,

x(n-3)
d, c, b, a

-a, b, -c, d

Figure 4.19: An Orthogonal Filter Bank with Four Filter Coefficients.

Simulating the operation of this filter manually shows that the reconstructed input
is identical to the original input but lags three time units behind it.

A filter bank can also be biorthogonal, a less restricted type of filter. Figure 4.20
shows an example of such a set of filters that can reconstruct a signal exactly. Notice
the similarity of Ho and FI and also of HI and Fo.

Ho 1-1,2,6, 2,-1HEJ- -@]

x(n) -[I 1 -2 1 Kill- -1t21HI ' ,

1, 2, 1 hFo- 16 x(n-3)

1, 2, -6, 2, 11FI

Figure 4.20: A Biorthogonal Filter Bank with Perfect Reconstruction.

We already know, from the discussion in Section 4.2, that the outputs ofthe lowpass
filter Ho are normally passed through the analysis filter several times, creating shorter
and shorter outputs. This recursive process can be illustrated as a tree (Figure 4.21).
Since each node of this tree produces half the number of outputs as its predecessor, the
tree is called a logarithmic tree. Figure 4.21 shows how the scaling function cj>(t)and the
wavelet 'ljJ(t)are obtained at the limit of the logarithmic tree. This is the connection
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f(t)

Figure 4.21: Scaling Function and Wavelet as Limits of a Logarithmic Tree.

between the discrete wavelet transform (using filter banks) and the continuous wavelet
transform (CWT, [Salomon 00]).

As we "climb" up the logarithmic tree from level i to the next finer level i + 1, we
compute the new averages from the new, higher-resolution scaling functions 4J(2it - k)
and the new details from the new wavelets 'lj;(2it -.k):

signal at level i (averages) \.
+ signal at level i + 1.

details at level i (differences) )'I

Each level of the tree corresponds to twice the frequency (or twice the resolution) of the
preceding level, which is why the logarithmic tree is also called a multiresolution tree.
Successive filtering through the tree separates lower and lower frequencies.

Those who do quantitative work with sound and music know that two tones at
frequencies wand 2w sound like the same note and differ only in pitch. The frequency
interval between wand 2w is divided into 12 subintervals (the so-called chromatic scale),
but Western music has a tradition of favoring just eight of the twelve tones that result
from this division (a diatonic scale,made up of seven notes, with the eighth note as the
"octave"). This is why the basic frequency interval used in music is traditionally called
an octave. We therefore say that adjacent levels of the multiresolution tree differ in an
octave of frequencies.

Summary: The discussion of filter banks in this section should be compared to
the discussion of image transforms in Section 3.5. Even though both sections describe
transforms, they differ in their approach, since they describe different classes of trans-
forms. Each of the transforms described in Section 3.5 is based on a set of orthogonal
basis functions (or orthogonal basis images) and is computed as an inner product of
the input signal with the basis functions. The result is a set of transform coefficients
that are subsequently compressed either losslessly (by RLE or some entropy encoder)
or lossily (by quantization followed by entropy coding).

This section deals with subband transforms, a different type of transform that is
computed by taking the convolution of the input signal with a set of bandpass filters and
decimating the results. Each decimated set of transform coefficients is a subband signal
that encodes a specific range of the frequencies of the input. Reconstruction is done
by upsampling, followed by computing the inverse transforms, and adding the resulting
sets of outputs from the inverse filters.

....
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The main advantage of subband transforms is that they isolate the different fre-
quencies of the input signal, thereby making it possible for the user to precisely control
the loss of data in each frequency range. In practice, such a transform decomposes
an image into several subbands, corresponding to different image frequencies, and each
subband can be quantized differently.

The main disadvantage of this type of transform is the introduction of artifacts,
such as aliasing and ringing, into the reconstructed image because of the downsampling.
This is why the Haar transform is not satisfactory, and most of the research in this field
has been aimed at finding better sets of filters.

Figure 4.22 shows a general subband filter bank with N bandpass filters and three
stages. Notice how the output of the highpass filter Ho of each stage is sent to the next
stage for further decomposition and how the combined output of the synthesis bank of
a stage is sent to the top inverse filter of the synthesis bank of the preceding stage.

yo(n)

~ko Fo

¥_IJ~L~
:
L IILJ ~ YN(n) w=I rv=J . i~ ~

yo(n)

~ L~o Fo
YI(n)

~h ~
stageI2 : ( ) :

L~~:'_?_~yo(n)

x(n)

1=
~ YI(n) ~ x(n)~ ~

, ' stage 1
, YN(n) i~ ~

stage 3

Figure 4.22: A General Filter Bank.

4.5 Deriving the Filter Coefficients

After presenting the basic operation of filter banks, the natural question is "How are
the filter coefficients derived?" A full answer is outside the scope of this book (see, for
example, [Akansu and Haddad 92]), but this section provides a glimpse at the rules and
methods used to figure out the values of various filter banks.

Given a set of two forward and two inverse N-tap filters Ho and HI and Fo and PI
(where N is even), we denote their coefficients by

ho = (ho(O),ho(l),...,ho(N - 1)),

10 = (10(0),10(1),... ,lo(N - 1)),

hI = (hl(0),hl(1),...,hl(N-1)),

h = (h(O), h(l),..., h(N - 1)).

-..,
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The four vectors ho, hI, fa, and h are the impulse responses of the four filters. Following
is the simplest set of conditions that these quantities have to satisfy:

1. Normalization: Vector ho is normalized (i.e., its length is one unit).
2. Orthogonality: For any integer i that satisfies 1 ::; i < N /2, the vector formed by the
first 2i elements of ho should be orthogonal to the vector formed by the last 2i elements
of the same ho.
3. Vector fa is the reverse of ho.
4. Vector hI is a copy of fa where the signs of the odd-numbered elements (the first,
third, etc.) are reversed. We can express this by saying that hI is computed by coordi-
nate multiplication of hI and (-1,1, -1, 1,..., -1, 1).
5. Vector h is a copy of ho where the signs of the even-numbered elements (the second,
fourth, and so on) are reversed. We can express this by saying that h is computed by
coordinate multiplication of ho and (1, -1, 1, -1,...,1, -1).

For two-tap filters, rule 1 implies

h6(0) + h6(1) = 1. (4.10)

Rule 2 is not applicable because N = 2, so i < N /2 implies i < 1. Rules 3-5 yield

fa = (ho(l),ho(O)), hI = (-ho(l),ho(O)), h = (ho(O),-ho(1)).

It all depends on the values of ho(O) and ho(1), but the single Equation (4.10) is not
enough to determine them. However, it is not hard to see that the choice ho(O) -
ho(l) = 1/V2 satisfies Equation (4.10).

For four-tap filters, rules 1 and 2 imply

h6(0) + h6(1) + h6(2) + h6(3) = 1, ho(0)ho(2) + ho(1)ho(3) = 0, (4.11)

and rules 3-5 yield
fa = (ho(3),ho(2),ho(1),ho(0)),

hI = (-ho(3), ho(2), -ho(l), ho(O)),

h = (ho(O), -ho(l), ho(2), -ho(3)).

"How are
k (see, for
rules and

Again, Equation (4.11) is not enough to determine four unknowns, and other consid-
erations (aided by mathematical intuition) are needed to derive the four values. These
values are listed in Equation (4.12)-the Daubechies D4 filter.

For eight-tap filters, rules 1 and 2 imply

Fa and FI h6(0) + h6(1) + h6(2) + h6(3) + h6(4) + h6(5) + h6(6) + h6(7) = 1,

ho(0)ho(2) + ho(1)ho(3) + ho(2)ho(4) + ho(3)ho(5) + ho(4)ho(6) + ho(5)ho(7) = 0,

ho(0)ho(4) + ho(1)ho(5) + ho(2)ho(6) + ho(3)ho(7) = 0,

ho(0)ho(6) + ho(1)ho(7) = 0,
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and rules 3-5 yield

10 = (ho(7),ho(6),ho(5),ho(4),ho(3),ho(2),ho(1),ho(0)),

hI = (-ho(7), ho(6), -ho(5), ho(4), -ho (3),ho(2), -ho(l), ho(O)),

h = (ho(O), -ho(l), ho(2), -ho(3), ho(4), -ho(5), ho(6), -ho(7)).

The eight coefficients are listed in Table 4.23 (this is the Daubechies D8 filter).

.230377813309 .714846570553 .630880767930 -.027983769417
-.187034811719 .030841381836 .032883011667 -.010597401785

Table 4.23: Coefficients for the Daubechies 8-Tap Filter.

Determining the N filter coefficients for each of the four filters Ho, HI, Fo, and FI
depends on ho(O) through ho(N -1), so it requires N equations. However, in each of the
cases, rules 1 and 2 supply only N /2 equations. Other conditions have to be imposed
and satisfied before the N quantities ho(O)through ho(N -1) can be determined. Here
are some examples:

Lowpass Ho filter: We want Ho to be a lowpass filter, so it makes sense to require
that the frequency response Ho(l.JJ)be zero for the highest frequency I.JJ= Jr.

Minimum phase filter: This condition requires the zeros of the complex function
Ho(z) to lie on or inside the unit circle in the complex plane.

Controlled collinearity: The linearity of the phase response can be controlled by
requiring that the sum

2:)ho(i) - ho(N - 1 - i))2

be a minimum.

Other conditions are discussed in [Akansu and Haddad 92].

4.6 The DWT

Information that is produced and analyzed in real-life situations is discrete. It comes
in the form of numbers, rather than as a continuous function. This is why the discrete
wavelet transform (DWT) is used in practical calculations. There is also a continuous
wavelet transform (CWT, [Lewalle 95] and [Rao and Bopardikar 98]) and studying the
CWT may help in understanding the operation of the DWT.

The DWT involves a convolution, but experience shows that the quality of this
type of transform depends heavily on two things, the choice of scale factors and time
shifts and the choice of wavelet.

In practice, the DWT is computed with scale factors that are negative powers of 2
and with time shifts that are nonnegative powers of 2. Figure 4.24 shows the so-called
dyadic lattice that illustrates this particular choice. The wavelets used are those that
generate orthonormal (or biorthogonal) wavelet bases.

The main thrust in wavelet research has therefore been the search for wavelet
families that form orthogonal bases. Of those wavelets, the preferred ones are those that
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Figure 4.24: The Dyadic Lattice Showing the Relation between
Scale Factors and Time.

have compact support, because they allow for DWT computations with jinite impulse
response (FIR) filters.

The simplest way to describe the discrete wavelet transform is by means of matrix
multiplication, along the lines developed in Section 4.2.1. The Haar transform depends
on two jilter coefficientsCoand C1,both with a value of 1/ V2::::;0.7071. The smallest
transform matrix that can be constructed in this case is G - D / V2. This is a 2 x 2
matrix, and it generates two transform coefficients, an average and a difference. (Notice
that these are not exactly an average and a difference, because V2is used instead of 2.
Better names for them are coarse detail and jine detail, respectively.) In general, the
DWT can use any set of wavelet filters, but it is computed in the same way regardless
of the particular filter used. .

We start with one of the most popular wavelets, the Daubechies D4. As its name
implies, it is based on four filter coefficients co, C1,C2,and C3,whose values are listed in
Equation (4.12). The transform matrix W is [compare with matrix Ai, Equation (4.1)]

When this matrix is applied to a column vector of data items (Xl, X2,..., xn), its top

22... . . . . . . . . . . . . .
21 ... . . . . . .
20 t . . .

Time

Co C1 C2 C3 0 0 ... 0

C3 -C2 C1 -co 0 0 ... 0
0 0 Co C1 C2 C3 ... 0
0 0 C3 -C2 C1 -co ... 0

I
W=

I
0 0 ... 0 Co C1 C2 C3
0 0 ... 0 C3 -C2 C1 -Co

C2 C3 0 ... 0 0 Co C1

C1 -Co 0 ... 0 0 C3 -C2
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row generates the weighted sum Sl = COX1 + C1X2 + C2X3 + C3X4, its third row generates
the weighted sum S2 = COX3 + C1X4 + C2XS + C3X6, and the other odd-numbered rows
generate similar weighted sums Si. Such sums are convolutions of the data vector Xi
with the four filter coefficients. In the language of wavelets, each of them is called a
smooth coefficient, and together they are called an H smoothing filter.

In a similar way, the second row of the matrix generates the quantity d1 = C3X1 -

C2X2 + C1X3 - COX4, and the other even-numbered rows generate similar convolutions.
Each di is called a detail coefficient, and together they are called a G filter. G is
not a smoothing filter. In fact, the filter coefficients are chosen such that the G filter
generates small values when the data items Xi are correlated. Together, Hand G are
called quadrature mirror filters (QMF).

The discrete wavelet transform of an image can therefore be viewed as passing the
original image through a QMF that consists of a pair of lowpass (H) and highpass (G)
filters.

If W is an n x n matrix, it generates n/2 smooth coefficients Si and n/2 detail
coefficients di. The transposed matrix is

It can be shown that in order for W to be orthonormal, the four coefficients have to
satisfy the two relations c6 + cI + c~ + c~ = 1 and C2CO+ C3C1= o. The other two
equations used to calculate the four filter coefficients are C3 - C2 + C1 - Co = 0 and
OC3 - 1c2 + 2C1- 3co = O. They represent the vanishing of the first two moments of the
sequence (C3, -C2, Cl, -co). The solutions of these four equations are

Co = (1+ V3)/(4V2) ~ 0.48296, C1 = (3+ V3)/(4V2) ~ 0.8365,

C2 = (3 - V3)/(4V2) ~ 0.2241, C3 = (1 - V3)/(4V2) ~ -0.1294.
(4.12)

Using a transform matrix W is conceptually simple but not very practical, since
W should be of the same size as the image, which can be large. However, a look at W
shows that it is very regular, so there is really no need to construct the full matrix. It is
enough to have just the top row of W. In fact, it is enough to have just an array with the
filter coefficients. Figure 4.25 is Matlab code that performs this calculation. Function
fwt1Cdat,coarse,filter)takes a row vector dat of 2n data items, and another array,
filter, with filter coefficients. It then calculates the first coarse levels of the discrete
wavelet transform.

,

Co C3 0 0 ... C2 C1

C1 -C2 0 0 ... C3 -co

C2 C1 Co C3 ... 0 0
C3 -co C1 -C2 ... 0 0.

WT=
I

C2 C1 Co C3 0 0

C3 -co C1 -C2 0 0

C2 C1 Co C3

C3 -co C1 -C2



c

4.6 The DWT

function wc1=fwt1(dat,coarse,filter)
% The 1D Forward Wavelet Transform

% dat must be a 1D row vector of size 2~n,
% coarse is the coarsest level of the transform
% (note that coarse should be «n)

% filter is an orthonormal quadrature mirror filter
% whose length should be <2~(coarse+1)
n=length(dat)j j=log2(n); wc1=zeros(1,n);
beta=datj

for i=j-1:-1:coarse
alfa=HiPass(beta,filter)j
wc1((2~(i)+1):(2~(i+1)))=alfaj
beta=LoPass(beta,filter) ;

end
wc1(1:(2~coarse))=betaj

function d=HiPass(dt,filter) % highpass
d=iconv(mirror(filter),lshift(dt))j
% iconv is matlab convolution tool

n=length(d);

d=d(1:2:(n-1))j

downsampling

function d=LoPass(dt,filter) % lowpass downsampling
d=aconv(filter,dt);

% aconv is matlab convolution tool with time-
% reversal of filter

n=length(d);
d=d(1:2:(n-1));

function sgn=mirror(filt)

% return filter coefficients with alternating signs

sgn=-((-1).-(1:length(filt))).*filtj

A simple test of fwtl is

n=16; t=(1:n)./nj

dat=sin(2*pi*t)
filt=[0.4830 0.8365

wc=fwt1(dat,1,filt)

0.2241 -0.1294];

which outputs
dat=
0.3827 0.7071 0.92391.00000.92390.70710.38270
-0.3827-0.7071-0.9239-1.0000-0.9239-0.7071-0.38270
wc=
1.1365-1.1365-1.56851.5685-0.2271-0.42390.22710.4239
-0.0281-0.0818-0.0876-0.04210.02810.08180.08760.0421

Figure 4.25: Code for the One-Dimensional Forward
Discrete Wavelet Transform.
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