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Abstract

In this paper we shall present a natural generalisation of orbital
graphs. If Γ is a subgroup of Sn×Sn, V and n-set, and (u, v) ∈ V ×V ,
then the set Γ(u, v) = {(α(u), β(v))|(α, β) ∈ Γ} will be the arc-set of
a digraph G with vertex-set V . Such a G will be called a two-fold
orbital digraph (TOD).

We shall emphasise properties of G which are markedly different
from those of orbital graphs, focusing, in particular, on the case when
G is disconnected, since this case brings out very sharply differences
between orbital graphs and TODs. The close relationship, in this
case, between the TOD G and its canonical double covering, is also
investigated.

The paper contains several examples intended to make these new
concepts and results more clear.

1 Introduction

Development in group theory, such as the classification of finite simple groups,
stimulated recent advancements in algebraic graph theory. One of the re-
markable tasks accomplished is the determination of all vertex-transitive
graphs of order equal to the product of two primes ( cf. [6], [12] and [11] ).

The construction of orbital digraphs is one of the basic tools in the study
of vertex-transitive digraphs. In principle, the group-theoretical method used
to construct orbital digraphs may not only be employed to generate all vertex-
transitive digraphs ( cf. [3] and [7] ), but also makes it clear whether these
vertex-transitive digraphs are arc-transitive or not.
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Orbital digraphs are obtained by a permutation group Γ acting on a set
V . Fixing (u, v), u, v ∈ V , (u, v) ∈ V ×V , all pairs (α(u), α(v)), with α ∈ Γ,
form a digraph G, such that Γ ≤ Aut(G). Some general properties of orbital
graphs and their use in algebraic graph theory can be found in [1] and [5].

Here we will present a natural generalization of this construction. Instead
of orbitals, we will define two-fold orbitals and instead of orbital digraphs,
we will construct two-fold orbital digraphs. A two-fold orbital is obtained by
replacing α by a pair of possibly different permutations (α, β) ∈ Γ ≤ S =
Sn × Sn. Then, if (u, v) is a fixed element of V × V , the set Γ(u, v) defined
by Γ(u, v) = {(α(u), β(v)) | (α, β) ∈ Γ} is a two-fold orbital. The digraph
G = (V,Γ(u, v)) having V as vertex set and the two-fold orbital Γ(u, v) as
arc-set is then called a two-fold orbital digraph or a Γ-orbital digraph.

We will show that although the orbital, that is the arc set of a two-fold
orbital digraph, is itself an orbit of a group Γ acting on V × V , two-fold
orbital digraphs have properties that are considerably different from those of
the usual orbital graphs. For instance, whereas orbital graphs are all vertex-
transitive, two-fold orbital graphs are not necessarily so. The action of a
pair (α, β) on V × V has a ‘wild’ behaviour. We may, for instance, have
loops even for u 6= v. On the other hand, we will show that there is a close
relationship with the automorphism group of the canonical double covering
(CDC) of the digraph G, that is, B(G). In view of the interest in the study
of canonical double coverings ( cf. [4], [8] and [13] ), this close relationship
provides further motivation for this research.

The two-fold orbital digraph construction method may therefore be used
to build digraphs G, such that their canonical double coverings, that is B(G),
have suitable properties. We may, for example, find pairs of graphs G and
G̀ with B(G) ∼= B(G̀) (cf. [9] and [10]). Cvetković, Doob and Sachs [2] have
shown that such pairs of graphs are cospectral.

Therefore, in view of the above remarks, we hope that investigating the
features of two-fold orbital digraphs will be interesting and useful.

The focus of this work is on some properties of two-fold orbital digraphs
that differ from those of orbital digraphs. After some preliminary definitions
on digraphs and graphs and permutation groups we shall consider, in Sections
2 and 3, two-fold isomorphisms and canonical double coverings. Our main
results are then contained in Section 4 where we emphasize disconnected
two-fold orbital graphs because whereas in orbital graphs the components
are clearly all isomorphic, a very different behaviour is observed for two fold
orbital graphs. Then in Section 5 study in more detail a special class of two-
fold orbital digraphs, the class of χ-orbital digraphs, where the existence of
loops is considered in more carefully. We also characterize bipartite discon-
nected two-fold orbital graphs and also derive conditions for cycle structures
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of the isomorphisms α and β which are necessary for (α, β) to be a two-fold
isomorphism of a disconnected two-fold orbital graph G. We conclude the
paper with some open problems and conjectures.

2 Definitions

2.1 Digraphs and Graphs

A digraph G = (V (G), A(G)) consists of two sets: a set V (G) whose elements
are called vertices and a set A(G) whose elements, called arcs, are ordered
pairs of elements of V (G). The sets of vertices will always be finite. An
arc (u, v) from u to v, where u, v ∈ V (G), is denoted by u −→G v (or
u −→ v when G is clear from the context). Arcs u −→ u, consisting of a
pair of repeated vertices are sometimes allowed. Such arcs are called loops.
Multiple arcs, that is, repetition of the same arc u −→ v, are not allowed.

A digraph G is said to be bipartite if there exists a partition of V (G) into
two classes V0 and V1 such that for all arcs u −→ v either u ∈ V0 and v ∈ V1

or v ∈ V0 and u ∈ V1. The sets V0 and V1 are said to be the stable parts ( or
sets) of G.

The number of arcs incident from a vertex v is called its out-degree, de-
noted by degout(v) while the number of arcs incident to v is called its in-
degree, denoted by degin(v).

An arc u −→G v in A(G), is said to be self-paired if the opposite arc
v −→G u is also in A(G). If an arc u −→G v is self-paired, then vertices
u, v ∈ G may be ‘joined’ by a pair of oppositely directed arcs, that is, u −→G

v and v −→G u. The ordered pairs (u, v) and (v, u) may be substituted by
the unordered pair {u, v}. An unordered pair of vertices {u, v} ∈ V (G) is
known as an edge. The edge {u, v} of digraph G may be denoted by u ∼G v
or u ∼ v.

A graph ( or undirected graph ) G = (V (G), E(G)) consists of two disjoint
sets : a non-empty set V (G) whose elements are called vertices and a set
E(G) whose elements, called edges, are unordered pairs of elements of V (G)
in the sense defined above. Therefore, for us a graph is actually a digraph in
which all arcs are self-paired.

In the case of graphs, the degree of a vertex v, denoted by deg(v) is the
number of edges in E(G) to which v belongs. A graph is said to be regular
if all its vertices have the same degree.
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2.2 Permutation Groups

A permutation group is a pair (Γ, X) where X is a finite set and Γ is a
subgroup of the symmetric group SX , that is the group of all permutations
of X.

Let v ∈ X. The stabilizer of v, under the action of Γ is denoted by Γv

while the orbit of v is denoted by Γ(v).
The Orbit-Stabilizer Theorem states that, for any element v ∈ X,

|Γ| = |Γ(v)|.|Γv|.

A permutation group (Γ, X) is said to be a transitive permutation group
if the elements of X are all in one orbit; Γ is said to act transitively on X.

We say that a digraph G is vertex-transitive if ∀u, v ∈ V (G), there is an
automorphism α of G such that α(u) = v.

We say that a digraph G is arc-transitive if given any two arcs a −→G b
and c −→G d, there exists an automorphism α of such that α(a) −→G α(b) =
c −→G d. This means that a digraph G is arc-transitive if all the arcs of G
are in the same orbit under the action of α. In particular, if G is a graph,
then it is arc-transitive if, for any two edges a ∼ b and c ∼ d, there exist
automorphisms α, β such that α(a) = c and α(b) = d, and β(a) = d and
β(b) = c.

We say that a graph G is edge-transitive if given any two edges {a, b} and
{c, d}, there exists an automorphism α of such that {α(a), α(b)} = {c, d}.
This means that a graph G is edge-transitive if all the edges of G are in the
same orbit under the action of α.

2.3 Direct Products of Groups

We recall that the direct product Γ1 × Γ2 of two groups Γ1 and Γ2 consists
of ordered pairs (α, β) where α ∈ Γ1 and β ∈ Γ2, with multiplication defined
by:

(α1, β1)(α2, β2) = (α1α2, β1β2).

Let V be an n-set and Sn be the symmetric group on V . We will write
S = Sn × Sn. We shall consider the natural action of S on V × V defined as
follows:

(α, β)(u, v) = (α(u), β(v)) with (α, β) ∈ S and (u, v) ∈ V × V.

Suppose π1, π2 : S 7→ Sn are defined by π1(α, β) = α and π2(α, β) = β.
Then, π1 and π2 are said to be the canonical projections of S on Sn.
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Figure 1: (α, β) is a TF-automorphism of the Petersen graph where α, β are
defined by α = β = (1 2 3 4 5)(6 7 8 9 10)

Let Γ ≤ S. The transpose of Γ, written as ΓT is the set of ordered pairs
(β, α) such that (α, β) ∈ Γ. If ΓT = Γ, the group is said to be self-paired.
Clearly, if Γ is self-paired, its projections πi(Γ) (i = 1, 2) are equal.

If Γ ≤ Sn, then the subgraph D(Γ) of S defined by D(Γ) = {(α, α|α ∈ Γ}
is said to be the diagonal group corresponding to Γ.

2.4 TF-isomorphisms

Let G1 and G2 be two digraphs. Then (α, β) is a two-fold isomorphism from
G1 to G2, denoted by TF-isomorphism, ⇐⇒ α and β are bijections from
V (G1) to V (G2) and u −→G1

v ⇐⇒ α(u) −→G2
β(v) for every pair of

vertices u, v ∈ V (G1) .
If there is a TF-isomorphism between digraphs G1 and G2, we say that

G1 and G2 are TF-isomorphic and we write G1
∼=TF G2. A TF-isomorphism

(α, β) : G1 → G1 , that is, between a digraph and itself, is called a TF-
automorphism. An example of a TF-automorphism is illustrated in Figure
1. The pair (α, β) is, in fact, a TF-automorphism on the Petersen graph.

The set of TF-automorphisms of a digraph G is a group and it is denoted
by AutTF G.

Note that although two isomorphic digraphs have isomorphic underlying
graphs, two TF-isomorphic digraphs may have non-TF-isomorphic underly-
ing graphs. An example is given in Figure 2.
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Figure 2: In this example α = (1 2 3)(4)(5)(6), β = (1 4)(2 5)(3 6)
and (α, β) is a TF-isomorphism from G1 to G2. However, (α, β) is not
a TF-isomorphism between the underlying graphs. In fact there is no TF-
isomorphism between these graphs.

As we shall see later on, the relationship between TF-isomorphisms and
canonical double coverings is more direct than that between TF-isomorphisms
and the underlying graphs. Subsequently, we shall use results on canon-
ical double coverings to get results which connect the behaviour of TF-
isomorphisms and the properties of the actual digraphs and underlying graphs.
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3 Canonical Double Coverings.

3.1 Basic Properties

In the following discussion, the digraphs are finite and without multiple arcs,
but loops are allowed.

Let G be a digraph. The canonical double covering (CDC) of G is the
digraph B(G), whose vertex set is V (G) × Z2 such that there exists an arc

(u, ε) −→ (v, ε + 1) ⇐⇒ u −→G v exists (ε,∈ Z2).

On the same vertex set, we will denote by B+(G) the digraph whose arcs
are (u, 0) −→ (v, 1) with u −→ v in G and we will denote by B−(G) the
digraph whose arcs are (u, 1) −→ (v, 0) with u −→ v in G

Clearly B(G) = G×K2, the categorical product of G and K2, and B(G) =
B+(G) ∪ B−(G). Moreover, B+(G), B−(G) and B(G) are bipartite. Note
that β : (u, ε) 7→ (u, ε + 1) is an automorphism of B(G) and an isomorphism
from B+(G) to B−(G).

Figure 3 shows a digraph G, its canonical double covering B(G) as well
as B+(G) and B−(G). The fact that B(G) = B+(G) ∪ B−(G) is clearly
illustrated. Also note that β : (u, ε) 7→ (u, ε + 1) is clearly an automorphism
of B(G) and an isomorphism between B+(G) and B−(G). In fact, β maps
any start-vertex (x, 0) ∈ V (B+(G)) to a start-vertex (x, 1) ∈ V (B−(G)) and
similarly it maps end-vertices of B+(G) to end-vertices in B−(G).

The proof of the following result is easy.

Proposition 3.1 The canonical double covering of a bipartite digraph is dis-
connected.

Two digraphs G and G′ are said to be B-isomorphic if they have isomor-
phic canonical double coverings, that is, B(G) ∼= B(G′).

Let Aut(B(G))0 be the setwise-stabilizer in Aut(B(G)) of the stable
parts of B(G). If G is connected and not bipartite, then |Aut(B(G)) :
Aut(B(G))0| = 2. (Note that, under the action of Aut(B(G)) on subsets of
vertices of B(G), the orbit of {(u, 0)|u ∈ G} has only two elements, namely
itself and {(u, 1)|u ∈ G}.)

Now, let G̃ be a bipartite graph. An involution α ∈ Aut(G̃) is said to be
switching if α interchanges the stable parts ( or classes ) of G̃, and strongly
switching if furthermore no edge is fixed by α.

Of course, if α is switching, the conjugacy class of α in Aut(G̃) consists
only of switching involutions. If α is strongly switching, the conjugacy class
of α in Aut(G̃) consists only of strongly switching involutions.
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Figure 3: Digraphs G, B(G), B+(G) and B−(G).

8



The following result was proved by Porcu. Here, we give a more detailed
proof.

Proposition 3.2 [Porcu] [10] Let G̃ be a bipartite graph. Then there is a
digraph G such that G̃ ∼= B(G) if and only if G̃ has a switching involution
α. Loops of G correspond to vertices u such that u −→G̃ α(u). In particular,
G is loopless if and only if α is strongly switching.

Proof : If α is a switching involution of G̃ and V1 and V2 the classes
of G̃, define G by V (G) = V0 and u −→G v ⇐⇒ u −→G̃ α(v). Hence
u −→G̃ α(v) ⇐⇒ u −→G v ⇐⇒ (u, ε) −→B(G) (v, ε + 1) . Since all

the arcs of G̃ are of the type u −→ α(v) with u ∈ V0(G̃) = V (G) and
α(v) ∈ V1(G̃) ( because α exchanges the stable parts of G̃), then it follows
that G̃ ∼= B(G).

Conversely, suppose that there exists G such that B(G) ∼= G̃. Let us
define α by u −→G̃ α(v) ⇐⇒ u −→G v. We claim that α is a switching
involution. In fact, suppose u ∈ V0(G̃). Then u −→G̃ α(v) ⇒ α(v) ∈ V1

since G̃ is bipartite. Since α(v) ∈ V1 and u ∈ V0, then α(v) −→G̃ u ⇐⇒
α(v) −→G̃ α(u) ⇒ α(u) ∈ V1 since G̃ is bipartite. Hence α exchanges the
classes of G̃ and is hence, a switching involution. Furthermore, consider any
loop u −→G u in G. Therefore u −→G u ⇐⇒ u −→G̃ α(u). The fact that
G is loopless if and only if α ia strongly switching follows easily.

The digraph G obtained from α and G̃ as in Proposition 3.2 will be
denoted by G̃α. If G̃ has two switching involutions α and β, then we can
let G and G̀ be two digraphs whose vertex sets are identified with a class V0

of G̃ and let G = G̃α and G̀ = G̃β as constructed above. We will shorten
u −→G̃ v and u −→G̃α

v into u −→ v and u −→α v respectively. Similar
abbreviations will be used for ∼ .

Clearly, if Aut(G̃) has several switching involutions, then G̃ = B(G) for
several graphs G. These graphs may not be isomorphic. The following result
shows the way in which the number of non-isomorphic graphs and the number
of conjugacy classes of the switching involutions are related.

Theorem 3.3 [Porcu] [10] Let G̃ be a bipartite graph. The number of
non-isomorphic digraphs G such that G̃ ∼= B(G) is equal to the number of
conjugacy classes of switching involutions in Aut(G̃). The number of non-
isomorphic loopless graphs G such that G̃ ∼= B(G) is equal to the number of
conjugacy classes of strongly switching involutions in Aut(G̃)

We shall also be needing the next results.
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Theorem 3.4 [Pacco and Scapellato] [9] Let G ∼= G̃α and G̀ ∼= G̃β be

two non-isomorphic digraphs with B(G) ∼= B(G̀) ∼= G̃. Then there exists
φ ∈ Aut(G̃α) ∩ Aut(G̃β) such that φ2 = 1 6= φ and φ = χm|V0 for some m
where χ = αβ.

Furthermore, letting j = bm
2
c, if u −→α φ(u) then there is a loop in χj(u)

in the digraph G̃α or G̃β accordingly to whether m is even or odd respectively.

Corollary 3.5 In the hypothesis of Theorem 3.4, if both G and G̀ are loopless,
then there is no vertex u such that u −→G φ(u) or u −→G̀ φ(u).

Allowing loops, the following proposition would hold.

Proposition 3.6 [Pacco and Scapellato] [9] Let G be a digraph with
loops such that there exists an involutory automorphism φ ∈ Aut(G) with
φ 6= 1 and u 9G φ(u) for all u ∈ V (G). Then there exists a digraph G̀ such
that G 6∼= G̀ and B(G) ∼= B(G̀).

3.2 Automorphisms of a CDC

In this subsection, we shall define some automorphisms of canonical double
coverings to which we will be referring in the next subsection. We will also
show that there is a link between the canonical double coverings of graphs
and the possible TF-isomorphisms between them.

(i) The automorphisms φ+ and φ− of B(G), induced by any
automorphism φ of G:

Let φ be any automorphism of G. Define φ+ and φ− as follows:

φ+(u, ε) = (φ(u), ε)

φ−(u, ε) = (φ(u), ε + 1)

∀u ∈ V (G) and ε ∈ Z2.

Note: φ+ fixes the components and φ− interchanges them. It is easy to
check that φ+ and φ− are automorphisms of B(G).

(ii) The automorphism ξ of B(G)

The automorphism ξ of B(G) is defined as follows:
ξ : (u, ε) 7→ (u, 1 + ε)

Note : ξ is an automorphism of B(G) and an isomorphism between B+(G)
and B−(G).
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3.3 TF-isomorphisms and CDC’s

Theorem 3.7 Two digraphs G1 and G2 such that B(G1) ∼= B(G2) are TF-
isomorphic. The converse holds in the case of graphs.

Proof: Let G1 and G2 be two digraphs such that B(G1) ∼= G̃ ∼= B(G2).
By definition, there exist maps αi, βi : V (Gi) −→ V (G̃) (i = 1, 2) such that
(u, v) ∈ A(Gi) ⇐⇒ αi(u), βi(v) ∈ A(G̃). Letting α = α1α

−1
2 and β = β1β

−1
2 ,

we have α, β : V (G1) −→ V (G2). Moreover, u −→G1
v ⇐⇒ α1(u) −→G̃

β1(v) ⇐⇒ α−1
2 α1(u) −→G2

β−1
2 β1(v), that is, u −→G1

v ⇐⇒ α(u) −→G2

β(v). Hence (α, β) is a TF-isomorphism from G1 to G2. Therefore, the
digraphs Gi (i = 1, 2) are TF-isomorphic.

Conversely, assume that (α, β) : (G1) −→ (G2) is a TF-isomorphism,
with Gi (i = 1, 2) being graphs and define φ : V (B(G1)) −→ V (B(G2)) by:

φ(w, ε) =

{

(α(w), 0) ε = 0
(β(w), 1) ε = 1

Then, for each arc (u, 0) −→ (v, 1) of B(G1) we have φ(u, 0) = (α(u), 0)
and φ(v, 1) = (β(v), 1). Therefore, ((α(u), 0), (β(v), 1)) is an arc of B(G2).
Clearly, φ : B+(G1) −→ B+(G2) is an isomorphism. The underlying graphs
B(G1) and B(G2) are isomorphic, that is, B(G1) ∼= B(G2).

Note that the above theorem implies that, for graphs, a TF-isomorphism
can always induce a φ+ and a φ−.

Example 1 :
The graphs G1 and G2, in Figure 4 are not TF-isomorphic and, in fact,
B(G1) � B(G2) confirming Theorem 3.7.

Note that the map φ : B(G1) → B(G2) preserves only the arcs going
from V (G1)×{0} to V (G2)×{1}. Hence it cannot help extend theorem 3.7
to digraphs. In fact, that result does not hold in the more general situation,
as shown in Example 2.

Example 2 :
The digraphs G1 and G2 in Figure 5 have non-isomorphic canonical double
coverings, that is, B(G1) � B(G2), but still they are TF-isomorphic since
there exists a pair (α, β) which is a TF-isomorphism mapping G1 to G2.

4 TOD’s and CDC’s

The main results of this paper are in this section. We first introduce two-fold
orbital digraphs (TOD’s). Then we proceed to show that there is a close re-
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Figure 4: G1 and G2 are not TF-isomorphic. In fact, B(G1) � B(G2).
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Figure 5: B(G1) � B(G2). However, there exists a TF-isomorphism (α, β)
from G1 to G2 defined by α = id and β = (1 5 3)(2)(4)(6)
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Figure 6: This graph, has arc set Γ(1, 2) where Γ = D4 × S4 ≤ S4 × S4.

lationship between two-fold orbital digraphs/graphs (TOD’s) and canonical
double coverings (CDC’s) of digraphs/graphs.

Let Γ ≤ S where π1Γ and π2Γ are transitive on the n-set V . For a fixed
element (u, v) in V × V let

Γ(u, v) = {(α(u), β(v)) | (α, β) ∈ Γ}

The set Γ(u, v) is called a two-fold orbital.
A two-fold orbital Γ(u, v) is therefore the set of arcs of a digraph having

V as vertex set. The digraph G = (V,Γ(u, v)) is said to be a two-fold orbital
digraph (TOD) or a Γ-orbital digraph.

If G is self-paired then G is a two-fold orbital graph (TOG) or a Γ-orbital
graph.

The pair (u, v) is said to be representative of G.
It is apparent that orbitals are special cases of two-fold orbitals and that

two-fold orbital digraphs correspond to the case where Γ is diagonal, that is,
Γ = {(α, α) |α ∈ Γ}.

Note that even for a self-paired group Γ, the graph obtained from Γ(u, v)
may not be self-paired. This is known to happen even if Γ is diagonal, that is,
in the case of orbital digraphs. On the other hand, Γ(u, v) may be self-paired
even when Γ is not self-paired. For example, let Γ = D4 × S4 ≤ S4 × S4.
Although Γ is not self-paired, A(G) = Γ(1, 2) is (cf. Figure 6).

4.1 Disconnected TOG’s.

It is known that all connected components of a disconnected orbital digraph
are pairwise isomorphic. The properties of a disconnected TOD are not so
well-defined. In this section we shall study disconnected TOD′s, particularly
in the case when the components are graphs.
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Lemma 4.1 Let Gi , Gj be components of a disconnected graph G. Let (α, β) ∈
AutTF G be such that the arc u −→Gi

v in Gi is mapped to α(u) −→Gj
β(v)

in Gj. Then, for any x, neighbour of u in Gi (i.e. x ∼Gi
u ), β(x) ∈ V (Gj).

Proof: Let x ∼Gi
u that is, there exist arcs u −→Gi

x and x −→Gi
u.

Since (α, β) maps u −→Gi
v to α(u) −→Gj

β(v), we get α(u) ∈ V (Gj). But
(α, β) ∈ AutTF (G) implies that (α, β) maps any arc of the graph G into some
other arc of G. So, let us consider the arc u −→Gi

x, the existence of which
is guaranteed by the fact that Gi is connected and each arc is self-paired
since Gi is a component of an undirected graph. Therefore, (α, β) maps the
arc u −→Gi

x to some arc α(u) −→G β(x), whose existence is guaranteed
by the fact that (α, β) is a TF-isomorphism. Let β(x) ∈ V (Gk), for some
component Gk. But α(u) ∈ V (Gj) implies that the arc α(u) −→G β(x) joins
a vertex in Gj to a vertex in Gk; hence k = j. That is, β(x) ∈ V (Gj).

Referring to the proof of the above lemma we should remark that it holds
true only for undirected graphs. This is because the arc x −→Gi

u is mapped
to some arc α(x) −→G β(u) which might be in a component which is not
Gj; as regards the arc opposing α(u) −→Gj

β(x), there must exist some arc
y −→G v such that α(y) = β(x) and β(v) = α(u), but it is possible for
y −→G v to be different from the arc x −→Gi

u (i.e. y 6= x and v 6= u).

Proposition 4.2 Let G be a graph. Let Gi and Gj, where |V (Gi)| ≥ |V (Gj)|,
be connected components of G such that there exists (α, β) ∈ AutTF G map-
ping an arc of Gi to an arc of Gj. Then,

(a) Either Gi
∼=TF Gj or else Gi = B(Gj);

(b) Or, if Gi and Gj are bipartite, with V0(Gk) and V1(Gk) k = (i, j) de-
noting the stable parts, then Gi

∼= Gj.
In particular, φα,β : Gi −→ Gj defined by;

φα,β(x) =

{

αx, x ∈ V0(Gi)
βx, x ∈ V1(Gi)

or φα,β(x) =

{

αx, x ∈ V1(Gi)
βx, x ∈ V0(Gi)

( depending on whether for the arc u −→Gi
v, which is known to be

mapped to an arc of Gj, we have u ∈ V0(Gi), v ∈ V1(Gi) or u ∈ V1(Gi),
v ∈ V0(Gi) ), is an isomorphism.

Proof: (a) Since Gi and Gj are connected components of an undirected
graph G and (α, β) takes an arc of Gi to an arc of Gj, we may define the sets
A, B ⊆ V (G) as follows:
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A = { u ∈ V (Gi) | α(u) ∈ V (Gj) }
B = { u ∈ V (Gi) | β(u) ∈ V (Gj) }.

If u ∈ A, from u −→Gi
v, it follows that α(u) −→Gj

β(v) since (α, β) is a
TF-isomorphism. Hence β(v) ∈ V (Gj), that is v ∈ B. Conversely, if v ∈ B
and u −→Gi

v then α(u) −→Gj
β(v), and u ∈ A. Therefore, in view of the

preceding lemma, we may remark that

u ∈ A ⇐⇒ NGi
(u) ⊆ B (1)

u ∈ B ⇐⇒ NGi
(u) ⊆ A. (2)

Also, since Gi and Gj are connected, A ∪ B = V (Gi).
We distinguish between two cases:

Case 1 A ∩ B 6= ∅ : By the above, if u ∈ A ∩ B 6= ∅, we have A = B. In
fact, from (1) and (2), it follows that :

u ∈ A ∩ B ⇒ NGi
(u) ⊆ A ∩ B.

Now suppose w ∈ NGi
(u), then w ∈ A ∩ B and therefore, NGi

(w) ⊆
A∩B. Proceeding like that, we get that all u ∈ Gi ∈ A∩B since Gi is
connected. Hence A = B. Also, ∀u ∈ V (Gi), u ∈ A ∩ B so that, from
the definition of A and B, it follows that α(u) and β(u) are in V (Gj)
i.e. α and β take the vertices of Gi to vertices of Gj.

Thus, if A = B, we have |V (Gi)| ≤ |V (Gj)|. Hence, |A| = |V (Gi)| =
|V (Gj)|. Consequently, Gi

∼=TF Gj.

Case 2 A ∩ B = ∅ : This implies, first of all, that Gi is bipartite, with
stable parts A and B.
Next, we have that αA∪βB = V (Gj) for suppose that this is not true,
then, there exists a vertex w ∈ V (Gj)\(αA ∪ βB) which is adjacent
either to a vertex from αA or to a vertex from βB since Gj is con-
nected. Suppose that w ∼Gj

α(u) for some u ∈ A ⊆ V (Gi). Now,
|V (Gi)| ≥ |V (Gj)| implies that the condition of Lemma 4.1 is satisfied
and therefore, for each neighbour x of u, β(x) ∈ V (Gj).

Now, (α, β) is a TF-automorphism over the graph G. This implies that
for all u such that w ∼ α(u), there exists v such that β(v) = w and
u ∼ v. Therefore v must be a neighbour of u. Therefore v ∈ V (Gi)
and, by the previous argument, it is guaranteed that β(v) ∈ V (Gj).

15



Therefore β−1(w) = β−1β(v) = v ∈ N(u) ⊆ V (Gi). By definition of
(α, β), α(u) ∼ β(v) if and only if u ∼ v , that is, u −→ v exists if
α(u) −→ β(v) exists.

Now, we can distinguish two subcases :

Subcase 2.1 Let αA ∩ βB 6= ∅. Then we have αA = βB = V (Gj).
Indeed, suppose that this is not the case. For connectivity reasons,
there is a vertex w ∈ αA∩βB which is adjacent either to a vertex
from αA \ βB or to a vertex from βB \ αA. Let w ∼Gj

y, where,
say, y ∈ αA \ βB. Then the arc w −→ y is mapped by (α−1, β−1)
to an arc of Gi. Since Gi is bipartite and α−1(w) ∈ A, we have
β−1(y) ∈ B, that is y ∈ βB, which is a contradiction. Hence
αA = βB = V (Gj).
We claim that Gi = B(Gj) i.e. (u, ε) −→Gi

(v, ε + 1) ⇐⇒
u −→Gj

v. (ε ∈ Z2).

Consider the arc u −→Gi
v. We can always re-label the start-

vertex u as (u, ε) and the end-vertex v as (v, ε + 1). Without
loss of generality, let u ∈ A. Then v ∈ B since v ∈ NGi

(u). By
definition of A and B, α(u) ∈ V (Gj) and β(v) ∈ V (Gj). But
(α, β) ∈ AutTF G. Hence the pair (α, β) maps arc u −→G v into
arc α(v) −→G β(v). Since α(u) and β(v) are both in V (Gj), then
α(v) −→G β(v) is an arc in component Gj.

Conversely, suppose α(u) −→Gj
β(v). Since α(A) = β(B) =

V (Gj), then α−1 : V (Gj) → A and β−1 : V (Gj) → B. Hence
α−1(α(u)) = u ∈ A and β−1(β(v)) = v ∈ B.
We claim that the arc u −→Gi

v exists. Again, this follows from
the fact that (α, β) is a TF-isomorphism in G which implies that
the inverse of (α, β) i.e. (α−1, β−1) maps the arc α(u) −→Gj

β(v)
to the arc u −→Gj

v. We can then re-label any u ∈ A as (u, ε)
and any v ∈ B as (v, ε + 1).

Subcase 2.2 Let αA∩βB = ∅. This implies that Gi and Gj are both
bipartite. Define the mapping φ : V (Gi) → V (Gj) by the rule
φ(u) = α(u) if u ∈ A and φ(u) = β(u) if u ∈ B. Then φ is a
bijection and moreover, an isomorphism.

Since both components Gi and Gj are bipartite and connected,
αV0(Gi) ∩ βV1(Gi) = ∅ or αV1(Gi) ∩ βV0(Gi) = ∅ (depending on
the direction of the arc in Gi which is known to be mapped to
an arc in Gj). This guarantees that the corresponding φα,β is a
bijection and moreover, an isomorphism. This gives (b).
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Example 3:

Let X is a digraph. We denote by Xop the digraph having the same
vertex set as X, that is V (Xop) = V (X) and having the arc set defined by ;
u −→Xop

v exists ⇐⇒ v −→X u exists.
Figure 7 illustrates a TF-isomorphism (α, β) on a graph consisting of three

vertex-disjoint 4-cycles G1,G2 and G3 on vertices {1, 2, 3, 4} ∪ {5, 6, 7, 8} ∪
{9, 10, 11, 12}, rspectively. α = (1 5 9)(2 10 6)(3 7 11) (4 12 8) and β = (5 1
9)(10 2 6)(7 3 11) (12 4 8) i.e. β = α−1. Then (α, β) maps X 7→ Y 7→ Z 7→ X
and maps Xop 7→ Zop 7→ Y op 7→ Xop. Note that each of X,Y ,Z,Xop,Y op

and Zop is bipartite. This corresponds to Case 2 of Proposition 4.2. If we
consider X, for instance, we can define the bipartition sets A and B as in the
proof of Proposition 4.2. Therefore, A = {1, 3} and B = {2, 4}. Note that
α(1) = 5, α(3) = 7 and that β(2) = 6, β(4) = 8. Therefore, α(A) = {5, 7}
and β(B) = {6, 8} so that α(A) ∩ β(B) = ∅. We can repeat the same
procedure by considering Xop and Zop and then repeat the argument for Y ,Z
and for Zop, Y op and so on. In each case we may deduce that α(A)∩β(B) = ∅.
In fact, this example corresponds to Subcase 2.2 of the proof of Proposition
4.2 where A∩B = ∅ and α(A)∩β(B) = ∅. Clearly, G1

∼= G2
∼= G3 confirming

statement (b) of Proposition 4.2.

Example 4:
Figure 8 shows a graph G,consisting of two vertex-disjoint 4-cycles G1 and G2

with V (G1) = {1, 2, 3, 4} and V (G2) = {5, 6, 7, 8}. We recall the definitions
of A and B:

A = {u ∈ V (G1) | α(u) ∈ V (G2) }
B = {u ∈ V (G1) | β(u) ∈ V (G2) }

If α = (1 3)(5 7)(2 6)(4 8) and β = (2 4)(6 8)(1 5)(3 7), then A =
{2, 4} (since α(2) = 6 ∈ V (G2) and α(4) = 8 ∈ V (G2)) and B = {1, 3}
(since β(1) = 5 ∈ V (G2) and β(3) = 7 ∈ V (G2)). Therefore, A ∩ B = ∅.
Also α(A) ∩ β(B) = ∅. Therefore the conditions of Case 2, Subcase 2.2 of
Proposition 4.2 are satisfied. In fact, we may note again that G1 and G2

are bipartite and moreover φα,β as defined in part (b) of the statement of
Proposition 4.2 is an isomorphism.

Example 5:
Figure 9 illustrates a still more trivial example. G is a graph on vertices
{1, 2, 3, 4} with two components G1 and G2 consisting of the edges {1, 2} and
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Figure 7: The case of Example 3.
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Figure 9: The case of Example 5.

{3, 4} respectively; α = (1342) and β = α−1 = (2431). One may note that G
is a two-fold orbital graph with respect to the group 〈(α, α−1)〉. If we maintain
the definitions of A and B as in Proposition 4.2, A = {1} and B = {2}. Also
α(A)∩α(B) = ∅ (since α(1) = 3 and β(2) = 4). The components G1 and G2

are in fact, both bipartite and moreover, φα,β as defined in part (b) of the
statement of Proposition 4.2 is an isomorphism. Therefore, in this example,
(α, β) is a TF-automorphism of G. Its components G1 and G2 are isomorphic
but (α, β) is not a TF-isomorphism between G1 and G2.

Example 6:
Figure 10 shows a disconnected TOG with components G1, G2 and G3 with
|V (G3)| ≤ |V (G2)| ≤ |V (G1)|. G is generated by the pair (α, β) ∈ AutTF (G).
The pair (α, β) maps at least one arc of G3 to an arc of G2 and at least
one arc of G2 to an arc of G1. Let us consider the components G1 and
G2 and maintain the definitions of A and B as proposed in the proof of
Proposition 4.2.1. Then A = {1, 3, 5, 7, 9} and B = {2, 4, 6, 8, 10}. Using
the definitions of α and β, we note that α(A) = {11, 13, 15, 12, 14} and
β(B) = {12, 14, 11, 13, 15}. Note that α(A) ∩ β(B) 6= ∅ and in fact, as in
Subcase 2.1 in the proof of Proposition 4.2.1, α(A) = β(B). The component
G1 is in fact, the canonical double covering of the component G2, that is
G1 = B(G2) as proposed in the proof (Subcase 2.1) of Proposition 4.2.2. If
we then consider the components G2 and G3, and again apply the definitions
of A and B, it is easy to check that A = B and that |A| = |B| = |V (G2)|.
The components G2 and G3 are in fact, TF-isomorphic as well as isomorphic.
Furthermore, we remark that G1, G2 and G3 taken separately are two fold
orbital graphs. Such an observation provides motivation to check whether or
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Figure 10: Graph G has components G1, G2 and G3. G is a TOG where
α = (1 11 20 6 9 14 18 4)(2 3 13 17 8 7 12 16)(5 15 19 10) and β =
(1 4 14 18 9 6 11 20)(2 12 16 7 8 13 17 3)(5 10 15 19)

not this is always the case and Theorem 4.2.1 will address this question.

Example 7:
In the example illustrated in Figure 11, we consider disconnected digraphs.
Gi and Gj ( |V (Gi)| ≥ |V (Gj)| ) are the connected components of a digraph
G. It can be seen that α and β are both fixed-point-free. G is a TOD on
Γ, Γ = 〈(α, β)〉. Furthermore, we can check that (α, β), for instance, maps
arc 1 −→Gi

2 to arc 4 −→Gj
5. However, Gi 6∼=TF Gj and Gi 6∼= B(Gj).

Therefore, the statement of Proposition 4.2 does not hold in the case of
digraphs.

Theorem 4.3 Let G be a TOG with no isolated vertices and let its connected
components be G1, ......, Gk and:

|V (G1)| ≥ |V (G2)| ≥, .... ≥ |V (Gk)|.

Then each Gi(i = 1, ...., k) is still a TOG. Moreover :

(i) if |V (G1) = |V (Gk)|, then G1, G2, ..., Gk are pairwise TF-isomorphic :

(ii) otherwise, there exists a unique index r ∈ {1, .....k − 1} such that G1
∼=

G2
∼= ... ∼= Gr 6∼=

TF Gr+1
∼=TF ... ∼=TF Gk and G1

∼= B(Gk)
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Figure 11: α = (1456723) and β = (1256743). G is a Γ-TOD , where
Γ = 〈(α, β)〉.

Proof : Consider an arbitrary component Gi. Then, we may distinguish
two cases.

Case 1 If Gi is not bipartite . In this case, we may assume that any
(α, β) ∈ AutTF G mapping an arc of Gi to an arc of Gi (i = 1, ...., k)
restricts to a TF-automorphism of Gi.
Let Γi denote the group of all such TF-automorphisms. Then Gi is a
Γi − TOG. This follows from the proof of Proposition 4.2.

Case 2 If Gi is bipartite, then some TF-automorphisms may restrict to TF-
automorphisms of Gi.
Let Γ(i) be the set of all (α, β) ∈ Γ mapping an arc of Gi to an arc of
Gi and let Ψ(i) be the group generated by the set of induced standard
automorphisms {φα,β | (α, β) ∈ Γi of Gi} as in Proposition 4.2. Then,
Gi is a Ψ-two-fold orbital graph where Ψ = Ψ(i) × Ψ(i).

We have thus proved that each Gi (i = 1, ...., k) is still a TOG.
To prove (i):

This follows directly from the proof of Case 1 of the proposition.
To prove (ii) :

Assume that there exist r, s such that 1 ≤ r < s ≤ k − 1 and

|V (Gr)| ≥ |V (Gr+1) = |V (Gs)| > |V (Gs+1)|.

Now, we have that Gr
∼= B(Gr+1). Gr+1

∼=TF Gs and Gs
∼= B(Gs+1).

We had proved ( Proposition 3.7) that in the undirected case, if two graphs
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G1 and G2 are TF-isomorphic, then B(G1) ∼= B(G2). Hence, Gr+1 ≈ Gs ⇒
B(Gr+1) ∼= B(Gs). Therefore Gr

∼= B(Gs). It follows that Gr
∼= B(B(Gs+1)).

B(B(Gs+1)) is disconnected by virtue of Proposition 3.1. This is a con-
tradiction since Gr is not disconnected. Hence, there exists a unique r ∈
{1, ...., k − 1} such that :

|V (G1)| = ... = |V (Gr)| > |V (Gr+1)| = ... = |V (Gk)|

which yields (ii).

The next result is a partial converse of Theorem 4.3.

Theorem 4.4 Let G1, ......, Gk be graphs such that

|V (G1)| ≥ |V (G2)| ≥, .... ≥ |V (Gk)|

and r ∈ 1, ..., k − 1 such that

(i) all components Gi (r + 1 ≤ i ≤ k) are Γi- orbital graphs ;

(ii) for all p, q : 1 ≤ p ≤ q ≤ r, Gp
∼= Gq ;

(iii) for all p, q : r + 1 ≤ p ≤ q ≤ k, Gp
∼=TF Gq ;

(iv) for all i ∈ {1, ....., r}, there exists j ∈ {r + 1, ......, k} such that Gi
∼=

B(Gj).

Then

Ḡ =
k

⋃

i=1

Gi is a TOG.

Proof: Denote by φ∗

p,q, TF-isomorphisms Gp → Gq, r + 1 ≤ p ≤ q ≤ k.

Recall that Gi
∼=TF Gj implies B(Gi) ∼= B(Gj).

Consider the isomorphisms φi,j : Gi → Gj (1 ≤ i < j ≤ r). Suppose
φi,j = α is an isomorphism between Gi and Gj, then the pair (α, α) is a
TF-isomorphism between Gi and Gj (1 ≤ i < j ≤ r).

There exists s, t, with 1 ≤ s ≤ r and r+1 ≤ t ≤ k such that Gs = B(Gt).
Define bijections ᾱ, β̄ : V (Gt) ∪ V (Gs) → V (Gt) ∪ V (Gs) as follows:

ᾱ : u ↔ (u, 0)
(u, 1) ↔ (u, 1)

β̄ : u ↔ (u, 1)
(u, 0) ↔ (u, 0).
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Figure 12: Graph G has components G1, G2 and G3. α =
(1 4 7 10)(2 5 8 11)(3 6 9 12) and β = (1 4 10 7)(2 5 8 11)(3 6 9 12)

Then (ᾱ, β̄) interchanges the arc u −→ v with (u, 0) −→ (v, 1) and fixes
the arc (u, 1) −→ (v, 0). Similarly (β̄, ᾱ) interchanges the arc u −→ v with
(u, 1) −→ (v, 0) and fixes the arc (u, 0) −→ (v, 1). Therefore, (ᾱ, β̄) and
(β̄, ᾱ) extended to Ḡ are TF-isomorphisms from Ḡ onto itself. Hence, let
us extend to Γ̄, the TF-isomorphisms φ∗

p,q, the isomorphisms φi,j and the

elements in Γi. Then, let Γ̄ be the group

〈Γi, φi,j , φ
∗

p,q, (ᾱ, β̄), (β̄, ᾱ) | r+1 ≤ h ≤ k, 1 ≤ i < j ≤ r, r+1 ≤ p < q ≤ k〉.

It follows that Ḡ is a Γ̄-orbital graph.

Examples 8 and 9 are included to illustrate Theorem 4.3 and Theorem
4.4, respectively.

Example 8:
Figure 12 shows a disconnected TOG with components G1, G2 and G3 with
|V (G3)| ≤ |V (G2)| ≤ |V (G1)|. G is generated by the pair (α, β) ∈ AutTF (G).
We first note that (α, β) maps at least one arc of G3 to an arc of G2 and at
least one arc of G2 to an arc of G1. It is easy to check that G1 = B(G2)
and that G2 and G3 are isomorphic. In fact being isomorphic, they are
also TF-isomorphic. In fact, if we let α1 = β1 = (1 4)(2 5)(3 6), then
(α1, β1) = (α1, α1) is a TF-isomorphism between G1 and G3. Finally, we
remark that each component of G is itself a TOG.
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Figure 13: Graph G has components G1, G2 and G3. α =
(1 5 9 13 3 7 11 15)(2 6 14 10 4 8 16 12) and β =
(1 5 13 9 3 7 15 11)(2 6 10 14 4 8 12 16)

Example 9:
Figure 13 again shows a disconnected TOG with components G1, G2 and
G3 with |V (G3)| ≤ |V (G2)| ≤ |V (G1)|. G is generated by the pair (α, β) ∈
AutTF (G). The pair (α, β) maps at least one arc of G3 to an arc of G2 and at
least one arc of G2 to an arc of G1. It is easy to check that G1 = B(G2) and
that G2 and G3 are isomorphic. Again, we a remark that each component of
G is itself a TOG.

Theorem 4.5 Let G be a disconnected TOG, with no isolated vertices and
let its connected components be G1, ......, Gk. If one of its components is
bipartite then

either (i) all the components are isomorphic,

or (ii) there exists a unique index r ∈ {1, .....k− 1} such that G1
∼= G2

∼=
... ∼= Gr 6∼=

TF Gr+1
∼=TF ... ∼=TF Gk and G1

∼= B(Gk) where all Gi where
1 ≤ i ≤ r are bipartite and no Gj where r + 1 ≤ j ≤ k is bipartite.

Proof: Let G be a TOG with no isolated vertices and let its connected
components be Gi, ......, Gk and

|V (G1)| ≥ |V (G2)| ≥, .... ≥ |V (Gk)|.

If follows from Theorem 4.3 that
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(i) if |V (G1) = |V (Gk)|, then G1, G2, ..., Gk are pairwise TF-isomorphic;

(ii) otherwise, there exists a unique index r ∈ {1, .....k − 1} such that G1
∼=

G2
∼= ... ∼= Gr 6∼=

TF Gr+1
∼=TF ... ∼=TF Gk and G1

∼= B(Gk).

Consider Case(i). Suppose there exists a bipartite component Gr. Con-
sider any Gs, 1 ≤ s ≤ k, s 6= r. Then |V (Gr)| = |V (Gs)| and Gr

∼=TF Gs,
that is, there exists (α, β) ∈ AutTF (G) such that

∀(u, v) ∈ A(Gr), (α, β)(u, v) = (α(u), β(v)) ∈ A(Gs).

As in Proposition 4.2 define φα,β : Gi −→ Gj by;

φα,β(x) =

{

αx, x ∈ V0(Gr)
βx, x ∈ V1(Gr)

or φα,β(x) =

{

αx, x ∈ V1(Gr)
βx, x ∈ V0(Gr)

depending on whether for the arc u −→Gr
v is such that u ∈ V0(Gr) and

v ∈ V1(Gr) or u ∈ V1(Gr) and v ∈ V0(Gr).
Note that (α, β) is a TF-isomorphism between Gr and Gs. Then, ∀(ù, v̀) ∈

A(Gs), (α
−1(ù), β−1(v̀)) = (u, v) ∈ A(Gr), for some u, v ∈ V (Gr), such that

α(u) = ù and β(v) = v̀. Furthermore, recall that |V (Gr)| = |V (Gs)|. There-
fore φα,β is clearly well-defined, one-to-one and onto. Hence φα,β is an iso-
morphism between Gr and Gs. Consequently, if Gr is bipartite, Gs is also
bipartite. It follows that in this case, all the components of G are bipartite
and isomorphic. Therefore G itself is bipartite.

Let us now consider Case(ii) which corresponds to Case(ii) of Theorem
4.3. In this case, for all i, j, r+1 ≤ i ≤ j ≤ k, Gi

∼=TF Gj ⇒ B(Gi) ∼= B(Gj).
If there exists r+1 ≤ p ≤ k such that Gp is bipartite, then its canonical double
covering B(Gp) ( ∼= B(Gi), r + 1 ≤ i ≤ k ) must be disconnected by virtue
of Proposition 3.1. Therefore G1

∼= B(Gk) is a contradiction since B(Gk) is
disconnected but G1 is connected. Therefore none of Gp, r + 1 ≤ p ≤ k can
be bipartite.

Now suppose that Gq, 1 ≤ q ≤ r is bipartite. Note that this implies that
all Gi, 1 ≤ i ≤ r are bipartite since G1

∼= G2
∼= ... ∼= Gr. In particular, G1 is

bipartite and according to Theorem 4.3, G1
∼= B(Gk).

Corollary 4.6 A disconnected bipartite graph G is a TOG only if its com-
ponents are all isomorphic.

Proof: We remark that if the disconnected graph G is bipartite, then all
of its components must be bipartite. Therefore, only Case(i) of Theorem 4.5
holds.
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Note that the example shown in Figure 7 illustrates Case(i) of Theorem
4.5. In fact all components are bipartite and isomorphic. Moreover, we
remark that in this case, the disconnected graph G is a bipartite TOG.
Figure 7 illustrates Case(ii) of Theorem 4.5. In fact, G1 and G2 are not
bipartite, whereas G3 is bipartite and G1 = B(G3). In this case, although
the disconnected graph G is a TOG, it is not bipartite.

The next theorem shows that for a simple instance of a directed graph,
we can conclude that it is necessarily a TOD.

Theorem 4.7 Disconnected digraph G which is a union of disjoint directed
cycles is a TOD.

Proof : The digraph G is a union of strongly-connected, disjoint directed
cycles. Assume that G has only two components G1 and G2. Denote the
vertices of G1 with ui (i = 1, ...., n) and those in G2 with vj (j = 1, ....,m).
Hence, the arcs in Gi will be ui, ui+1 (i ∈ Zn+1) and vi, vj+1 (j ∈ Zm+1)
respectively.
Consider the following permutations on V (G):

α = (u0v0v1...vmu1u2...un)
β = (u1v1v2...v0u2u3...u0)

Each element of Γ = 〈(α, β)〉 takes u0u1 to an arc in G, since the image of
uiui+1 (resp. vivi+1) under the action of (ρ, σ) ∈ Γ, is either ui+1ui+2 or vjvj+1

(resp. vi+1vi+2 or uj, uj+1). Therefore, (ρ, σ) takes arcs of G into arcs of G.
On the other hand, each arc of G can be obtained as an image of u0u1, under
the action of a suitable power of (α, β). In fact, if the arc is vivi+1 or uiui+1,
we can use respectively, (α, β)i+1 (i ∈ Zm+1) or (α, β)m+i+1 (i ∈ Zn+1). Hence
G is a Γ-orbital digraph.

Let us now consider the general case, where the connected components
of G are Gi for i = 1, ..., k.

Then,

G =
k

⋃

i=1

Gi.

For each r, 1 ≤ r ≤ k − 1, define (αr, βr), acting as above on the vertices
of the components Gr and Gr+1 and fixing all the remaining vertices of G.
Then G is a Γ-TOD with Γ = 〈(αr, βr) | 1 ≤ r ≤ k − 1〉.
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4.2 On Disconnected TOG’s and the cycle structures
of α and β

Theorem 4.8 Let G be a disconnected graph and let |V (G)| = n. Suppose
that (α, β) is a TF-automorphism on G. Let α = α1α2 . . . αr where αi (1 ≤
i ≤ r) represent disjoint cycles of length nαi. Similarly let β = β1β2 . . . βs

where βj (1 ≤ j ≤ s) represent a cycles of length nβj. Then, if any two
numbers from the set {nαi, nβj | 1 ≤ i ≤ r, 1 ≤ j ≤ s} are relatively prime,
the graph cannot be a TOG.

Proof: Suppose, for contradiction, that G is a disconnected TOG and
that there are at least two from the set {nαi, nβj | 1 ≤ i ≤ r, 1 ≤ j ≤ s}
which are relatively prime.

We remark that by virtue of Lemma 4.1, all vertices in the cycle αi must
have the same out-degree ρ+

i . Similarly all vertices in the cycle βj must have
the same in-degree ρ−

j . Also
∑

i nαi
ρ+

i =
∑

j nβjρ
−

j = |A(G)|.
Let us consider Theorem 4.3(i). Suppose, without loss of generality, that

G has k isomorphic components. Each of these components must have the
same number of representatives pαi of any αi. Therefore pαi = nαi

k
. Similarly,

each of these components must have the same number of representatives qβi

of any βi. Therefore pβi =
nβi

k
. The numbers pαi and qβj are integers for all

1 ≤ i ≤ r and 1 ≤ j ≤ s. Therefore k must be a common factor of all nαi

and nβj for all 1 ≤ i ≤ r and 1 ≤ j ≤ s. Therefore, in Case(i) we have a
contradiction.

So, let us consider Case(ii) of Theorem 4.3. Suppose that the TOG
consists of k isomorphic components, each having pαi representatives from αi

and l components which are pairwise TF-isomorphic, one of which, namely
G1 is the canonical double covering of the last component Gk+l. If Gk+l has
pαi representatives of αi, then G1 would have 2pαi representatives of αi. Since
all the other l − 1 components are TF-isomorphic to G1, each would have
2pαi representatives of αi. Therefore 2pαil+pαik = nαi ∀1 ≤ i ≤ r. Therefore
pαi = nαi

(2l+k)
. Since pαi ∈ Z, then (2l + k) must be a common factor of nαi

for all i, 1 ≤ i ≤ r. Repeating the argument for the corresponding vertices
acted on by β, we may similarly conclude that (2l + k) must be a common
factor of nβj for all j, 1 ≤ j ≤ s. Again, we have a contradiction.

Therefore, we may conclude that if any two from the set {nαi, nβj | 1 ≤
i ≤ r, 1 ≤ j ≤ s} are relatively prime, the graph cannot be a TOG.

The above result may be useful to construct a disconnected TOG with
given number of vertices since it eliminates various possibilities for for fixed
k, l and n.
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It is possible that a similar analysis works for TOD′s, especially if we
do not allow any of the arcs to be self-paired. It is also worth investigating
whether the converse of the above theorem is true.

5 A subclass : the χ-orbital digraphs.

A basic difference between orbital graphs and two-fold orbital graphs is that
orbital digraphs are arc-transitive whereas, in general, two-fold orbital di-
graphs are not. In fact, if u 6= v, (u, v ∈ G), it is possible that α(u) = β(v)
for some α, β so that α(u) −→ β(v) is a loop.

Here we look for conditions which ensure that two-fold orbital digraphs
do not have loops. This could further lead to the possible arc-transitivity of
a TOD.

5.1 The χ-orbital digraphs

Consider a group Γ ≤ Sn and a map χ : Γ → Γ. Define Dχ(Γ) = {(α, χ(α)) |α ∈
Γ} ⊆ S.

Proposition 5.1 The Dχ(Γ) is a subgroup of S if and only if χ is an ho-
momorphism on Γ. Moreover Dχ(Γ) is self-paired if and only if χ2 = 1.

Proof: Dχ(Γ) is a subgroup of S if and only if

(α, χ(α))(β, χ(β)) = (αβ, χ(α)χ(β)) = (αβ, χ(αβ)),

that is, χ(α)χ(β) = χ(αβ) for any α, β ∈ Γ, that is, if and only if χ is a
homomorphism on Γ.

Now assume that Dχ(Γ) is self-paired. Then (χ(α), α) ∈ Dχ(Γ) for all
α ∈ Γ. This means that (χ(α), α) = (β, χ(β)) for a suitable β, so that χ
interchanges α and β. This holds for all α so that χ2 = 1.

Conversely, if χ2 = 1, consider (α, χ(α)) ∈ Dχ(Γ). Now, if we let
β = χ(α), then (χ(α), χ(χ(α))) = (χ(α), χ2(α)) = (χ(α), α) = (β, χ(β)) ∈
Dχ(Γ). Hence Dχ(Γ) is self-paired.

Note that, if χ = 1, then Dχ(Γ) is diagonal and therefore Dχ(Γ) would
give rise to orbital digraphs.

A Dχ(Γ)−two-fold orbital digraph will be referred to as a χ-orbital digraph
or a χ-TOD for short.

Example 10:
Figure 14 shows an example in which the choice of (u, v) determines whether
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2 6 1 4 4 5

3 2 6 3 5 1

1 2 3

4 5 6

(a) (b) (c)

(d) (e) (f)

Figure 14: The figure shows digraphs constructed on the vertex set V (G) =
{1, 2, 3, 4, 5, 6}. The digraphs shown are formed by the arc sets (a)
DΓ(λ)(2, 6), (b)DΓ(λ)(1, 4), (c)DΓ(λ)(4, 5), (d)DΓ(λ)(3, 2), (e)DΓ(λ)(6, 3) and
(f)DΓ(λ)(5, 1) respectively. The pair (α, β) ∈ Γ = Γ×Γ ⊂ S6×S6 is defined
by α = (12)(34)(56) and β = (13)(25)(46) and χ = αβ.
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2

3 4

4

2

1 3

Figure 15: The case of Example 11.

or not the resulting two fold orbital Γ(u, v) has loops . Only the cases when
the choice (u, v), u 6= v that yield loops are given.

Example 11:
Refer to Figure 15. Consider the group Γ = {id, (12)(34), (13)(24), (14)(23)}.
Set ρ = (12)(34), σ = (14)(23), τ = (13)(24) and let χ : Γ → Γ be the
automorphism χ = (ρστ). Figure 15 represents Dχ(Γ)(1, 1) and Dχ(Γ)(1, 2),
respectively.

We shall now deal with the problem of detecting loopless χ-orbital di-
graphs Dχ(u, v) since the condition that u 6= v is not sufficient to avoid
loops, as it has already been observed.

In fact, for a χ- orbital graph to be loopless, it is necessary that, for all
α ∈ Γ:

α(u) 6= χ(α(v)) (3)

This condition does not hold in the example illustrated in Figure 15,
whatever choice of (u, v) is made. As regards the example illustrated in
Figure 14, whether or not this condition holds, depends on the choice of
(u, v).

On the other hand, if Γ is not transitive and if u and v belong to distinct
orbits, then it is easily seen that condition (3) is fulfilled.

We shall now define a subset of Γ, based on the automorphism χ on Γ,
whose algebraic properties will help us determine when χ-orbital digraphs
have loops.

Let Γ ≤ Sn be transitive and χ ∈ Aut(Γ). We define the set Mχ(Γ) as
follows:
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Mχ(Γ) = {(χ(α))−1α | α ∈ Γ}

Note that, if Γ is abelian, then Mχ(Γ) is a subgroup of Γ.

Proposition 5.2 Let Γ ≤ Sn and χ ∈ AutΓ.

(i) if Mχ(Γ) = Γ, then the graph Dχ(Γ)(u, v) always has loops ;

(ii) if Mχ(Γ) 6= Γ and Γ is regular, then there exists (u, v) such that
Dχ(Γ)(u, v) has no loops ;

(iii) if there exists v ∈ X ⊆ Sn such that Γv ⊆ Mχ(Γ) and if Mχ(Γ) < Γ,
then there exists (u, v) such that Dχ(Γ)(u, v) has no loops.

Proof: Equation (3) is equivalent to:

(χ(α))−1α(u) 6= v (4)

If Mχ(Γ) = Γ, the element in Γ, taking u to v, has the form (χ(α))−1α,
contradicting (4). Therefore part(i) of the proposition follows.

From now on, assume that Mχ(Γ) 6= Γ. Let us fix β ∈ Γ\Mχ(Γ) and u ∈
X, and consider v = β(u). If there exists α ∈ Γ such that (χ(α))−1α(u) = v,
then the element β̀ = (χ(α))−1α fulfills the equation v = β̀(u). It follows
that β 6∈ Mχ(Γ) and β̀ ∈ Mχ(Γ). Therefore, β 6= β̀. This is impossible since
Γ is regular. This proves part (ii) of the proposition.

If Mχ(Γ) < Γ and Mχ(Γ) is a subgroup, the same argument as above

yields β−1β̀ ∈ Γu and β̀ ∈ Mχ(Γ). This implies that β ∈ Mχ(Γ) which is a
contradiction. This proves part (iii) of the proposition.

From the previous proposition, it is clearly useful to know whether for
some automorphism χ of Γ, Mχ(Γ) is or is not equal to Γ. We present below
two results which settle this question in particular circumstances.

Proposition 5.3 Let Γ be an abelian group and m be an integer such that
(m, |Γ|) = 1. Define χ ∈ AutΓ by χ : α 7→ αm. If (m− 1, |Γ|) = 1, that is, if
|Γ| is odd, then Mχ(Γ) = Γ, otherwise Mχ(Γ) < Γ.

Proof: Recall that Mχ(Γ) = {(χ(α))−1α |α ∈ Γ}. But χ(α) = αm with
m ∈ Z and (m, |Γ|) = 1. Also (χ(α))−1α = α−m.α = α1−m . It follows
that Mχ(Γ) = {α1−m |α ∈ Γ}. Since, from Lagrange’s Theorem, the order
of a subgroup of Γ is a divisor of |Γ|, then there exists p ∈ Z such that
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|(1−m)|p = |Γ|. Therefore p = |Γ|/|1−m|. If (m− 1, |Γ|) = 1, then p = |Γ|
and Mχ(Γ) = Γ. Otherwise, p < |Γ| and Mχ(Γ) < Γ.

For a group Γ, [Γ, Γ] is defined to be the group generated by all elements
[α, β] = α−1β−1αβ, for all α, β ∈ Γ.

Recall that a group Γ is nilpotent of class 2 when [Γ, Γ] ≤ Z(Γ), the
centre of Γ.

Proposition 5.4 Let Γ be a nilpotent group of class 2 and let χ be an inner
automorphism of Γ induced by τ ∈ Γ \ Z(Γ), that is, χ : α 7→ τ−1ατ . Then
Mχ(Γ) < Γ.

Proof: Note that Mχ(Γ) = {(χ(α))−1α |α ∈ Γ} = {τ−1α−1τα |α ∈ Γ} =
{[τ, α] |α ∈ Γ}, since

χ(α)−1 = χ(α−1) (∵ χ is an automorphism)

= τ−1α−1τ (by definition).

We have [µ, ω] ∈ Z(Γ) ( that is, µ−1ω−1µω ∈ Z(Γ) ) for all µ, ω ∈ Γ since
Γ is nilpotent of class 2. Therefore [τ, µ][τ, ω] = [τ, µω], since,

[τ, µω] = τ−1(µω)−1τµω

= τ−1ω−1µ−1τµω

= τ−1ω−1µ−1µτ [τ, µ]ω

= [τ, µ]τ−1ω−1µ−1µτω (∵ [τ, µ] commutes)

= [τ, µ]τ−1ω−1τω

= [τ, µ][τ, ω].

Hence Mχ(Γ) ≤ Γ. The map µ 7→ [τ, µ] is not injective since [τ, τ ] = [τ, 1] =
1. Therefore Mχ(Γ) is a proper subgroup of Γ.

Example 12 :
Let Γ be a nilpotent group of class 2, and H ≤ Mχ(Γ). Consider the action
of Γ on the set of right cosets of H, defined by :

Hω 7−→ Hωα.

Then, H ≤ Mχ(Γ). In view of Proposition 5.4, this is Case(iii) of Proposition
5.2. Hence, the graph Dχ(Γ)(u, v) has no loops.
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6 Conclusion

We have established a close link between two-fold orbital digraphs and canon-
ical double coverings. Now, it seems quite useful to build up a general theory
of two-fold orbital digraphs. Of course, much more work needs to be done to
achieve this. The following two problems seem to be important:

• Problem 1. Characterize those digraphs that are Γ-orbital for a suit-
able group Γ.

• Problem 2. Study the behaviour of the construction of two-fold orbital
digraphs with respect to various graph-theoretical properties.

It might also be worth investigating whether the converse of Theorem 4.5
is true.

As regards disconnected TOG’s, we present the following conjectures.

• Conjecture 1. A disconnected TOG with no isolated vertices is a
disconnected line graph of some graph G.

• Conjecture 2. Any disconnected TOG whose components are all
isomorphic is an iterated line graph Ln(G) of some graph G, where G
is a disconnected bipartite TOG.

• Conjecture 3. The subgraph of a disconnected TOG made up of all
isomorphic components of the disconnected TOG is an iterated line
graph Ln(G) of some graph G, where G is a disconnected bipartite
TOG.

We believe that the study of two-fold orbital digraphs has a potentially
high impact. We hope that this work provides an adequate basis for further
research.
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