
-- - - - ~ - ::. - --::iI

180 4. Wavelet Methods

clear j % main program

filename='lena128'; dim=128;

fid=fopen(filename,'r')j

if fid==-l disp('file not found')

else img=fread(fid,[dim,dim])'; fclose(fid);
end

thresh=O.O; % percentof transformcoefficientsdeleted
figure(1), imagesc(img),colormap(gray), axis off, axis square
w=harmatt(dim);% computethe Haar dim x dim transformmatrix
timg=w*img*w'; % forward Haar transform
tsort=sort(abs(timg(:)))j
tthresh=tsort(floor(max(thresh*dim*dim,l)));

cim=timg.*(abs(timg) > tthresh);

[i,j,s]=find(cim);

dimg=sparse(i,j,s,dim,dim)j

% figure(2) displays the remaining transform coefficients

%figure(2) , spy (dimg), colormap(gray) , axis square

figure(2), image (dimg), colormap(gray) , axis square

cimg=full(w'*sparse(dimg)*w)j % inverse Haar transform
density = nnz(dimg);

disp([num2str(100*thresh) '% of smallest coefficients deleted.'])
disp([num2str(density) , coefficients remain out of ' ...

num2str(dim) 'x' num2str(dim) '.'])

figure (3) , imagesc(cimg), colormap(gray) , axis off, axis square

File harmatt.m with two functions

function x = harmatt(dim)

num=log2(dim);

p = sparse(eye(dim));q = pj
i=lj
while i<=dim/2j
q(1:2*i,1:2*i)= sparse(individ(2*i))j
p=p*q; i=2*i;
end

x=sparse(p);

function f=individ(n)

x=[l, 1]/sqrt(2)j

y=[1,-1]/sqrt(2)j
while min(size(x)) < n/2

x=[x, zeros(min(size(x)),max(size(x)))j...

zeros(min(size(x)),max(size(x))), x];
end

while min(size(y)) < n/2

y=[y, zeros(min(size(y)),max(size(y)))j...

zeros(min(size(y)) ,max(size(y))) , y];
end

f=[x;y];

Figure 4.12: Matlab Code for the Haar Transform of an Image.

--,

--- -

4.2 The Haar Transform 181

and parameter "dim" should be a power of 2. The assignment "thresh=" specifies
the percentage of transform coefficients to be deleted. This provides an easy way to
experiment with lossy wavelet image compression.

File "harmatt .m" contains two functions that compute the Haar wavelet coefficients
in a matrix form (Section 4.2.1).

(A technical note: A Matlab m file may include either commands or a function but
not both. It may, however, contain more than one function, provided that only the top
function is invoked from outside the file. All the other functions must be called from
within the file. In our case, function harmatt (dim) calls function individ (n).)

Example: The code of Figure 4.12 is used to compute the Haar transform of the
well-known "Lena" image. The image is then reconstructed three times by discarding
more and more detail coefficients. Figure 4.13 shows the results of reconstructing the
original image from 3277, 1639, and 820 coefficients, respectively. Despite the heavy loss
of wavelet coefficients, only a very small loss of image quality is noticeable. The number
of wavelet coefficients is, of course, the same as the image resolution 128 x 128 = 16,384.
Using 820 out of 16,384 coefficients corresponds to discarding 95% of the smallest of
the transform coefficients (notice, however, that some of the coefficients were originally
zero, so the actual loss may amount to less than 95%).

4.2 The Haar Transform

The Haar transform uses a scale function <jJ(t)and a wavelet 'ljJ(t),both shown in Fig-
ure 4.14a, to represent a large number of functions f(t). The representation is the
infinite sum

00 00 00

f(t) = L Ck<jJ(t- k) + L L dj,k'ljJ(2jt - k),
k=-oo k=-oo j=O

where Ck and dj,k are coefficients to be calculated.
The basic scale function <jJ(t)is the unit pulse

{
I, 0:::; t < 1,

<jJ(t) = 0, otherwise.

The function <jJ(t- k) is a copy of <jJ(t),shifted k units to the right. Similarly, <jJ(2t- k)
is a copy of <jJ(t - k) scaled to half the width of <jJ(t - k). The shifted copies are used to
approximate f(t) at different times t. The scaled copies are used to approximate f(t)
at higher resolutions. Figure 4.14b shows the functions <jJ(2jt- k) for j = 0,1,2, and 3
and for k = 0,1, . . . ,7.

The basic Haar wavelet is the step function

{
I,

'ljJ(t)= -1,
0 :::;t < 0.5,
0.5 :::;t < 1.

From this we can see that the general Haar wavelet 'ljJ(2jt- k) is a copy of'ljJ(t) shifted
k units to the right and scaled such that its total width is 1/2j. The four Haar wavelets
'ljJ(22t- k) for k = 0,1,2, and 3 are shown in Figure 4.14c.

182

20 40

4. Wavelet Methods

60 80
"' = 3277

100 120

t.
~
. ,-

80f. ~., ..
1oaf~~r :t"... ..' .-
120f It .

20 40 60 80
"' =1639

100

,-

40_-'; ~ . :~~
60f8\'t.: YC.

"'...~.."...-. '.

120

r.

(a)

(b)

I

I

I

I

I

Figure 4.13: Three Lossy Reconstructions of the 128 x 128 Lena Image.

(c)

.
80f .. .
10af ,. . . .
120t

20 40 60 80 100 120
"' = 820

4.2 The Haar Transform 183

~1 t

'l/J(t)

'1
-l1r-
~

ru
(c) 'l/J(4t-k)

1 2 3 k

n
~
~

n

n 0
~ 1
~2
~3
~4
~5

rL 6
n 7

(b) cp(2jt-k)

Figure 4.14: The Haar Basis Scale and Wavelet Functions.

Both cp(2jt-k) and 'Ij;(2jt-k) are nonzero in an interval of width 1/2j. This interval
is their support. Since this interval tends to be short, we say that these functions have
compact support.

We illustrate the basic transform on the simple step function

{5, O:s;t < 0.5,
f(t) = 3, 0.5:S;t < 1.

It is easy to see that f(t) = 4cp(t) + 'Ij;(t). We say that the original steps (5,3) have
been transformed to the (low resolution) average 4 and the (high resolution) detail -1.
Using matrix notation, this can be expressed as (5,3)A2 = (4, -1), where A2 is the
order-2 Haar transform matrix of Equation (3.16).

4.2.1 A Matrix Approach

The principle of the Haar transform is to calculate averages and differences. It turns
out that this can be done by means of matrix multiplication ([Mulcahy 96] and [Mulc-
ahy 97]). As an example, we select the top row of the simple 8 x 8 image of Figure 4.8.
Anyone with a little experience with matrices can construct a matrix that when multi-
plied by this vector creates a vector with four averages and four differences. Matrix Al

(a)

j= 0

184 4. Wavelet Methods

"

of Equation (4.1) does that and, when multiplied by the top row of pixels of Figure 4.8,
generates (239.5,175.5,111.0,47.5,15.5,16.5,16.0,15.5). Similarly, matrices A2 and A3
perform the second and third steps of the transform, respectively. The results are shown
in Equation (4.2):

1 1 0 0 0 0 0 0 255 239.52 2
0 0 1 1 0 0 0 0 224 175.52 2
0 0 0 0 1 1 0 0 192 111.02 2
0 0 0 0 0 0 1 1 159 47.5

Al = I 1
2 2 Al I, (4.1)1 0 0 0 0 0 0 ' 127 15.52 -2

0 0 1 1 0 0 0 0 95 16.52 -2
0 0 0 0 1 1 0 0 63 16.02 -2
0 0 0 0 0 0 1 1 32 15.52 -2

1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 02 2 2 2
0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 02 2 2 -21 1 0 0 0 0 0 0 0 0 1 0 0 0 0 02 -2
0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0

A2 = I 2 -2 A3 =0 0 0 0 1 0 0 0 ' 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

239.5 207.5 207.5

143.3751
175.5 79.25 79.25 64.125

I
I

111.0 32.0 32.0 32. I

A I 47.5
31. 75

A3
31.75 31. 75

I. (4.2)=
2 15.5 15.5 ' 15.5 15.5

16.5 16.5 16.5 16.5
16.0 16.0 16.0 16.
15.5 15.5 15.5 15.5

Instead of calculating averages and differences of image rows, all we have to do is
construct matrices A!, A2, and A3, multiply them to get W = A1A2A3, and apply W
to all the rows of image I by multiplying W. I:

255
1 1 1 1 1 1 1 1

255 143.375"8 "8 "8 "8 "8 "8 "8 "8

224 1 1 1 1 -1 -1 -1 -1 224 64.125"8 "8 "8 "8 "8 "8 "8 "8
192 1 1 -1 -1 0 0 0 0 192 32

4 4 " "
WI 159 0 0 0 0 1 1 -1 -1 159 31.75= 4 4 " " =

127 1 -1 0 0 0 0 0 0 127 15.52 ""2
95 0 0 1 -1 0 0 0 0 95 16.5

2 ""2
63 0 0 0 0 1 -1 0 0 63 16

2 ""2
32 0 0 0 0 0 0 1 -1 32 15.5

2 ""2

. --- - ---

4.3 Subband Transforms 185

This, of course, is only half the task. In order to compute the complete transform, we
still have to apply W to the rows of the product W.I, and we do this by applying it to
the columns of the transpose (W. I)T, then transposing the result. Thus, the complete
transform is (see line timg=w*img*w' in Figure 4.12)

Itr = (W(W.I)T{ = W.I.WT.

The inverse transform is done by

W-1(W-1.IZ,)T = W-1(Itr'(W-1f),

and this is where the normalized Haar transform (mentioned on page 168) becomes im-
portant. Instead of calculating averages [quantities of the form (di +di+l)/2] and differ-
ences [quantities of the form (di -di+d/2], it is better to use the quantities (di+di+1)/ J2
and (di - dH d / J2. This results is an orthonormal matrix W, and it is well known that
the inverse of such a matrix is simply its transpose. Thus, we can write the inverse
transform in the simple form WT Itr W [see line cimg=full (w' *sparse (dimg) *w) in
Figure 4.12].

In between the forward and inverse transforms, some transform coefficients may
be quantized or deleted. Alternatively, matrix Itr may be compressed by means of
run-length encoding and/or Huffman codes.

Function indi vid (n) of Figure 4.12 starts with a 2 x 2 Haar transform matrix
(notice that it uses J2 instead of 2), then uses it to construct as many individual
matrices Ai as necessary. Function harmatt (dim) combines those individual matrices
to form the final Haar matrix for an image of dim rows and dim columns.

Example: The Matlab code of Figure 4.15 calculates W as the product of the three
matrices AI, A2, and A3, then transforms the 8 x 8 image of Figure 4.8 by computing
the product W. I. WT. The result is an 8 x 8 matrix of transform coefficients whose top
left value, 131.375, is the average of all 64 image pixels.

4.3 Subband Transforms

The transforms discussed in Section 3.5 are orthogonal because each is based on an
orthogonal matrix. An orthogonal transform can also be expressed as an inner product
of the data (pixel values or audio samples) with a set of basis functions. The result
of an orthogonal transform is a set of transform coefficients that can be compressed
with RLE, Huffman coding, or other methods. Lossy compression is obtained when the
transform coefficients are quantized before being compressed.

The discrete inner product of the two vectors Ii and gi is defined by

(I, g) = Lfigi,

and Section 3.5.1 starts with a transform of the form Ci = I:j djWij, where dj are the
data items and Wij are certain weights.

186 4. Wavelet Methods

a1=[1/21/2 0 0 0 0 0 0; 0 0 1/2 1/2 0 0 0 0;
0 0 0 0 1/2 1/2 0 0; 0 0 0 0 0 0 1/2 1/2;

1/2 -1/2 0 0 0 0 0 0; 0 0 1/2 -1/2 0 0 0 0;
0 0 0 0 1/2 -1/2 0 0; 0 0 0 0 0 0 1/2 -1/2];

% a1*[255; 224; 192; 159; 127; 95; 63; 32];
a2=[1/2 1/2 0 0 0 0 0 0; 0 0 1/2 1/2 0 0 0 0;

1/2 -1/2 0 0 0 0 0 0; 0 0 1/2 -1/2 0 0 0 0;
0 0 0 0 1 0 0 0; 0 0 0 0 0 1 0 0;
0 0 0 0 0 0 1 0; 0 0 0 0 0 0 0 1];

a3=[1/2 1/2 0 0 0 0 0 0; 1/2 -1/2 0 0 0 0 0 0;
0 0 1 0 0 0 0 0; 0 0 0 1 0 0 0 0;
0 0 0 0 1 0 0 0; 0 0 0 0 0 1 0 0;
0 0 0 0 0 0 1 0; 0 0 0 0 0 0 0 1];

w=a3*a2*a1;

dim=8; fid=fopen('8x8','r');
img=fread(fid, [dim, dim])'; fclose(fid);
w*img*w' % Result of the transform

The wavelet transform, on the other hand, is a subband transform. It is done by
computing a convolution of the data items (pixel values or audio samples) with a set of
bandpass filters. Each resulting subband encodes a particular portion of the frequency
content of the data.

The word "convolution" means coiling together. The discrete convolution of the
two vectors Ii and gi is denoted by f * g. Each element (f * g)i of the convolution is
defined by

(f * g)i = L fJ gi-j.
j

(4.3)

(Convolution is also defined for functions, but the field of data compression deals with
discrete quantities, so only the discrete convolution is discussed here.) Notice that the
limits of the sum above have not been stated explicitly. They depend on the sizes of
vectors f and g, and Equation (4.9) is an example.

The remainder of this section discusses linear systems and why convolution is de-
fined in this peculiar way. This material can be skipped by nonmathematical readers.

131.375 4.250 -7.875 -0.125 -0.25 -15.5 0 -0.25
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

12.000 59.875 39.875 31.875 15.75 32.0 16 15.75
12.000 59.875 39.875 31.875 15.75 32.0 16 15.75
12.000 59.875 39.875 31.875 15.75 32.0 16 15.75
12.000 59.875 39.875 31.875 15.75 32.0 16 15.75

Figure 4.15: Code and Results for the Matrix Wavelet Transform W. I. WT.

--~

4.3 Subband Transforms 187

We start with the simple, intuitive concept of a system. This is anything that
receives input and generates output in response. The input and output can be one-
dimensional (a function of the time) two-dimensional (a function of two spatial vari-
ables), or it can have any number of dimensions. We will be concerned with the relation
of the output to the input, not with the internal operation of the system. We will
also concentrate on linear systems, since they are both simple and important. A linear
system is defined as follows: If input XI(t) produces output YI(t) [we denote this by
XI(t) ~ YI(t)] and if X2(t) ~ Y2(t), then XI(t) +X2(t) ~ YI(t) +Y2(t). Any system that
does not satisfy this condition is considered nonlinear.

This definition implies that 2XI(t) = XI(t) + XI(t) ~ YI(t) + YI(t) = 2YI(t) or, in
general, that a Xl (t) ~ a YI(t) for any real a.

Somelinear systems are shift invariant. If such a linear system satisfies x(t) ~ y(t),
then x(t-T) ~ y(t-T); i.e., shifting the input by an amount T shifts the output by the
same amount but does not otherwise affect the output. In the discussion of convolution,
we assume that the systems in question are linear and shift invariant. This is true (or
true to a very good approximation) for electrical networks and optical systems, the main
pieces of hardware used in image processing and compression.

It is useful to have a general relation between the input and output of a linear,
shift-invariant system. It turns out that the expression

J
+OO

y(t) = -00 j(t, r)x(r) dr
(4.4)

is general enough for this purpose. In other words, there is always a two-parameter
function j(t,r) that can be used to predict the output y(t) if the input x(r) is known.
However, we want to express this relation with a one-parameter function, and we use
the shift invariance of the system for this purpose. For a linear, shift-invariant system
we can write

J
+OO

y(t-T)= -00 j(t,r)x(r-T)dr.

If we change variables by adding T to both t and r, we get

J
+OO

y(t)= -00 j(t+T,r+T)x(r)dr.
(4.5)

Comparing Equations (4.4) and (4.5) shows that j(t,r) = j(t+T,r+T). Thus, function
j has the property that if we add T to both its parameters, it does not change. The func-
tion is constant as long as the difference between its parameters is constant. Function j
depends only on the difference of its parameters, so it is essentially a single parameter
function. We can therefore write g(t - r) = j(t, r), which changes Equation (4.4) to

J
+OO

y(t)= -00 g(t-r)x(r)dr.
(4.6)

This is the convolution integral, an important relation between x(t) and y(t) or between
x(t) and g(t). This relation is denoted by Y = 9 * X and it says that the output Y of a

"'''''''-''-~

188 4. Wavelet Methods

linear, shift-invariant system is given by the convolution of its input x with a certain
function g(t) (or by convolving x with g). Function g, which is characteristic of the
system, is called the impulse response of the system. Figure 4.16 shows a graphical
description of a convolution, where the final result (the integral) is the gray area under
the curve.

t t

input function convolving function

t .t

g(T) reflected g(T) reflected and shifted

t t

functions superimposed product of functions

Figure 4.16: The Convolution of x(t) and g(t).

The convolution has a number of important properties. It is commutative, associa-
tive, and distributive over addition. These properties are listed in Equation (4.7)

J * 9 = 9 * J,
J * (g* h) = (f * g) * h,

J * (g + h) = J * 9 + J * h.
(4.7)

Pract\cal problems normally involve discrete sequences of numbers, rather than
continuousl functions, so the discrete convolution is useful. The discrete convolution of

4.3 Subband Transforms 189

the two sequences f(i) and g(i) is defined as

h(i) = f(i) * g(i) = L f(j) g(i - j).
j

(4.8)

If the lengths of f (i) and g(i) are m and n, respectively, then h(i) has length m + n - 1.

Example: Given the two sequences f = (1(0), f(l),..., f(5)) (six elements) and
9 = (g(O),g(l), . . . , g(4)) (five elements), Equation (4.8) yields the ten elements of the
convolution h = f * g:

0

h(O)= L f(j)g(O - j) = f(O)g(O)
j=O

1

h(l) = L f(j)g(l - j) = f(O)g(l) + f(l)g(O)
j=O

2

h(2) = L f(j)g(2 - j) = f(0)g(2) + f(l)g(l) + f(2)g(0)
j=O

3

h(3) = L f(j)g(3 - j) = f(0)g(3) + f(1)g(2) + f(2)g(1) + f(3)g(0)
j=O

4

h(4) = L f(j)g(4 - j) = f(0)g(4) + f(1)g(3) + f(2)g(2) + f(3)g(1) + f(4)g(0)
j=O

5

h(5) = L f(j)g(5 - j) = f(1)g(4) + f(2)g(3) + f(3)g(2) + f(4)g(1) + f(5)g(0)
j=l

5

h(6) = L f(j)g(6 - j) = f(2)g(4) + f(3)g(3) + f(4)g(2) + f(5)g(1)
j=2

5

h(7) = L f(j)g(7 - j) = f(3)g(4) + f(4)g(3) + f(5)g(2)
j=3

5

h(8) = L f(j)g(8 - j) = f(4)g(4) + f(5)g(3)
j=4

5

h(9) = L f(j)g(9 - j) = f(5)g(4)
j=5

(4.9)

A simple example of the use of a convolution is smoothing (or denoising). This
shows how convolution can be used as a filter. Given a noisy function f(t) (Figure 4.17),

....

-"

190 4. Wavelet Methods

we select a rectangular pulse as the convolving function g(t). It is defined as

{

~' -a/2 < t < a/2,
g(t) = 2' t = :za/2,

0, elsewhere,

where a is a suitably small value (typically 1, but it could be anything). As the con-
volution proceeds, the pulse is moved from left to right and is multiplied by j(t). The
result of the product is a local average of j(t) over an interval of width a. This has the
effect of suppressing the high frequency fluctuations of j(t).

input function smooth function

Figure 4.17: Applying Convolution to Denoising a Function.

"Oh no," George said. "It was more than money."
He leaned his forehead in his hand and tried to remember what else more

than money. The darkness inside his head was full of convolutions. His eardrums
were too tight. Only the higher registers of sound were getting through.

-Paul Scott, The Bender

4.4 Filter Banks

The matrix approach to the Haar transform is used in this section to introduce the
idea of filter banks [Strang and Nguyen 96]. We show how the Haar transform can be
interpreted as a bank of two filters, a lowpass and a highpass. We explain the terms
"filter," "lowpass," and "highpass" and show how the idea of filter banks leads naturally
to the concept of subband transform [Simoncelli et al. 90] The Haar transform, of course,
is the simplest wavelet transform, so it is used here to illustrate the new concepts.
However, using it as a filter bank may not be very efficient. Most practical applications
of wavelet filters use more sophisticated sets of filter coefficients, but they are all based
on the concept of filters and filter banks.

A filter is a linear operator defined in terms of its filter coefficients h(O), h(l),
~(2), The filter coefficients can be applied to an input vector x to produce an
oUtput vector y according to

y(n) = Lh(k)x(n - k) = h*x.
k

