202 4. Wavelet Methods

function dat=iwtl(wc,coarse,filter)
% Inverse Discrete Wavelet Transform
dat=wc(1:2 coarse);
n=length(wc); j=log2(n);

for i=coarse:j-1

dat=ILoPass(dat,filter)+ ...

IHiPass(wc((2-(i)+1):(2°(i+1))) ,filter);

end

function f=ILoPass(dt,filter)
f=iconv(filter,AltrntZro(dt));

function f=IHiPass(dt,filter)
f=aconv(mirror (filter) ,rshift(AltrntZro(dt)));

function sgn=mirror(filt)
% return filter coefficients with alternating signs
sgn=-((-1) .~ (1:length(£filt))).*filt;

function f=AltrntZro(dt)

% returns a vector of length 2#n with zeros
% placed between consecutive values

n =length(dt)*2; f =zeros(1,n);
£(1:2:(n-1))=dt;

A simple test of iwt1 is

n=16; t=(1:n)./n;

dat=sin(2*pi*t)

fi1t=[0.4830 0.8365 0.2241 -0.1294];
we=fwtl(dat,1,filt)
rec=iwtl(wc,1,filt)

Figure 4.26: Code and Test for the One-Dimensional In-
verse Discrete Wavelet Transform.

Figure 4.26 lists the Matlab code of the inverse one-dimensional discrete wavelet
transform function iwt1(wc,coarse,filter) and includes a test.

Readers who take the trouble to read and understand functions fwtl and iwt1
(Figures 4.25 and 4.27) may be interested in their two-dimensional equivalents, functions
fwt2 and iwt2, listed in Figures 4.28 and 4.29, respectively, with a simple test routine.

In addition to the Daubechies family of filters (by the way, the Haar wavelet can be
considered the Daubechies filter of order 2) there are many other families of wavelets,
each with its own properties. Some well-known filters are Beylkin, Coifman, Symmetric,
and Vaidyanathan.

The Daubechies family of wavelets is a set of orthonormal, compactly supported
functions where consecutive members are increasingly smoother. Section 4.8 discusses
the Daubechies D4 wavelet and its building block. The term compact support means
that these functions are zero (exactly zero, not just very small) outside a finite interval.

elet
wtl
ons
ine.
1 be

ets,
Tic,

‘ted
sses
‘ans

4.6 The DWT

function dat=iwtl(wc,coarse,filter)

% Inverse Discrete Wavelet Transform
dat=wc(1:2 coarse);
n=length(wc); j=log2(n);

for i=coarse:j-1

dat=ILoPass(dat,filter)+ ...

IHiPass (we ((2°(1)+1) : (27 (i+1))),filter);

end

function f=ILoPass(dt,filter)
f=iconv(filter,AltrntZro(dt));

function f=IHiPass(dt,filter)
f=aconv(mirror(filter) ,rshift(AltrntZro(dt)));

function sgn=mirror(filt)
% return filter coefficients with alternating signs
sgn=-((-1)."(1:1length(filt))).*filt;

function f=AltrntZro(dt)

% returns a vector of length 2*n with zeros
% placed between consecutive values

n =length(dt)#*2; f =zeros(l,n);
£(1:2:(n-1))=dt;

A simple test of iwt1 is

n=16; t=(1:n)./n;

dat=sin(2*pi*t)

£ilt=[0.4830 0.8365 0.2241 -0.1294];
we=fwtl(dat,1,filt)
rec=iwtl(wc,1,filt)

Figure 4.27: Code for the One-Dimensional Inverse Dis-
crete Wavelet Transform.

203

204 4. Wavelet Methods

function wc=fwt2(dat,coarse,filter)
% The 2D Forward Wavelet Transform
% dat must be a 2D matrix of size (2°n:2°n),
% "coarse" is the coarsest level of the transform
% (note that coarse should be <<n)
% filter is an orthonormal qmf of length<2~(coarse+1)
g=size(dat); n = q(1); j=log2(m);
if q(1)"=q(2), disp(’Nonsquare image!’), end;
wc = dat; nc = n;
for i=j-1:-1:coarse,
top = (nc/2+1):nc; bot = 1:(nc/2);
for ic=1:nc,
row = wc(ic,1:nc);
wc(ic,bot)=LoPass(row,filter);
we(ic,top)=HiPass(row,filter);
i end
i for ir=1:nc,
row = wc(l:nc,ir)?’;
wc(top,ir)=HiPass(row,filter)’;
wc(bot,ir)=LoPass(row,filter)’;
end
nc = nc/2;
end

function d=HiPass(dt,filter) ’ highpass downsampling
d=iconv(mirror (filter),lshift(dt));

% iconv is matlab convolution tool

n=length(d) ;

d=d(1:2:(n-1));

function d=LoPass(dt,filter) ’% lowpass downsampling
d=aconv(filter,dt);

 i? % aconv is matlab convolution tool with time-

Zj % reversal of filter

b n=length(d);

b d=d(1:2:(n-1));

i

i

1 - function sgn=mirror(filt)

i % return filter coefficients with alternating signs
i sgn=-((-1) .~ (1:length(filt))) .*filt;

A simple test of fwt2 and iwt2 is

d, filename=’housel28’; dim=128;

| fid=fopen(filename,’r’);

, if fid==-1 disp(’file not found’)

else img=fread(fid, [dim,dim])’; fclose(fid);
end
£i1t=[0.4830 0.8365 0.2241 -0.1294];

1
1 fwin=fwt2(ing,4,£ilt);
i figure(1), imagesc(fwim), axis off, axis square
i rec=iwt2(fwim,4,filt);

figure(2), imagesc(rec), axis off, axis square

Figure 4.28: Code for the Two-Dimensional Forward Dis-
crete Wavelet Transform.

4.6 The DWT 205

function dat=iwt2(wc,coarse,filter)
% Inverse Discrete 2D Wavelet Transform
n=length(wc); j=log2(mn);
dat=wc;
nc=2"(coarse+1);
for i=coarse:j-1,
top=(nc/2+1) :nc; bot=1:(nc/2); all=l:nc;
for ic=1:nc,
dat(all,ic)=ILoPass(dat(bot,ic)’,filter)’
+IHiPass(dat(top,ic)’,filter)’;
end % ic
for ir=1:nc,
dat(ir,all)=ILoPass(dat(ir,bot),filter)
+IHiPass(dat (ir,top),filter);
end % ir
nc=2#*nc;
end % i

function f=ILoPass(dt,filter)
f=iconv(filter,AltrntZro(dt));

function f=IHiPass(dt,filter)
f=aconv(mirror(filter) ,rshift (AltrntZro(dt)));

function sgn=mirror(filt)
% return filter coefficients with alternating signs
sgn=-((-1) .~ (1:1length(filt))).*filt; ;

function f=AltrntZro(dt)

% returns a vector of length 2*n with zeros
% placed between consecutive values

n =length(dt)*2; f =zeros(l,n);

£(1:2: (n-1))=dt;

A simple test of fwt2 and iwt2 is

filename=’housel28’; dim=128;
fid=fopen(filename,’r’);
| if fid==-1 disp(’file not found’)
| else img=fread(fid, [dim,dim])’; fclose(fid);
end
filt=[0.4830 0.8365 0.2241 -0.1294];
fwim=fwt2(img,4,filt);
figure(1), imagesc(fwim), axis off, axis square
rec=iwt2(fwim,4,filt);
figure(2), imagesc(rec), axis off, axis square

Figure 4.29: Code for the Two-Dimensional Inverse Dis-
crete Wavelet Transform.

206 4. Wavelet Methods

The Daubechies D4 wavelet is based on four coefficients, shown in Equation (4.12).
The D6 wavelet is, similarly, based on six coefficients. They are calculated by solving
six equations, three of which represent orthogonality requirements and the other three,
the vanishing of the first three moments. The result is listed in Equation (4.13):

co = (14 V10 + /5 + 2v/10)/(16V2) ~ .3326,
e1 = (54 V10 + 31/5 + 2v/10)/(16V2) ~ .8068,
ca = (10 — 2v/10 + 24/ 5 + 2v/10)/(16V/2) ~ .4598,
s = (10 — 2v/10 — 24/5 + 2v/10)/(16v'2) ~ —.1350, 33
cs = (5 + V10 — 31/5 + 2v/10)/(16V2) ~ —.0854,
es = (14 v10 — \/5 + 2v/10)/(16V2) ~ .0352.

Each member of this family has two more coefficients than its predecessor and is
smoother. The derivation of these functions is discussed in [Daubechies 88], [DeVore et
al. 92], and [Vetterli and Kovacevic 95].

4.7 Examples

We already know that the discrete wavelet transform can reconstruct images from a
small number of transform coefficients. The first example in this section illustrates an
important property of the discrete wavelet transform, namely its ability to reconstruct
images that degrade gracefully, without exhibiting any artifacts, when more and more
transform coefficients are zeroed or are coarsely quantized. Other transforms, most
notably the DCT, may introduce artifacts in the reconstructed image, but this property
of the DWT makes it ideal for applications such as fingerprint compression [Salomon 00].

The example uses functions fwt2 and iwt2 of Figures 4.28 and 4.29 to blur an
image. The idea is to compute the four-step subband transform of an image (thus
ending up with 13 subbands), then set most of the transform coefficients to zero and
heavily quantize some of the others. This, of course, results in a loss of image information
and in a nonperfectly reconstructed image. The point is that the reconstructed image
is blurred rather than being coarse or having artifacts.

Figure 4.30 shows the result of blurring the Lena image. Parts (a) and (b) show
the logarithmic multiresolution tree and the subband structure, respectively. Part (c)
shows the results of the quantization. The transform coefficients of subbands 5-7 have
been divided by two, and all the coefficients of subbands 8-13 have been cleared. At
first, most of the image in part (b) looks uniformly black (i.e., all zeros), but a careful
examination shows many nonzero elements in subbands 5-10. We can say that the
blurred image of part (d) has been reconstructed from the coefficients of subbands 1-4
(1/64th of the total number of transform coefficients) and half of the coefficients of
subbands 5-7 (half of 3/64, or 3/128). On average, the image has been reconstructed
from 5/128 = 0.039 or 3.9% of the transform coefficients. Notice that the Daubechies

4.7 Examples 207

o

=

~1|an

6

gl
}j 9 | 10 '

o _[_“J—L~ | T

A g -

ﬂm

|

12 13 |

(a) (b)

(c) (d)

clear, colormap(gray);
filename=’lenal28’; dim=128;
fid=fopen(filename,’r’);

img=fread(fid, [dim,dim])’;
filt=[0.23037,0.71484,0.63088,-0.02798,
-0.18703,0.03084,0.03288,-0.01059] ;
fwim=fwt2(img,3,filt);

figure(1), imagesc(fwim), axis square
fwim(1:16,17:32)=fwim(1:16,17:32)/2;
fwim(1:16,33:128)=0;
fwim(17:32,1:32)=fwim(17:32,1:32)/2;
fwim(17:32,33:128)=0;
fwim(33:128,:)=0;

figure(2), colormap(gray), imagesc(fwim)

rec=iwt2(fwim,3,filt);

figure(3), colormap(gray), imagesc(rec)

Figure 4.30: Blurring as a Result of Coarse Quantization.

208 4. Wavelet Methods

D8 filter was used in the calculations. Readers are encouraged to use this code and
experiment with the performance of other filters.

The second example illustrates the performance of the Daubechies D4 filter and
shows how it compacts the energy much better than the simple Haar filter, which is
based on averaging and differencing.

Table 4.31a lists the values of the 128 pixels that constitute row 64 (the middle
row) of the 128 x 128 grayscale Lena image. Tables 4.31b,c list the transform coefficients
of the Daubechies D4 and the Haar wavelet transforms, respectively, of this data. The
first transform coefficient is the same in both cases, but the remaining 127 coefficients
are smaller, on average, in the Daubechies transform, which shows that this transform
produces better energy compaction. The average of the absolute values of these 127
coefficients in the Daubechies D4 transform is 2.1790, whereas the corresponding average
in the Haar transform is 9.8446, about 4.5 times greater.

Mathematica code for Table 4.31b and Matlab code for Table 4.31c are listed in
Figure 4.32. Note that the former uses WaveletTransform.m, a Mathematica package
by Alistair C. H. Rowe and Paul C. Abbott and available from [Alistair and Abbott 01].

4.8 The Daubechies Wavelets

Many useful mathematical functions are defined explicitly. A polynomial is perhaps
the simplest such function. However, many other functions, not less useful, are defined
recursively, in terms of themselves. Defining anything in terms of itself seems a contra-
diction, but the point is that a valid recursive definition must have several parts, and at

least one part must be explicit. This part normally defines an initial value for whatever
is defined. A simple example is the factorial function. It can be defined explicitly by

nl=nn-1)(n-2)---3-2-1
but can also be defined recursively, by the 2-part definition
1!'=1, nl=n-(n-1)L

Another interesting example is the exponential function e (or “exp”), which is defined
by the differential recursive relation

de”
dx

e’ = 1, =g,

Ingrid Daubechies has introduced a wavelet ¥ and a scaling function (or building
block) . One requirement was that the scaling function have finite support. It had to be
zero outside a finite range. Daubechies selected the range (0, 3) to be the support of the
function and has proved that this function cannot be expressed in terms of elementary
functions such as polynomials, trigonometric, or exponential. She also showed that ¢
can be defined recursively, in terms of several initial values and a recursion relation.
The initial values selected by her are

:1+2ﬁ, (P(z):l—\/ﬁ

©(0) =0, (1) and ¢(3) =0,

2 1

Y

4.8 The Daubechies Wavelets 209

148 141 137 124 101 104 105 103 98 89 100 136
156 173 175 176 179 171 152 116 80 82 92 99
103 102 101 100 100 102 106 104 112 139 155 149
139 107 90 126 90 65 65 93 62 87 61 84
48 64 42 75 .35 42.,.58. 73 .45, 58130
156 176 185 196 167 185 178 121 113 126 113 122
133 109 106 92 91 133 162 165 174 189 193 190
190 167 120 97 92 106 103 81 55 43 60 150
136: & 562 L 6F>680 Blr=50- 1 52 (53 W52 < T7971135 132
147 163 161 158 157 157 156 156 156 158 159 156
155 154 155 155 157 157 154 150

(a)

117.95 -10.38 —5.99 —-0.19 -11.64 126 —5.95 4.15
—2.67 6.61 —17.08 —0.50 7.88 —15.53 4.10 —10.80
—5.29 294 -0.63 542 -2.39 0.53 —5.96 2.67
—6.4 9.71 -5.43 056 -0.13 0.83 —0.02 105
-1.38 —2.68 192 314 -3.71 0.62 —0.02 -0.04
-1.41 =237 0.08 —-1.62 -1.03 -3.50 252 2.81
—1.68 141 -179 111 3556 —-0.24 -7.44 0.28
—-0.49 —2.56 1.98 —0.00 0.10 -0.17 0.42 0.65
0.35 —1.00 0.15. 0.21. .=1.30 031 0.21 0.45
085 —1.62 0.04 0.25 0 -0.10 0.23 -0.93
1.06 098 -243 035 -148 -1.72 -1.51 -1.54
-1.91 1.86 —0.67 195 -—2.99 0.78 0.04 -1.55
242 -146 -—-0.64 147 023 -198 126 -0.32
0.42 095 -0.75 -1.02 1.01 —0.55 —-3.45 3.31
—0.80 039 -0.11 -1.17 219 -0.25 025 —0.07
-0.03 —-0.09 0.18 —0.02 0.02 0.06 0.08 0.19

11795 -9.68 —16.44 1.31 —20.81 3.31 1438 -29.44
—6.63 8.38 —20.56 39.38 10.44 —31.50 —14.25 1.13
7.75 2213 425 —13.88 —24.38 21.50 24.00 9.25
0.13 11.38 —22.75 -—28.88 0.38 —0.38 1.25 0.13
725 13.25 15.00 1.00 -1.75 11.00 —6.50 —25.75
—=9.00 —5.00 6.50 35.00 4.75 3.50 21.50 -28.00
725 13.75 3.75 1.50 —6.50 —34.00 —-10.75 —2.25
1.25 0.50 —-0.50 —0.25 1.50 -0.25 —1.00 2.50
14.50 —9.00 3.50 28.50 4.00 —6.50 6.50 —4.50
—5.50 12.00 1.50 7.00 0.50 —21.00 —14.50 —1.50
—-4.50 -7.50 -2.00 1.50 0 11.50 23.50 11.50 '
2,50 -7.00 1.50 11.00 13.00 6.00 —8.50 —45.00
12.00 35.50 —3.00 —2.00 2.00 550 -1.00 —0.50
0.50 —13.50 —28.00 1.50 —=7.50 —8.00 1.00 1.50
0.50 0 0.50 0 0 -1.00 -0.50 1.50
0.50 0.50 —0.50 0 -1.00 0 1.50 2.00

(c)
Table 4.31: Daubechies and Haar Transforms of Middle Row in Lena Image.

210 4. Wavelet Methods

<<WaveletTransform.m
(* Middle row of 128x128 Lena image *)
data={148,141,137,124,101,104,105,103, 98, 89,100,136

,155,154 155,155,157 ,157,154,150};

forward = Wavelet[data, Daubechies[4]]
NumberForm[forward,{6,2}]

inverse = InverseWavelet[forward,Daubechies[4]]
data == inverse

(a)
% Haar transform (averages & differences)
data=[148 141 137 124 101 104 105 103 98 89 100 136 ...

165 154 155 155 157 157 154 150];
n=128; 1n=7; %log_2 n=7
for k=1:1n,
for i=1:n/2,
i1=2%i; j=n/2+i;
newdat(i)=(data(il-1)+data(il))/2;
newdat (j)=(data(j-1)-data(j))/2;
end
data=newdat; n=n/2;
end
round (100*data) /100

(b)
Figure 4.32: (a) Mathematica and (b) Matlab Codes for Table 4.31.

and the recursion relation is

1 3 3 3 3—+v3 1—+/3
p(r) = +4f90(2f) + +4‘/‘99(2'r =1} 4‘/:9(21" -2)+ 4\/_{,9(2?“ —3)
= hop(2r) + hip(2r — 1) + hop(2r — 2) + hap(2r — 3) (4.14)
= (ho, k1, ha, h3) - (@(2r), o(2r — 1), @(2r — 2), (21 — 3)).
Notice that the initial values add up to 1:
1 3 1—+3
2(0) + (1) + p(2) + p(3) = 0 + +2‘/“ + f +0=1.

Further computations of ¢ must be performed in steps. In step 1, the finite support
requirement, the four initial values of ¢ and the recurrence relation [Equation (4.14)]

)

4.8 The Daubechies Wavelets 211

are applied to compute the values of ¢(r) at the three points r = 0.5, 1.5, and 2.5.

©(1/2) = hop(2/2) + hlso(2/2 — 1) + hap(2/2 - 2) + h3p(2/2 - 3)

1 1
243
= " ;

©(3/2) = hop(6/2) + h1p(6/2 — 1) + hap(6/2 — 2) + h3p(6/2 — 3)
1448 1—%3 J1=4/3 14+v3

=l e S Pl
=0,
©(5/2) = how(10/2) + h1p(10/2 — 1) + hop(10/2 — 2) + h3p(10/2 - 3)
=hg-0+h1-0+hg-0+1_2\/5-1_2\/3
_2-3
==

The values of ¢ are now known at the four initial points 0, 1, 2, and 3 and at the
three additional points 0.5, 1.5, and 2.5 midway between them, a total of seven points.
In step 2, six more values are computed at the six points 1/4, 3/4, 5/4, 7/4, 9/4, and
11/4. The computations are similar and the results are

5+3vV3 9+45vV3 1+v3 1-v3 9-5V3 5-3V3
16 16 RE g 16 ' 16

The values of ¢ are now known at 4 + 3 + 6 = 13 points (Figure 4.33).

Step 3 computes the 12 values midway between these 13 points, resulting in 12 +
13 = 25 values. Further steps compute 24, 48, 96, and so on, values. After n steps, the
values of ¢ are known at 4 +3 +6 + 12+ 24+ --- +3-2" = 4 + 3(2"*! — 1) points.
After nine steps, 4 + 3(2'% — 1) = 3073 values are known (Figure 4.34).

Function ¢ serves as a building block for the construction of the Daubechies wavelet
1P, which is defined recursively by

1+f TS Ty 3+f(2)_3 f(g +1)+1—4\/§

= —hggo(2'.r' — 1)+ h1p(2r) — hop(2r + 1) + h3i,0(2?" +2).

Y(r) = — p(2r +2)

Recall that ¢ is nonzero only in the interval (0,3). The definition above implies that
1(r) is nonzero in the interval (—1,2). This definition is also the basis for the recursive
calculation of 1, similar to that of ¢. Figure 4.35 shows the values of the wavelet at
3073 points. A glance at Figures 4.34 and 4.35 also explains (albeit very late in this
chapter) the reason for the term “wavelet.”

212 4. Wavelet Methods

|

L

‘. 1.4
5?: 12 A
i.: L0 “ \\
0.6

”i 0.4 / \
!

: 0.2 3

?I 0.0 \\ //h“'"‘
302 Y
I ~04
i 0.0 0.5 1.0 1.5 2.0 2.5 3
: Figure 4.33: The Daubechies Scaling Function ¢ at 13 Points.

e
kg fobemge
| ‘ 0:6 / \
'? eige))
/ o

0.2

i
| i SN
| Ml

—0.4

; | 0.0 0.5 1.0 1.5 2.0 2.5 3
= Figure 4.34: The Daubechies Scaling Function ¢ at 3073 Points.

4.9 SPIHT 213

1.5 /

: \
\

0.5 1 1.5 2 2.5 3
Figure 4.35: The Daubechies Wavelet 1) at 3073 Points.

4.9 SPIHT

SPIHT is an image compression method, but it is included in this chapter because it
uses the wavelet transform as one of its compression steps and because its main data
structure, the spatial orientation tree, uses the fact (mentioned on page 172) that the
various subbands reflect the geometrical artifacts of the image.

Section 4.2 shows how the Haar transform can be applied several times to an
image, creating regions (or subbands) of averages and details. The Haar transform is
simple, and better compression can be achieved by other wavelet filters that produce
better energy compaction. It seems that different wavelet filters produce different results
depending on the image type, but it is currently not clear what filter is the best for any
given image type. Regardless of the particular filter used, the image is decomposed into
subbands such that lower subbands correspond to higher image frequencies and higher
subbands correspond to lower image frequencies, where most of the image energy is
concentrated (Figure 4.36). This is why we can expect the detail coefficients to get
smaller as we move from high to low levels. -Also, there are spatial similarities among
the subbands (Figure 4.7b). An image part, such as an edge, occupies the same spatial
position in each subband. These features of the wavelet decomposition are exploited by
the SPIHT (set partitioning in hierarchical trees) method [Said and Pearlman 96].

214 4. Wavelet Methods

LL4
HL3
HL2
LH3 3
HL1
LH2
LH1 HH1

Figure 4.36: Subbands and Levels in Wavelet Decomposition.

SPIHT was designed for optimal progressive transmission, as well as for compres-
sion. One of the important features of SPIHT (perhaps a unique feature) is that at any
point during the decoding of an image, the quality of the displayed image is the best
that can be achieved for the number of bits input by the decoder up to that moment.

Another important SPIHT feature is its use of embedded coding. This feature is
defined as follows: If an (embedded coding) encoder produces two files, a large one of
size M and a small one of size m, then the smaller file is identical to the first m bits of
the larger file.

The following example aptly illustrates the meaning of this definition. Suppose
that three users wait for a certain compressed image to be sent them, but they need
different image qualities. The first one needs the quality contained in a 10 KB file. The
image qualities required by the second and third users are contained in files of sizes
20 KB and 50 KB, respectively. Most lossy image compression methods would have to
compress the same image three times, at different qualities, to generate three files with
the right sizes. SPIHT, on the other hand, produces one file and then three chunks—of
lengths 10 KB, 20 KB, and 50 KB, all starting at the beginning of the file—that can be
sent to the three users, thereby satisfving their needs.

We start with a general description of SPIHT. We denote the pixels of the original
image p by p; ;. Any set T of wavelet filters can be used to transform the pixels to
wavelet coefficients (or transform coefficients) ¢; ;. These coefficients constitute the

