
Binary Convolutional Codes

A convolutional code has memory over a short block length. This memory results in
encoded output symbols that depend not only on the present input, but also on past
inputs.
An (n,k,m) convolutional code is implemented using k-input, n-output linear
sequential system with a shift-register having m stages. In practice k and n are small
and m is large to achieve low error probabilities. In the particular case when k =1, the
information sequence is not divided into blocks and can be processed continuously.
In practice, the state of the convolutional code is periodically forced to a defined state.
for synchronization.

Figure 1 shows a (2,1,2) code. Figure 2 shows a (2, 1, 3) code and Figure 3 shows a
(3, 2, 1) binary code. In each case a state sequence diagram can be built.
There can also be convolutional codes where the delay sequence is different for
different outputs, Figure 4.
The constraint length, K, is defined as the maximum length of output sequence that
can be affected by an input. In general this is given by n(m+1), where m is the
maximum delay path through the system, (if the delays are not all the same for
different output paths). For the codes in Figures, 1 � 4, the constraint lengths are 6, 8,
6, 9, respectively.

Since a convolutional encoder generates n encoded bits for each k information bits, R
= k/n is the code rate. For an information sequence that is short, k.L, the
corresponding total encoded bits are n(L+m). The last n.m non zero outputs are the
delay bits within the system, as they come out at the end. Therefore, if this is taken
into account, the code rate becomes R = kL/n(L+m).. If L>>m, then L/(L+m)≈ 1 and
R =k/n. But if this is not the case R is reduced by a fractional amount given by
m/(L+m), also called the fractional rate loss.

State diagrams

Figure 5 shows the state diagram for the code of Figure 1. Table 1 gives the
information of Figure 5 in tabular form. For a shift register sequence, m, there are 2m
states in the diagram.

Initial State
s0[i] s1[i]

Information
u[i]

Final State
s0[i+1] s1[i+1]

Outputs
v(0)[i] v(1)[i]

00 0 00 00
00 1 10 11
01 0 00 11
01 1 10 00
10 0 01 10
10 1 11 01
11 0 01 01
11 1 11 10

Table 1

Given a vector [u] = [101001], the resultant code for the 2,1,2) code above is
11, 10, 00, 10, 11, 11
The encoding process can also make use of a matrix G, in terms of the Gi . For tbe
code of Figure 3, this is given as a semi infinite matrix, where each row is made up of





























11111011

11111011

11111011

11111011

G

the G0 = 1+D2+ D3 and G1 = 1+D+D2+ D3 are the elements in a row of the matrix,
(not each is read from right to left). Each successive row is shifted two places, equal
to the two output bits. Every empty position in the matrix is a zero. When performing
the encoding [v] = [u]G, the vector is started from row0 column0 . For a [u] = [10111]
and the code (2,1,3) the output is
1 1, 0 1, 0 0, 0 1, 0 1, 0 1, 0 0, 1 1.
Note that there are 8 output pairs due to the delay elements, which as explained, gives
a fractional rate loss for this case of 3/8. (i.e a rate of 5/16 instead of a ½).

Weight Distribution Sequence WDS

The free distance df of a convolutional code is the smallest distance between any two
distinct code sequences. The free distance of a convolutional code can be obtained
from its weight enumerator polynomial. Initially the weight distribution of a 1/n linear
block code is derived. Let Ω(x) be a 2m X 2m matrix, known as a state transition

matrix, where ijh

ijij xx )(and äij =1 if there is a transition from state i to state j,

and hij is the Hamming Weight of the corresponding output vector of length n.
For the convolutional encoder with a state diagram of Figure 5, the state transition
matrix is























xx

xx

x

x

x

00

00

010

001

)(
2

2

Consider a (2,1,2) code, using message vectors of 3 bits, and allowing the encoder to
pass out the delay elements, by inserting two zeroes between each 3-bit vector. This
results in a df =5. and a code rate of kL/n(L+m) = 3/10 = 0.3 instead of 3/6 = 0.5.
Using Table 1, the weight distribution sequence, WDS, is found, from Table 2, to be

k� = (L+m) n(L+m) Weight

000 00 00 00 00 00 00 0
001 00 00 00 11 10 11 5
010 00 00 11 10 11 00 5
011 00 00 11 01 01 11 6
100 00 11 10 11 00 00 5
101 00 11 10 00 10 11 5
110 00 11 01 01 11 00 6
111 00 11 01 10 01 11 7

Table 2

WDS ≡ A(x) = 1 + 3x5 + 3x6 + x7 . Note that the minimum distance is 5.

Catastrophic Code
A convolutional encoder is said to be catastrophic if a finite number of channel errors
produce an infinite number of errors after decoding. It is characterized by having, in

the state diagram, a self loop of zero weight, other than that around the state S00. This
is illustrated, by modifying the (2,1,2) code of Figure 1, to Figure 6, and resultant
state diagram Figure 7.

Maximum Likelihood Decoding

The likelihood of a received sequence [R] over a noisy memory less channel, given
that [v] was sent using a BSC with an error bit probability p, is given by
















1

0

),(

1
)1()|(

n

i

vrd iiH

p

p
pvrp with dH(ri,vi) =1 if ri,≠vi, and dH(ri,vi) =0 if ri,=vi.

If there are no errors, the above results in p(v) = (1-p)n, which is the probability of
receiving every bit correctly. Using logs, the log likelihood function becomes

)1log(
1

log])[|]([)|(log pN
p

p
vrdvrP 


 where d([r]|[v]) is the Hamming

distance between received word [r] and decoded codeword [v]. Since log[p/(1-p)]<0
and Nlog(1-p) is a constant for all [v], the MLD for a BSC is the codeword that
minimizes d([r],[v]).
The most widely used decoding algorithm is the Viterbi algorithm based on a trellis
decoder. This algorithm chooses the best path at stage[i] and works back along the
trellis the resultant best path for stage [i]. Viterbi in his algorithm shows that for errors
to be corrected the trellis depth from the error stage to the current stage, for a memory
m, rate ½ convolutional code, should have a received sequence, of length ℓ such that ℓ
> 5m. This is the minimum decoding depth for proper operation.
The algorithm uses the following steps

(i) Initialise the trellis to i=0 and each metric S0
(k) = 0, where the metric

expresses the distance between the received word [r] and the Viterbi
generated word Si at the ith stage and k is the trellis state, 0 <k<2m-1.

(ii) At a stage i, compute the distance between the received n-tuple, and the
value from the trellis precursor states Si-1

(k1) and Si-1
(k2) to the current

trellis node Si
(k)

(iii) Choose the minimum of the n inputs from the previous stage. In case of a
tie decide randomly on one of the least equal values

(iv) Work out, for each present node yi
(k) the survivor path backwards, by

moving backwards along the path indicated as optimal from the previous
node backward.

(v) This is repeated until at least ℓ > 5m

An example is worked to demonstrate the operation. Assume the (2,1,2) code of
Figure 1 and Table 1. Assume that the code vector sent is 11 01 01 00 10 11 and the
received n-tuple is 01 01 01 00 10 11, having a bit in error in the first pair.

Figure 8

Figure 9

Figure 10

Figure 11

In practice various techniques are used to handle the Viterbi decoding on a computer.
These include parameter normalization due to the fixed range within a computer,
using a threshold as a basis to then subtract a value T, from every metric. There is also
the way the path memory is kept, to be able to extract the information bits. A
traceback memory using decision values that indicate state transitions are kept to
reconstruct the sequence of states in reverse order. This is used when the code is
implemented in hardware.

Synchronisation

If the n-tuples fall out of synchronization, the trellis starts giving continuous
erroneous results. This can be checked for, using expected statistics of BER and path
metric growth. This monitor is external to the decoder. This is achieved using a
synchronization stage whose function is to advance the reference sequence [v] in the
decoder, by skipping received symbols (a maximum of n-1) one at a time until the
synchronization variables indicate normal behaviour.
Alternatively, the data is broken up into fixed length (eg a few thousand bits). Then a
known unique word is added to synchronize the receiver and forces the convolutional
encoder to return to a known state.

Punctured Convolutional Codes
Puncturing is the process of systematically deleting some of the generated bits by the
encoder. Since the trellis is the same, the number of information bits is the same.
However this puncturing gives rise to a higher rate encoder than the original.
The basis of puncturing is a matrix, called a Puncturing matrix, which defines the
operation.

Example A memory 3/3 convolutional code can be constructed by puncturing
the output bits of the (2,1,2) encoder using the puncturing matrix,











01

11
P . In this case if the originally generated bits, see Figure 6, were V(0)and V(1).

Let V(0) be [100101..] and V(1) be [111001..], then the resulting output is v=[11 01 01
10 00 11 �]. Interpreting Vp

(1) as [1X1X0X�] the transferred bits after puncturing
are [11, 0, 01, 1, 00, 1 �]. This gives rise to a rate 2/3 code instead of the original ½.

The process of decoding follows the same lines as the original decoding. In dealing
with the unknown bit, when calculating the distance DM, see Figures 9 to 12, only the
valid known bit is considered. The rest of the decoding algorithm is the same.
However the decoding depth L must be increased as more output bits are punctured.

