
Binary Convolutional Codes 
 
 
A convolutional code has memory over a short block length. This memory results in 
encoded output symbols that depend not only on the present input, but also on past 
inputs. 
An (n,k,m) convolutional code is implemented using k-input, n-output linear 
sequential system with a shift-register having m stages. In practice k and n are small 
and m is large to achieve low error probabilities. In the particular case when k =1, the 
information sequence is not divided into blocks and can be processed continuously. 
In practice, the state of the convolutional code is periodically forced to a defined state. 
for synchronization. 
 
Figure 1 shows a (2,1,2) code. Figure 2 shows a (2, 1, 3) code and Figure 3 shows a 
(3, 2, 1) binary code. In each case a state sequence diagram can be built. 
There can also be convolutional codes where the delay sequence is different for 
different outputs, Figure 4. 
The constraint length, K, is defined as the maximum length of output sequence that 
can be affected by an input. In general this is given by n(m+1), where m is the 
maximum delay path through the system, (if the delays are not all the same for 
different output paths). For the codes in Figures, 1 � 4, the constraint lengths are 6, 8, 
6, 9, respectively. 
 

  
 



 
 
Since a convolutional encoder generates n encoded bits for each k information bits, R 
= k/n is the code rate. For an information sequence that is short, k.L, the 
corresponding total encoded bits are n(L+m). The last n.m non zero outputs are the 
delay bits within the system, as they come out at the end. Therefore, if this is taken 
into account, the code rate becomes R = kL/n(L+m).. If L>>m, then L/(L+m)≈ 1 and 
R =k/n. But if this is not the case R is reduced by a fractional amount given by 
m/(L+m), also called the fractional rate loss. 
 
State diagrams 
 
Figure 5 shows the state diagram for the code of Figure 1. Table 1 gives the 
information of Figure 5 in tabular form. For a shift register sequence, m, there are 2m 
states in the diagram.  
 



 
 
 

Initial State 
s0[i] s1[i] 

Information 
u[i] 

Final State 
s0[i+1] s1[i+1] 

Outputs 
v(0)[i] v(1)[i] 

00 0 00 00 
00 1 10 11 
01 0 00 11 
01 1 10 00 
10 0 01 10 
10 1 11 01 
11 0 01 01 
11 1 11 10 

 
Table 1 

 
Given a vector [u] = [101001], the resultant code for the 2,1,2) code above is 
11, 10, 00, 10, 11, 11  
The encoding process can also make use of a matrix G, in terms of the Gi . For tbe 
code of  Figure 3, this is given as a semi infinite matrix, where each row is made up of 
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the G0 = 1+D2+ D3 and G1 = 1+D+D2+ D3 are the elements in a row of the matrix, 
(not each is read from right to left). Each successive row is shifted two places, equal 
to the two output bits. Every empty position in the matrix is a zero. When performing 
the encoding [v] = [u]G, the vector is started from row0 column0 . For a [u] = [10111] 
and the code (2,1,3) the output is 
1 1, 0 1, 0 0, 0 1, 0 1, 0 1, 0 0, 1 1. 
Note that there are  8 output pairs due to the delay elements, which as explained, gives 
a fractional rate loss for this case of 3/8. (i.e a rate of 5/16 instead of a ½). 
 
Weight Distribution Sequence WDS 
 
The free distance df of a convolutional code is the smallest distance between any two 
distinct code sequences. The free distance of a convolutional code can be obtained 
from its weight enumerator polynomial. Initially the weight distribution of a 1/n linear 
block code is derived. Let Ω(x) be a 2m X 2m matrix, known as a state transition 

matrix, where   ijh

ijij xx  )(  and äij =1 if there is a transition from state i to state j, 

and hij is the Hamming Weight of the corresponding output vector of length n. 
For the convolutional encoder with a state diagram of Figure 5, the state transition 
matrix is 
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Consider a (2,1,2) code, using message vectors of 3 bits, and allowing the encoder to 
pass out the delay elements, by inserting two zeroes between each 3-bit vector. This 
results in a df =5. and a code rate of kL/n(L+m) = 3/10 = 0.3 instead of 3/6 = 0.5. 
Using Table 1, the weight distribution sequence, WDS, is found, from Table 2, to be 
 
k� = (L+m)        n(L+m)          Weight 
 
000 00    00 00 00 00 00   0   
001 00    00 00 11 10 11   5 
010 00    00 11 10 11 00   5 
011 00    00 11 01 01 11   6 
100 00    11 10 11 00 00   5 
101 00    11 10 00 10 11   5 
110 00    11 01 01 11 00   6 
111 00    11 01 10 01 11   7 
 

Table 2 
 
WDS ≡ A(x) = 1 + 3x5 + 3x6 + x7 .  Note that the minimum distance is 5. 
 
 
Catastrophic Code 
A convolutional encoder is said to be catastrophic if a finite number of channel errors 
produce an infinite number of errors after decoding. It is characterized by having, in 



the state diagram, a self loop of zero weight, other than that around the state S00. This 
is illustrated, by modifying the (2,1,2) code of Figure 1, to Figure 6, and resultant 
state diagram Figure 7. 
 

 
 
Maximum Likelihood Decoding 
 
The likelihood of a received sequence [R] over a noisy memory less channel, given 
that [v] was sent using a BSC with an error bit probability p, is given by 
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If there are no errors, the above results in p(v) = (1-p)n, which is the probability of 
receiving every bit correctly. Using logs, the log likelihood function becomes 
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   where d([r]|[v]) is the Hamming 

distance between received word [r] and decoded codeword [v]. Since log[p/(1-p)]<0 
and Nlog(1-p) is a constant for all [v], the MLD for a BSC is the codeword that 
minimizes d([r],[v]). 
The most widely used decoding algorithm is the Viterbi algorithm based on a trellis 
decoder. This algorithm chooses the best path at stage[i] and works back along the 
trellis the resultant best path for stage [i]. Viterbi in his algorithm shows that for errors 
to be corrected the trellis depth from the error stage to the current stage, for a memory 
m, rate ½ convolutional code, should have a received sequence, of length ℓ such that ℓ 
> 5m. This is the minimum decoding depth for proper operation. 
The algorithm uses the following steps  

(i) Initialise the trellis to i=0 and each metric S0
(k) = 0, where the metric 

expresses the distance between the received word [r] and the Viterbi 
generated word Si at the ith stage and k is the trellis state, 0 <k<2m-1. 



(ii) At a stage i, compute the distance between the received n-tuple, and the 
value from the trellis precursor states Si-1

(k1) and  Si-1
(k2) to the current 

trellis node Si
(k) 

(iii) Choose the minimum of the n inputs from the previous stage. In case of a 
tie decide randomly on one of the least equal values 

(iv) Work out, for each present node yi
(k) the survivor path backwards, by 

moving backwards along the path indicated as optimal from the previous 
node backward. 

(v) This is repeated until at least ℓ > 5m 
 
An example is worked to demonstrate the operation. Assume the (2,1,2) code of 
Figure 1 and Table 1. Assume that the code vector sent is 11 01 01 00 10 11 and the 
received n-tuple is 01 01 01 00 10 11, having a bit in error in the first pair.  
 

 
Figure 8 

 



 
Figure 9 

 
Figure 10 



 
Figure 11 

 
In practice various techniques are used to handle the Viterbi decoding on a computer. 
These include parameter normalization due to the fixed range within a computer, 
using a threshold as a basis to then subtract a value T, from every metric. There is also 
the way the path memory is kept, to be able to extract the information bits. A 
traceback memory using decision values that indicate state transitions are kept to 
reconstruct the sequence of states in reverse order. This is used when the code is 
implemented in hardware. 
 
Synchronisation 
 
If the n-tuples fall out of synchronization, the trellis starts giving continuous 
erroneous results. This can be checked for, using expected statistics of BER and path 
metric growth. This monitor is external to the decoder. This is achieved using a 
synchronization stage whose function is to advance the reference sequence [v] in the 
decoder, by skipping received symbols (a maximum of n-1) one at a time until the 
synchronization variables indicate normal behaviour. 
Alternatively, the data is broken up into fixed length (eg a few thousand bits). Then a 
known unique word is added to synchronize the receiver and forces the convolutional 
encoder to return to a known state. 
 
Punctured Convolutional Codes 
Puncturing is the process of systematically deleting some of the generated bits by the 
encoder. Since the trellis is the same, the number of information bits is the same. 
However this puncturing gives rise to a higher rate encoder than the original. 
The basis of puncturing is a matrix, called a Puncturing matrix, which defines the 
operation. 



Example  A memory 3/3 convolutional code can be constructed by puncturing 
the output bits of the (2,1,2) encoder using the puncturing matrix, 
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P  . In this case if the originally generated bits, see Figure 6, were V(0)and V(1). 

Let V(0) be [100101..] and V(1) be [111001..], then the resulting output is v=[11 01 01 
10 00 11 �]. Interpreting  Vp

(1) as [1X1X0X�] the transferred bits after puncturing 
are [11, 0, 01, 1, 00, 1 �]. This gives rise to a rate 2/3 code instead of the original ½. 
 
The process of decoding follows the same lines as the original decoding. In dealing 
with the unknown bit, when calculating the distance DM, see Figures 9 to 12, only the 
valid known bit is considered. The rest of the decoding algorithm is the same. 
However the decoding depth L must be increased as more output bits are punctured. 
 
 


