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Abstract. The chapter will focus on experiences the authors had in applying
runtime verification in industrial settings, in particular on financial transaction
systems. We discuss how runtime verification can be introduced in the software
development lifecycle and who are the people to be involved and when. Further-
more, we investigate what kind of properties have been found useful in practise
and how these were monitored to keep intrusion to a minimum. Next, we describe
two significant case studies which have been successfully carried out in the past,
and conclude by outlining a number of challenges which we believe still need to
be addressed for runtime verification to become more mainstream in industrial
settings.

1 Introduction

As software systems increased in size and complexity, it was quickly recognised that
many problems which arise in system development can be addressed by adopting a
well-defined, more rigorous process, moving from an individual-based craft view of
programming to a process (and team) based engineering approach [29]. Different soft-
ware engineering processes have been advocated and adopted by industry, and today it
is unthinkable that any non-trivial software be developed in an ad-hoc manner. These
software engineering processes have shaped the organisation of industry, and any novel
element part of the software development process stands little chance of being adopted
in the short-term unless it finds a home as part of this organisational structure. Runtime
monitoring and verification have been advocated as very industry-friendly techniques,
especially due to their scalability to large systems, and accessibility to traditionally
trained software engineers. Surprisingly, however, the literature describing the use of
runtime verification in industry and evidence of its adoption remains sparse and far be-
tween. Use of formal methods (and in particular runtime verification) in the literature
tends to consider the adoption of formal tools throughout the development process —
for instance, in [28] one of the few papers which reports on the experience of integrating
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runtime verification into the development process of an industry-grade project, model
checking is initially used to verify at the design and code level, thus providing formal
properties to be used with the runtime verification tool, an unrealistic assumption in
most industrial settings.

One can argue that dynamic monitoring and verification has featured in software
development since the first software systems — adding auxiliary code to check what
the system is doing, and assertions to check predicates in order to identify and report
or react to unexpected behaviour, is nothing but a primitive form of runtime monitoring
and verification. More recent structured approaches to runtime verification, which focus
on separating the concerns of system development and the specification of monitors
and verification code, allow for greater independence between the process of system
and monitor development. However, the integration of runtime verification in standard
software engineering practice remains a little explored area. Although some work (e.g.
[37]) does look at how the development process can be adapted to incorporate runtime
analysis concerns, a shift in existing software engineering practice is difficult to achieve,
and thus, integration into existing practice is crucial to widespread industrial adoption
of runtime verification.

In the past decades, as software dependability became increasingly important, test-
ing was promoted to a first-class concern in the development process, with approaches
such as test-driven development becoming the norm in many settings. It is natural to
ask whether runtime verification can simply piggy-back onto the integration of test-
ing in the software engineering process. The most important common concern between
testing and runtime verification is the development of oracles able to flag unexpected
system behaviour. However, the two also differ substantially in other aspects, making
their merging in the software engineering process difficult. The fact that, unlike testing,
runtime verification code (sometimes) is intended to be executed alongside the system
post-deployment puts extra demands on this code, and requires a spread in the concern
of software engineering from mainly the development time towards the runtime [6].
Also, although oracles and verification checks have a similar goal, in practice tests tend
to hard code input behaviour and output pairs, whereas in runtime verification it is nec-
essary to abstract the oracle to all potential input behaviour. These differences indicate
that depending on the quality assurance infrastructure already existent in most software
companies, adopting runtime verification might not be as straightforward as one might
hope.

In this chapter, we present a number of industrial case studies which we have been
involved in, and discuss what worked and what issues arose in the process. A secondary
aim of the chapter is to assess, albeit in a qualitative and anecdotal manner, the chal-
lenges runtime verification faces before it can be adopted in the industry. Furthermore,
it is worth noting that all case studies discussed in this chapter are in the financial soft-
ware sector.

Case studies 1 and 2 were carried out with two different companies1. Both cases
were the outcome of employees from the companies attending research talks and show-
ing interest in adopting aspects of the runtime technologies we spoke about. We then

1 Due to non-disclosure agreements, one of the companies cannot be named. However, it is
worth noting that both companies had a R&D team of 50–100 persons.
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set up a process of giving hands-on talks on site to company employees about the more
pragmatic aspects of runtime verification. This was followed by being on their site to
work on an initial proof-of-concept implementation with the hope of bootstrapping the
use of runtime verification in a more widespread fashion within the companies’ prod-
ucts.

Despite the limited technological success of these initial experiences, the collabo-
ration has led to two formal projects being setup with one of the companies, indicating
that the technology does hold promise to the industry. Project 12 [13] is an ongoing
project GOMTA (Generation Online Monitors from Tests) between the University of
Malta and Ixaris Ltd. in which the focus was to address one of the challenges identi-
fied in our initial collaboration — that of specifying appropriate properties for runtime
verification. Project 23 [5, 4] is another ongoing project with Ixaris Ltd, where the run-
time verification aspect is more ambitious, since runtime verification is integrated as a
core part of the compliance engine of the OPE (Open Payments Ecosystem) platform.
Also of interest is that the development of the platform and the compliance engine are
being done concurrently, unlike the other use cases, in which integration of runtime
verification was attempted a posteriori to the system development.

All these use cases are discussed in more detail in the rest of the chapter.

2 Financial Transaction Systems

Over the past years, we have worked on various industrial financial transaction systems.
In this section we combine the common aspects into a single description, highlighting
any differences only when necessary. Although financial transaction systems face var-
ious challenges, from fraud and security, to functional correctness, all the work we
discuss focusses on the functional correctness, since various third-party tools already
address issues such as fraud detection and security effectively.

The transaction systems we interacted with, handle credit card transactions and are
thus composed of two sub-systems: one which handles the part of the transaction tak-
ing place between the customer and the transaction system, and another handling the
transaction between the transaction system and the bank. These will be referred to as
the transaction handling system and the processor communication system respectively.

A transaction is processed by going through a number of states such as authorisa-
tion, communication with the user interface, inserting the transaction in the database
and communicating with the commercial entity involved in the transaction. Each type
of transaction will have its particular chain of states through which it must go to be suc-
cessfully completed. Similarly, system user accounts also go through a cycle of events
including registration, logging in, performing financial activities, suspension, etc. The
interaction between these two life cycles as well as its implications on the amount limits
are among the most commonly specified properties:

Life cycles Entities in a transaction system, particularly users and transactions, go
through a life cycle of stages. Each stage will determine how the entity can be-
have and stages it can transition to in the future. For example, a user who has been
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suspended should not be allowed to perform any financial transactions. Similarly,
a transaction which is in the processing stage, should not be modifiable.

Real-time A transaction system typically has real-time aspects such as a transaction
should not take longer than 500 milliseconds to complete. Naturally, real-time prop-
erties can also be related to life cycles, e.g., once a user has been inactive for three
months, then the account should be frozen.

Amount and frequency limits Other commonly occurring properties in financial trans-
action systems involve amounts and frequencies of transactions and transaction
amounts, e.g., a user cannot transfer more than e2000 a week. These limits may
also be related to the life cycle, e.g., a user who has registered but has not yet been
fully approved, cannot withdraw more than e100 per week from the account.

Other There are a number of other properties which are difficult to classify under
the previous headings. For example, to ensure adherence to VISA regulations, the
transaction system cannot store credit card numbers. Another practical property is
to ensure that a transaction is not initiated twice by the user mistakenly clicking the
submit button twice.

3 Runtime Verification from a Process and Software Engineering
Point of View

While making runtime verification attractive to industry necessarily requires the inves-
tigation of the appropriate process and software engineering practices, these elements
remain largely unexplored in the literature.

The software testing community has had to solve a similar problem when it came to
integrating testing in the development life cycle of software, requiring years of experi-
mentation with different setups. To some extent engineering of properties for monitor-
ing is similar to the engineering of test oracles in that both are meant to tag behaviour as
good or bad by observing the system’s behaviour. However, there is a major difference
between the two, namely that test oracles are typically designed to handle only the test
case it has been written for. On the other hand, a monitor oracle needs to be generic
enough to handle any observed behaviour. This makes the problem significantly dif-
ferent and given the lack of published material on this topic in the context of runtime
verification, in this section we simply give some anecdotal reporting on what we have
done and how it worked out.

3.1 Process Engineering Challenges

The first problem when introducing a new verification technique such as runtime verifi-
cation within a software company is to identify the people who will be interacting with
the technique. This section will analyse a number of questions which arise from process
engineering point of view.

Engineering the properties When attempting to start the process of engineering prop-
erties for our industrial partners, a number of questions started to emerge:
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IWhich properties are useful to monitor Identifying which properties are to be mon-
itored might in itself be a challenging aspect for the success of a runtime verification
project. If the involved people do not see the benefit of monitoring, then it is likely
that monitoring will be sidelined. Our case studies have taught us that a number
of meetings might be required before the right kind of properties are identified for
monitoring (Experience 3.1). Even the notion of a property itself is usually alien
in the context of the software development industry (typically the word property
is taken to refer to an object attribute). However, once the initial communication
hurdles are overcome, appropriate system-wide properties — typically having a
temporal aspect — start to emerge.

Which properties are worth monitoring?
A number of discussions were needed with our industrial partners simply to
identify which properties are worth the effort of monitoring. At first the ex-
ample properties which were being suggested were deemed to be superfluous
given the way the system had been engineered. For example checking that
the balance is correct after a transaction was well tested, would have simply
wasted resources to monitor it. Similarly, properties found in runtime verifi-
cation literature at the time — mainly focusing on properties extracted from
the Javadoc of Java libraries such as those concerning iterators, maps, etc. [10,
9] — while useful, were not deemed to warrant the introduction of runtime
verification technology (opting instead to use code reviews, etc to eliminate
such standard bugs).
Following more discussions and involvement of different people in the organ-
isation, it started to emerge that the most useful properties were those which
crosscut the system across its modules or history. The crosscutting nature of
properties such as: “ensure the credit card numbers are never stored inside
our system”, “ensure a user does not carry out any transaction when sus-
pended”, or “the user should follow a particular cycle throughout its life-
time”, made it hard to check them (without monitoring) in a straightforward
manner, i.e., without cluttering the code and risking introducing additional
bugs in the process.

Experience 3.1. Taken from case studies #1,#2.

IWho is responsible? Once a number of example properties are identified, the next
challenge is to identify who would be responsible to express them in a monitorable
format. As Experience 3.2 shows, when the runtime verification engineer started to
work at the site of our industrial partner, it was not straightforward to pinpoint the
team which could most naturally handle property writing. The issues involved were
not limited to who has the knowledge of the system at the right level of abstraction,
but also who is willing to do the work while finding it beneficial (Experience 3.3).
The conclusion of our case studies was that the people who tick all the identified
boxes in a software development organisation are the QA personnel who have a
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vested interest in ensuring that the system as a whole works as expected. Runtime
verification provides them with a methodological approach of specifying properties
and a way of automatically checking them.

I In what format should properties be expressed? Identifying an appropriate format
for expressing the properties is crucial to enable the identified personnel to ex-
press the properties. Admittedly, we have not experimented with different specifica-
tion languages. However, our use of automata-flavoured notation (more specifically
[25]) has proved effective with non-academics who used it.

Which team will host the runtime verification engineer?
One of the interesting characteristics which emerged from both case study
#1 and #2 was how many times the researcher had to change the team he was
working with: In the case of the first case study, the researcher was first placed
with the security team. Soon it was realised that the runtime checking of func-
tional aspects had little to do with security. Next, the researcher was placed
within the development team: This move facilitated the familiarisation of the
researcher with the system code, but did little to help him understand the prop-
erties of interest. Next, the researcher had a meeting with the system architects
and this proved to be a swift way of obtaining a bird’s eye view of the system,
including some of its main properties. Finally, the researcher found it best to
work closest to the testing team whose system-level tests were closest to what
the runtime monitors were expected to do. A similar experience of moving
from one team to another could be recounted for the second case study. The
situation was however different in that testing was mostly carried out by the
developers themselves. This meant that developers were mainly responsible
for testing their own modules while there was a dedicated team for quality as-
surance (QA) which performed some testing and dealt with customer issues.
This time the researcher found it best to interact with the QA team to identify
the properties of interest. The main difference between the kind of proper-
ties identified by the QA team and those identified by interacting with the
architects is that the former are more likely to actually be violated at runtime
(e.g., a fee which is charged twice to the customer), while the others are more
fundamental but usually highly unlikely to be violated (e.g., the sequence of
states a customer goes through: from registered, to active, to suspended, etc).

Experience 3.2. Taken from case studies #1,#2.

Engineering the verification code Once the properties are available, the next chal-
lenge is to engineer the corresponding code to check for their violation. Typically, the
purpose of writing the properties formally is to exploit some runtime verification tool
which is able to generate the code for the properties automatically. On the other hand,
programming the verification code from scratch is also an option, but this would mean
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Who will write the properties?
In both case study #1 and #2, when developers were asked to write properties
to be monitored at runtime, they felt that they were simply redoing work al-
ready done while at the same time their view of the system was focused on
their particular module, making it difficult to capture system-wide properties.
Instead, runtime verification monitors were more naturally expressed by high
level testers/QA personnel who view properties as a concise way of express-
ing complex system properties and providing them with a kind of dashboard
through property violation reporting. Furthermore, since the people writing
the properties were not the same ones who programmed the system, this ap-
proach yielded better results in identifying bugs.

Experience 3.3. Taken from case studies #1,#2.

that the property engineering step is skipped. Furthermore, taking this option would
also usually mean that the code would not be separate from the system code, and con-
sequently, this is programmed directly by the programmers (in the case of our first
experience (see Experience 3.4) since the testing team was closely involved in the de-
velopment process and had ample experience in writing system-wide scripts, it was
responsible for integrating the runtime verification code). If the verification code is not
integrated with the system — usually when the verification does not take place in sync
with the system — then the code can be maintained by a team other than that of the
system developers, e.g., the QA team (this was the case with the second experience
mentioned in Experience 3.4).

Who manages the verification code?
In the first experience, since runtime verification was carried out in an online
fashion, the testing team had to be involved to help set up the necessary scripts
to integrate the monitoring within the system code. The reason for involving
the testing team was that they had ample experience with launching the sys-
tem through script writing. Unfortunately, the system was never updated after
the introduction of runtime verification code, meaning that we cannot com-
ment further on this experience regarding the management of synthesis and
synthesised code.
In the second experience, runtime verification was carried out in an offline
fashion and therefore this could be fully managed by the QA team with little
involvement from the development team in case required logs were missing
or in an unexpected format.

Experience 3.4. Taken from case studies #1,#2.
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Considering the option of automated synthesis, two separate choices have to be
made: (i) concerning the synthesis code and (ii) concerning the synthesised code. If the
latter is to be integrated with the system, then one would typically expect the system de-
velopers to be responsible for it. However, if the generated code is to be used separately
from the system, then once more there is the option of involving other teams. As for the
synthesis code, since this does not directly interact with the system and it would proba-
bly be a third party tool, then its management need not be tied to the system developers’
team.

Recommended procedure for introducing runtime verification Based on our experience,
in an ideal scenario, we recommend the following procedure when introducing runtime
verification in a company not familiar with the technology:

Initial meetings An initial meeting where an overview of the system and teams in-
volved (including architects, developers, and QA) is provided by the company.
Next, another meeting where the ideas behind runtime verification are presented
to the teams by the runtime verification engineers.

Information gathering Following the meetings, all relevant specifications, architec-
tural designs, etc. should be made available to the runtime verification engineers.
This is then followed up with meeting with relevant parties to fill in any gaps in
such documents.

Meeting with QA The QA team can provide information regarding the kind of prob-
lems they worry about the most on a day-to-day basis. These are usually the areas
where runtime verification can be useful. Properties can then be composed based
on these revelations.

Implementation phase Once properties are at hand, input is likely to be required the
system architects and developers.

Testing phase Finally, when monitors are running, one would likely need to verify any
detected violations with the QA team. It is probable that the first issues encountered
would be the result of miscommunicated requirements, requiring fine-tuning of the
properties.

Delegation phase If monitors are running as expected, then it would be the right time
for the responsibility to pass on from the runtime verification engineers to the teams
in their respective roles: the architects to ensure the monitoring code is well inte-
grated in the system design, the developers to manage the code, and QA personnel
to maintain the properties.

3.2 Monitor Design Challenges

A significant challenge from a software engineering point of view with respect to run-
time verification is to keep the concern separate from the system’s logic while at the
same time making it easy to integrate the two.

Furthermore, this has to be achieved while keeping the runtime overhead to a min-
imum. The following subsections deals with elements one should be aware of when
designing the verification code. It is worth noting that many of these elements are inter-
connected and one choice influences others. One important starting factor when consid-
ering these options is that of what properties one is interested in, and when and how one
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is to react to their violation. Such considerations already restricts architecture choices,
and event extraction mechanisms. The

Architecture Design One important question to be addressed is that of how the high-
level architecture combining the system and the verification units is designed. In both
case studies 1 and 2, the verification modules were developed a posteriori, and had to
be integrated to systems which had been in production for various years, which proved
to be an extra challenge in that limited architectural choices were available.

I Synchronous vs. asynchronous vs. offline monitoring One major choice to make
when integrating runtime verification and the system-under-scrutiny, is whether the
composition of the two is (i) online synchronous, in that after each relevant step, the
system will pause for the verification component to complete and announce com-
pliance before proceeding further, or (ii) online asynchronous, in which the monitor
is running with the system but steps of the system are checked asynchronously i.e.,
the system continues as the monitor does its verification; or (iii) offline, in which
the system simply dumps relevant information during its execution, and the veri-
fication is carried out completely independently of the system, possibly even after
the system has finished executing. The choice of architecture impacts how much the
monitors can help the system react to errors, but also the overheads of the deployed
monitoring. We had different experiences with possible composition approaches,
as discussed in Experience 3.5.

IManaging communication between system and monitors When monitoring takes
place in a white box fashion, i.e., with full knowledge and access of the system
code, monitors might be inlined directly along with the system code. This is typi-
cally done through the use of aspect-oriented programming [32] although it is com-
mon to write assertions by hand. To keep concerns more separate, e.g., if the system
and the monitor are running on different resources and/or implemented in different
technologies, one might opt for a less tightly coupled form of communication such
as the use of TCP/IP [20]. When monitoring in a black box fashion, the separa-
tion between system and monitors is naturally bigger and thus less direct ways of
communication would be typically employed. For example, the monitor might use
a tracing facility at the virtual machine level to pick up events of interest. Similarly,
the monitor might be able to indirectly detect system API calls by tapping into
the system’s communication channel. Opting for even less interaction, the monitor
might simply process logs which the system would have saved in a database or text
file during its execution.

Event Extraction Design Runtime monitoring requires an awareness of the system
behaviour, typically by capturing relevant events4. In what follows, we describe three
kinds of software events and outline ways these can be captured and communicated to
the monitor:

4 Other than software events, one may for example capture the state of the hardware, or perform
regular sampling of the variables. However, in this chapter we focus on the more commonly
used software events
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How to synchronise between the system and the monitors?
In case study 1, we started by implementing online synchronous verification
on a sandboxed system. However, in the second case study we had to forgo
synchrony due to (i) lack of trust impeding the integration of the runtime ver-
ification tool as part of the development toolset; (ii) fear of overheads due to
online monitoring impacting the system, particularly at times of peak transac-
tion traffic. The solution initially adopted to enable verification was, in both
use cases, to adopt an offline policy [1, 25, 26]. Given that the interested events
of the systems were already logged by systems in use by both companies, it
was simply a matter of accessing existing logs and connecting them with our
runtime verification tool.a The results were sufficiently convincing that the
monitoring was considered to be adopted on a nightly basis, running it on the
logs of the day. This led to the realisation that an important feature of a run-
time verifier is efficient bootstrapping — starting up the verification process in
a fast manner, without having to rerun full historic traces every time. This led
to a solution which was effective enough to be used in the nightly verification
process [22].
The use of offline monitoring also enabled further trust in the verification
package, which enabled further investigation, even if online overheads were
still considered prohibitive since they were not planned for in the original
system design. Financial systems typically handle long-lived transactions —
financial transactions which last far too long to justify locking of resources
(e.g., user’s bank account) in order to ensure consistency. The solution prac-
tically universally adopted in this industry is that of using compensations, ef-
fectively computations which can approximate the undoing of part of a trans-
action. In this manner, transactions are allowed to proceed unchecked, and in
case of a late discovered failure, the transaction is “rewound” to just before
the event that broke consistency constraints. This led to the development of
a novel quasi-synchronous runtime verification [24, 23] in which the moni-
tor was deployed asynchronously (though online) with the system, but upon
identifying a violation, compensations were triggered to enable recovery in
the state of the system where the violation actually occurred.

a It is worth noting that although the required events were logged, many
events unnecessary for our properties were also logged, so using the logs
as a starting point for identifying points-of-interest in the system is not
necessarily a useful procedure.

Experience 3.5. Taken from use cases #1,#2.
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IMethod-call-based events Method calls frequently provide the right correspondence
between the system’s behaviour and the monitor events of interest. For example if
the monitor is interested in money transfers, probably one can easily find a method
which performs the money transfer, providing access to the parameter representing
the amount being transferred. Method entry and exit points are typically captured
through aspect-oriented programming (this was the case with our case studies, see
Experience 3.6), or a tracing mechanism which the virtual machine provides.

I Communication events While in Java it feels natural to capture method call entry or
exit, other programming languages or system organisations may provide different
useful points of interest. A prevalent one of these is message communication in the
case of languages such as Erlang [19] or organisations such as the service-oriented
architecture [18]. Once again, such communication can be captured using similar
techniques, as applicable, such as aspect-oriented programming and tracing.

I Events-by-design Rather than relying on naturally occurring execution points in the
system (such as method call entry/exit points and communication events), another
option is to explicitly plan points-of-interest when to raise an event in the system de-
sign. From a monitoring point of view, this approach naturally represents the most
straightforward one as the system emits events automatically without the need to
capture them. At their most basic, such events may take the form of logging events
in a text file or database. In other cases, events might be broadcast to interested
subscribers, one of which might be the monitor.

How to capture system events?
In both case studies, the events of interest could be directly mapped to method
calls. For this reason, it was natural to opt for method-call-based events. Fur-
thermore, given the maturity of tools supporting aspect-orientation, we chose
a well-known aspect-oriented extension for Java, AspectJ. A significant differ-
ence between the two case studies is that the first was carried out online while
the second was carried out offline by connecting to a database. We note that
AspectJ could not be used to directly interact with an SQL database. How-
ever, by using a Java event replayer we were able to use AspectJ for both case
studies.

Experience 3.6. Taken from use cases #1,#2.

Verification Design Challenges Having events of interest reaching the monitor, we
now focus on how the monitor will process them. The main concern in this respect is
how to keep the runtime overheads to a minimum and avoid memory leaks which might
cause the monitor to take more resources to the detriment of the system.

I Keeping runtime work to a minimum One choice when designing the verifier is
whether to explore the monitored logic a priori to avoid having to unfold it during
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runtime. For example in the case of LTL [35], one would generate the equivalent
automaton such that at runtime one would simply need to move from one state to
another rather than rewriting the formula. The approach we took in our case studies
(see Experience 3.7) is to some extent even more extreme as we chose to allow the
users to program the properties directly as automata5. In this way, we pass on the
control of (most of) the overheads to the user.

I Bounded resources and garbage collection If the chosen specification language sup-
ports monitoring using bounded memory, one may carefully implement the verifier
such that the resource boundedness is exploited. The approach adopted for the case
studies was to have a fixed set of user-defined states and thus memory leaks can
only be introduced by the user through the Java code which can be used in transi-
tion conditions and actions.
Furthermore, another concern is the garbage collection of monitors — unused mon-
itors can cause a memory leak. In general it is not trivial to identify monitors which
can be discarded, since monitors are typically stateful and discarding part of the
state might lead to incorrect monitoring. For our case studies (Experience 3.7) we
chose to allow the user to explicitly mark states as accepting, meaning that once an
automaton reaches that state it can be garbage collected.

How to design the verifier?
For both case studies we used the runtime verification tool Larva [25] to gen-
erate the monitors. Two important choices in the generated verification code
were: (i) to use explicit automata, meaning that at runtime only simple if-
conditions are evaluated (apart from conditions and actions explicitly pro-
grammed by the user); and (ii) to generate a hashing function for monitors
(building on the user-defined hashing function of the monitored object) so
that monitor lookup takes place in constant time. The first case study, in par-
ticular, served as the first testbed for the Larva tool and several modifications
were introduced based on the experience. One such modification is the intro-
duction of accepting states, i.e., states which signify property satisfaction and
hence that that particular automaton can be garbage collected. Providing a
means of garbage collection proved crucial to have monitors which are usable
in real-life.

Experience 3.7. Taken from use cases #1,#2.

3.3 Conclusions

In this section we have presented the main challenges we have encountered when in-
troducing runtime verification into an environmental setting. The challenges fall under

5 Users all had an undergraduate degree which covered automata and they did not have full
formal training in using formal logics such as LTL, they were comfortable using automata.
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two clear categories (i) how the introduction of monitoring will impact the management
of the software design and development process, and (ii) the technical challenges as to
how to capture events and process them, i.e. the monitoring architecture, for the system
at hand. A number of observations we made from our experiences were the following:

1. Companies do not trust new software easily, especially if it interacts with their live
system at runtime.

2. Overheads are a worry, even when they might not be a real concern.
3. A major challenge is to have existing company structures organised to fit their cur-

rent software engineering process absorb runtime verification without reorganisa-
tion.

4. Attractive, low-cost applications of monitoring have been found to be statistics
gathering and user interface traversal analysis.

4 Challenges in Adoption of Runtime Verification

After presenting the challenges and design issues involved in introducing runtime mon-
itoring in industry, this section presents a number of proposals and describes how these
are being taken on board in two ongoing projects:

Project 1 — OPE The Open Payments Ecosystem (OPE) is an EU-funded Horizon
2020 project, aiming at creating a single pan-European cloud-based marketplace al-
lowing third party developers to create payments applications and service providers
(e.g., banks) to provide a range of services (e.g., card authorisation, ACH transfer,
Swift) to support these applications. As a core component of the OPE infrastruc-
ture, is a verification engine which allows for matching applications with service
providers based on their requirements, and to runtime verify the behaviour of these
applications to ensure compliance to legislation, risk restrictions and other rules as
required.

Project 2 — GOMTA The GOMTA project — Generating Online Monitors from Tests
Automatically — is a project funded by the Malta Council for Science and Tech-
nology (MCST). The project aims to facilitate the adoption of runtime monitoring
by saving the user the specification of the properties, extracting them instead from
the test suite.

4.1 Challenge 1: Monitoring Overhead

Based on our experience with industrial case studies, monitoring overheads (primarily
time, but also memory) have proved to be a major challenge and hurdle in the adoption
of runtime verification in industrial-grade systems. The runtime verification community
has focussed on the use of techniques at two different levels of abstraction: system level
monitoring vs. business logic. The former, focussing on elements of lower-level code
and libraries (e.g., iterators), implies higher requirement of low overheads of moni-
toring due to the denser spread of events, while the latter can make do with higher
overhead per event since the events being monitored are typically substantially sparser.
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Industry tends to invest substantial resources in identifying the right infrastructure and
libraries, with trustworthiness being one of the important metrics used. Due to this, it
was observed that the use of runtime verification techniques was seen by the industrial
collaborators solely as a means of verifying their business logic. This reduces the re-
quirements as to what are reasonable overheads, but it is worth noting different issues
related to overheads which have been identified in the past use cases:

Worst-case overheads: The main concern with overheads is how large they can grow
per event. However, given that runtime verification is a technique which (may)
use the history of the system to deduce correctness, a concern is also that certain
properties might require more time to check as the history grows longer, unless
techniques such as incrementally verifiable properties are used to ensure this does
not happen.

Variability of overheads: Another concern is that the overheads might change as the
system evolves, leading to variability in quality-of-service measures over time.

Overhead spikes: In many transaction systems, there are (sometimes predictable) spikes
of usage. For instance, on the payment portal of an online betting service, one gets
high numbers of transactions just before an important sports event. This results in
a proportionate spike in overheads, but is also the moment when fast reactivity is
of high importance. A decrease in transaction processing speed could have a pro-
portionately decrease in income. Catering for these moments of high server stress
through hardware redundancy is only part of the solution here, and techniques to
deal with monitoring in the presence of such spikes is a challenge still to be ad-
dressed.

Throughput: In a financial transaction system, all the concerns above are ultimately
transaction, rather than event centric. In other words, transaction throughput is a
key measure used by this industry. This means than looking at overheads at the
quantum of transactions (which are variable compounds of events) gives a better
hold on the applicability of the techniques in this domain.

Many techniques have been developed in the runtime community to address the
issue of overheads. From the adoption of additional hardware for verification e.g., us-
ing GPUs [8, 34] or FPGAs [31] to adaptive techniques to manage monitors through
measures of criticality e.g., [7], much runtime verification literature is concerned with
this issue. From a more pragmatic perspective, it is still the case that choosing which
architecture to adopt — in particular whether online or offline monitoring — is largely
motivated by the requirements on overheads.

Work on the use of static analysis techniques in order to partially verify require-
ments and thus alleviating runtime verification overhead is also showing promising
results e.g., [16, 11, 30, 36, 3, 15, 38]. Recently, we have started adopting such a tech-
nique (in ongoing project 1 — see Experience 4.1), which uses static analysis to reduce
dynamic properties, thus lowering overheads.

14



Combining static and dynamic analysis
In the OPE project, one important functionality of the framework is to enable
a developer to submit a payment app (or rather a model of the app), which
is automatically matched with an appropriate service provider, based on ca-
pabilities, risk analysis and other aspects. In order to perform this matching,
static analysis of the model submitted by the developer is performed [4].
This gave the opportunity to include further static analysis to reduce runtime
verification overheads in the compliance engine, which has to check that (i)
the application adheres to the model supplied by the user; and (ii) that it does
not violate legislation, service provider risk limits, etc. For example, accord-
ing to English legislation, the customer should always have the possibility of
redeeming money from his or her account after closure. Using the app model,
we statically check that this possibility is in fact supported — noting that this
would otherwise have to be runtime checked frequently (even when no re-
demption is carried out). Moreover, regulations also state that money redemp-
tion should occur at par value and without delay. However, it is not possible
to statically verify that these hold as the model does not contain this level of
detail, which leaves parts to be checked dynamically (in this case, for exam-
ple, timely redemption is not statically verifiable at the level of abstraction of
the model). These remaining checks are delegated to be carried out through
runtime monitoring.

Experience 4.1. Taken from ongoing project #1.
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4.2 Challenge 2: Proposals for Runtime Verification from the Software
Engineering Point of View

Introducing runtime verification within a software development life cycle presents a
number of challenges as highlighted in the previous section. In what follows, we attempt
to address them below by describing different approaches we have adopted in ongoing
projects.

Monitoring as part of system design One of the main drawbacks of our previous ex-
periences was that monitoring was not included in the original design of the system
being monitored. Instead, monitoring had to be somehow retrofitted into the sys-
tem architecture. In the OPE project (see Experience 4.2) runtime verification was
included from the start and used to ensure the reliability of the framework.

Monitor architecture The underlying system architecture naturally has a direct effect
on the monitor architecture. In traditional monolithic systems, without significant
effort, the choice is usually limited to online or offline monitoring. System archi-
tectures which allow submodules to be more decoupled such as actor systems and
those based on the service-oriented architecture, allow more monitoring options.
The OPE (see Experience 4.3) is based on a micro-services architecture and there-
fore it was natural to have monitoring as a service and the system may decide to
wait or not for the monitor verdict depending on the context.

Extracting events Identifying system execution points of interest and intercepting them
through aspect-oriented programming proved to be a non-trivial task in previous
case studies. Having predefined, clearly specified events makes it significantly more
straightforward for components within the system to communicate as the events
serve as a common interface; not least for the monitor. In the OPE project (see
Experience 4.3), events from each micro-service are published with the monitor
simply listening out for the relevant ones.

Monitoring as part of the system design
In past case studies the monitor has always been introduced after the system
had already been developed. On the contrary, in the OPE the compliance unit
(of which runtime verification plays a major role) was part of the initial design
of the framework. This saved the OPE execution environment from having to
be inundated with checks to cater for the legislation. The design, in turn, was
taken into consideration when choosing the implementation framework and
as further elaborated in Experience 4.3, incorporating the monitor in the OPE
was straightforward.

Experience 4.2. Taken from ongoing project #1.
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Monitoring architecture in a micro-services architecture
Being programmed as a monolithic Java system, previous case studies relied
on aspect-oriented programming to embed the runtime verification code, re-
sulting in either fully synchronous or completely offline monitoring. By con-
trast the OPE is organised in terms of micro-services, making it relatively easy
to have asynchronous monitoring on the live system: on the one hand, intro-
ducing the monitoring service was as straightforward as adding any other ser-
vice to the system; while on the other hand, using the native communication
infrastructure, all services can report events to the monitoring service.

Experience 4.3. Taken from ongoing project #1.

4.3 Challenge 3: Communication and Formalisation of Properties

One of the initial hurdles of introducing runtime verification in industry is that of ex-
pressing the system properties in a formal fashion. To address this problem, we are
working on two fronts:

Using a controlled natural language One way of easing the difficulty of expressing
correctness properties is by providing a specification language which does not re-
quire its users to have a background in formal methods. While automata have been
useful in previous experiences, their expressivity is substantially limited except
through the use of additional Java code on the transitions. One way of lifting this
limitation without impinging on the understandability of the language is through
the use of controlled natural languages [33]. These allow the creation of a custom
language whose expressivity matches that required in the context while the learning
curve can be kept to a minimum. We have experimented with the use of controlled
natural languages in such contexts in more academic projects [12, 21, 14] before,
but the OPE project (Experience 4.4) was the first industrial-project setting in which
we have used this approach, and which has so far proved to be effective.

Generating monitors automatically Another approach being explored to simplify prop-
erty specification is to attempt to extract them automatically or otherwise from
available information already present in tests. There has been some previous work
on automated monitor synthesis from tests e.g. [27, 2], although these approaches
work at a level of abstraction which is not always available in real-life case studies.
For instance, [27] requires model-based test case generators which are infrequently
used in industry. There is some initial work to start from the (universally used in
industry) unit tests, but it is still unclear how much can be achieved automatically.
On the other hand, as a means of supporting manual property writing, there is no
denying that tests contain much information which can be used for property writing
(Experience 4.5).
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Developing a controlled natural language
The OPE project is concerned with alleviating the administrative burdens of
creating financial applications. As such, there are various laws and directives
which need to be taken into consideration (e.g., the Electronic Money Direc-
tive and the Anti-Money Laundering Regulations). The main challenge with
encoding such legislation into formal properties is that they are regularly up-
dated, and that lawyers need to be involved to confirm that what is being
specified corresponds to the law. Using a controlled natural language enabled
us to have a communication language with the non-technical lawyers, and at
the same time technical people would not need to be involved each time the
legislation is updated.

Experience 4.4. Taken from ongoing project #1.

Generating monitors automatically
While none of our industrial partners had been using runtime verification be-
fore our collaboration, they both had a formidable test suite with good cover-
age of the system’s functionality. This realisation led us to consider extracting
monitors from tests. While the investigation is still in its early phases, initial
experiments using the Daikon invariant inference engine suggest that a num-
ber of properties can indeed be extracted from tests automatically: depending
on some quality attributes of the test suite such as branch coverage, we were
able to exceed 70% specification recall, although admittedly precision is still
below 30% [17].

Experience 4.5. Taken from ongoing project #2.
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5 Conclusions

In this chapter we have presented an anecdotal view of the use of runtime verification
in an industrial setting. Although we focussed on our experiences in the domain of
financial transaction systems, much of the observations are not domain-specific, and
can be extrapolated for other application domains.

The challenges encountered can mostly be split into two categories — firstly how
runtime verification can be fitted into existing software engineering practices and man-
agement structures, and secondly technical ones, particularly tailoring the right runtime
verification flavour to match the requirements and system at hand. We have found that
some such choices tend to pave the way for smoother adoption of monitoring technolo-
gies — for instance, starting with offline verification using existing system behaviour
logs can be an excellent way of showing potential benefit without having to surpass the
hurdle of introducing new code into the system. Finally, we have identified the major
challenges which we believe are still to be addressed before runtime verification can
find a foothold in industry, enabling its widespread use.
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