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Absiract

Some af the most interesting problems conoected with psendesimilar-
ity in graphs concern the constroction of graphs with large sets of psen-
demirnilar vertices or edges. This can be understoad in teo ways: Either
the graph contains a large set of vertices or edges which ame metually
psendosimilar or else for every vertex {edge) in the graph there & another
vertex {edge) to which it is pseudosimilar. We shall survey the methaods
nsed to constract such graphs and oo the way we shall alse dscuss some
related resulis and point out some unanswered questions.

1 Imtroduction

All graphs consldered will be folte, simple and undieected, woless otherwise
stated. The vertex-sed and the edge-set of a graph (¢ aroe denoted by V(G and
E{]. mapectively. Il @ I8 a vertex o &7, then 7 — o denotes the subgraph of
{7 obialned by removing v and all edges Incldent to ;) H e ls an edge of &7 then
7 — e denotes the subgraph obtained by removing the edge

Twir wertlees w,+ In a graph 7 are sald to be smdlar I theee 18 an automaor-
phism of &7 which maps « Inte . The vertioes w, o ane sald to be remarial-dmilar
if the subgeaphs 7 —u and ¢ — v ame somorphle. e and o are emooval-slmilap
but oot slmilar, then they are called peewdosimilar. In this caso we sometimes
gay that o s a peendosimilar mate of 4 and vieewveesa. IF 5 C 1) such that
any two vertices In 8 are pepudosimilar mates, then we say that the vertloes of
5 are maluelly peendostmilor ln .

Paeudesimilar edges are similarly defined, as ave the terms pseudosimilar
mates for pals of edges and mutually peeadosimilar for sets of edges.

The peason why pales of pseudosimilar vertices ariso 8 guite well understood
in terms of a sort of truneatbon of cyelle symmetry. Thus, take a graph & with
vertlees u and ¢ and an automorphism o of H such that o'({u) = v for some
t =1 and @ (u) #£ v for 1 < ¢ < L Then o and o are removal-similar in
O = H — {afu),... o' u)}; if moreover they also happen to be not similar,
then we have a pair of paoudosimilar vertices. Godsll and Kocay [7] showed
that, In fact, every palr of paoudesimilar vertlees can be obtalned this way.



Theorem 1 ([7]) Letw and v be two pseudostmilor vertices in a graph 7. Then
G is an induced subgraph of some groaph B such thal H has an aulomorphism a
with o —v) = G—u and o' [u) = v, and such that ViH)-VI(T) = {x1....,2:},
where 2; = o' u) and afz.) = w.

Therefore the most Interesting questions and constructlons Involve graplhs
with several pseudosimilar vertlees or edges. The two sltuatbons we shall he
Investigating are the construction of graphs In which every vertex [edge) has a
pErnlosimilar mate and geaphs with lange sets of mutually psendosimilar vertioes
(edges). -

A general survey about pseudosimilarity can be lound in (18, Some work
presented here has been carebed out slnce the publication of that survey. Graph
theoretie terms used but not defined o this paper are standard and can he
found In any graph theory text such as [9).

2 Every vertex can have a pseudosimilar mate:
The KS5 construction.

The question of whether or nod 1o & graph every vertex can have a pseudosimilar
mate has hoen settled sinee 1981 (12, The solution to this question turng out
to b a slmple corollary of the solution to another problom about symmeteles of
graphs, namely the construction of graphical regular representations [GRRE) of
groaps of odd oeder. A graph 7 I8 sald to he a GRR of & group I if Aut(is) =T
amd Aut{(7) acts pegularly on {7, that s, It I8 teansitlve an V) and the
stablliser of any o € V) s teivlal. Except for a finite number of koown
groaps, all finfte, nonabelian groups which are oot generalised dieyellc geoups
have GREs. A number of authos conteibuted towards obtalning this result,
but heee we shall only be requlring GGRRs for geoups of odd oeder (it follows,
goe (2] for example, that such groups must be nonabellan).

Theorem 2 ([10]) Ercept for one group of order 2%, ofl nonabelian groups of
el order have R

Using the existence of GRRs for groups af odd order enabled Kimble, Schaenk
amd Stockmeyer to eonstruct graphs in which every vertex has a pseudosimilar
mate.

Theorem 3 ([12]) There are infinitely many grophs in which every verter has
o peeudestmilar mate

Proof Let ' be a group of odd order and let B he a GRR of T, We note
that, sinee the stabiliser of any vertex of H under the actbon Aut{H)} = I s the
identicy element of T, it follews that if + Is any vertex of H, then = H — ¢
has the identity automaorphlam group.

Mow, let v b any vertox In 7. There I8 an automorphism o of H mapping
r to v. The vertices o~ ') and v = ar) are distinct, becanse otherwlse o



would contaln & eyele of length 2, which §s Impossible since T' has odd ordes.
Since o~ maps {v,r} onto {ra~'(r)}, it follows that & —v=H —r —v =
H-ot'iri—r =G —a"(r); that Is, v = afr) and &= '{r) are removal-similar
in . But (7 has the identity automorphlsm group, therefore v and a~'(r) are
pewdosimilar, O

We shall refer to this constructbon as the K55 construction. In [12], Kimble,

Schwenk and Stockmeyer also gave some nbee cxamples Mustrating the use of
the above theoprem.

One questlon which the above result brings up ls whether or not the K55
constructlon 8 the only one which gives graphs all of whose vertlees have pseu-
dosimilar mates.

CQuestion 1 I there o chamelersalion analageus to Theorem 1 of graphs all
of whese cerlices hoave o peendosimilar male? If in o groph (¢ all verbices fune a
pecudosimaler mate, a5 o afways possible be exlend 0 Lo a verlers-trmsilioe graph
by adding only one new verlex? In particuler, are all sueh graphs oldamalle tia
the K85 ronsfrwetion

3 Every edge can have a pseudosimilar mate:
Adapting the KS5S construction.

Finding graphs In which ewery edge has a paeudosimilar mate peoved to he
more ¢lusive. First attempts (11, 18] only managed to show that there are
families of graphs of order 1 such that, as o ineeeases, the proportion of edges
in the graph having a peeudosimilar mate tends to 1. However, In 1996, using
graphs constructed by Alspach and Xu [1], Laurl and Scapellato [21] proved the
Tollowing.

Theorem 4 ([21]) There are infintely many graphs in which every edge has a
peeudosimilar male,

The kdea 1s to adapt the K55 constructbon as follows. Let H be a graph with
an odd number of edges and whose automorphlsm group acts regularly on s
cdge-set. Then, a8 In Theprem 3, dedeting feom H any edge glves a graph all of
whose edges have a psendosimilar mate.

The problem ls to find such graphs H. Familles of graphs with these prop-
erties wore, In fact, constructed In [1] and & special case of this family can be
deseribed as Cayley graphs In the following way. [We recall that, I T 1s & group
and SCTwith S ' =5, 1¢ Sandl = {5}, then the Coley graph Cay(T, 5) s
the graph with vertex-set egual to T and In which two vertioes 2, 4 are adjacent
if and only If § = x& for some & € 5.)

Let p be a prime number with p =1 mod 3 and p=1 mod 5. Let Ty be
the group defined by

Tip={bdt’ =F =L =b""ch=¢")



where r 18 such that r* =1 mod 3. Let § be such that * = 1 mod p. and let
o be the automorphism of sy defined by ¥ =0 and & = . Lot

T= {c",-r:"i: c"‘,c"i, & = e}

S=ruT s =TT
Let Hy, be the Cayley graph Cay(Dy,. 5).

Theorem 5 ([1]) The automorphism group of the Cayley graph Ha, constructed
aboune gels regularly on s edge-gel,

This Cayley graph has order 3p and degres 10, therefore it has an odd
number, Uip, of edges, as required. Also, by Divlehlet’s Theorem on primes in
an arithmetic progression (see [4], for example), there I8 an Infinite number of
primes In the arithmetle progression {14 15k : & = 0,1,2,...} and therefore
an Infinite number of Cayley graphs Hy, can be constructed as above. This
therelore proves Theorem 4.

The smallest value of g for which the above constructlon works s p = 31
giving & Cayley graph with 465 edges and therelore & graph with 464 edges, all
of them palred by psewdosimilarliy.

In the above construction, the Cayley graphs Hip are all 3-transitive, that
ia, the automorphizm group s transitlve on the vertloes and the edges, but not
on the divected arce. Since what we need Is & graph whose automorphism geoup
acts regularly on s edges. one question which arlzes lollowing the previgos
constructlon ls whether or not [ I8 pessible io obialn a graph which Is not
vortex-tranaliive but whose automorphlsm group has the required action on the
cdge-set—sawch a graph would, of course, have to he bipartlie. A graph of this
type was constructed in [19] and we shall now briefly deseribe it

W fOrat glve & lew general definitions and pesults. The motivating idea
behind these Is the well-known characterisation, due to Sabidussl [23], of vertex-

transitive graphs In torms of coset graphs.

Lot T be a group and W, K two subgroups of T Let 5 be a subset of T
Drpfine the graph Cos(T,H, X, 5) as follows: Its vertbecs are the left eosets of W
and of &) two cosets =W and yH are adjacent I and oaly f g~ 'z € KSH. I
mprecwer, 5 C CH, that s, KASH = IO, then we denote Cos(T, H, IC, 5] slmply
by Cos(T, H, K.

I HAK = {1}, then any two cosets £H, 3/C are elther disjoint or have exactly
ong dement In common. In this case, N and gl are adjacent In Cos(T, W, )
if and only IF they are not digjolnt, that s, all edges of Cos(T', M, ) ave of the
form {0H, 1}, where § s the element common to both cosets. Another useful
way Lo look at adjacencies In Cos(U, N, ) when H 0K I8 telvial 1s as follows:
The coset W I8 adjacent to all the cosots shlC, Tor all k€ W [all these eosets
are distinet); similarly, the coset g0 18 adjacent to all the cosets gkH for all



k€ K. Clearly, the degrees of the cosets oM and @& as vertlees In Cos(I, W, K)
are |H| and |K|, respectively.

The following two resulis are oot difficull to prove.

Theorens § Lef 07 e oo groph whoese verleg-gol e partilioned nto fue orbils
T Va under the action of the automorphism growp I, Lt W be the stabilizer
af the terles w € V) and K the slabiliser of the verlex v € V. Let 5 be the
sl of all those permulalions o € U such that o(u) i3 adioeend o o, Then 7 is
igomorphic ta Cos(T, W, X, 5}, Morepoer, of (7 i5 edge-tronsitine then 5 C KH,
that is, 7 is isomarglae de Cos(D, W, ).

Theorem T Lef 7 = Cos(T, M, K0 Fort € T, let Ay desiole the action of left
transfation by § on he left cosets of W oamnd K. Then A, i an audemorphismn af
(7 this action is fransitive on the adges of . Sugpose & @5 an aulomarphism
of I' which fices setuise both W and K. Let & denote the induced action on the
cosels of H oand K. Then ¢ 5 oan automerphism of e gragh {7,

From these two thoorems [t & elear that to obialn a graph whose automor-
phism group acts regularly on the edges but non-transitlvely on the vertlees we
need Lo find & coset graph Cos(I', H. ) such that no aptomorphism of the group
fixes H and K. OF course we also require the graph to be connocted, therelore
H UK must generate all of I, We can now deseribe the graph econstructed in
4.

Let = b the group of order 3 - 5 - 31 deflned as follows

== {a.w,cla® = v’ =& = 1, wa = awe, e = 0e®,ow = we'®).

Mow let H be the cyelle subgroup generated by o and let & be the cyelic
subgroup gencrated by w. Let H = Cos(T, W, K). This graph Is edge-transithve
but ot vertex-transithve slnee the cosets of W have degeee § whereas the cosets
of & have degeee 3. Moreover, it I8 not difficult wo check that oo nontrivial
automorphism of the group T Oxes W UK, therelore there ls reason to hope
that, In Leet, the [ull avtomorphism group of B s 2, that 15, the automorphiso
group of H acts regularly on the edges. For this [ ls requived to show that the
stabiliser of any edee is trivial.

It turns out that the givth of B =5 8 and chat there aee exactly eight cyclbes of
lengih B contalning any edge. A decalled conslderation of these possible cycles
leads v Flgure 1, which shows all the 8-cycles passing through any of the thres
edges Incldent to X (and also the names of some of the vertlees). By a more
detalled consideratbon of the conflguration shown in Flgure 1 and using the [act
that H ks edge-transitive it is shown in (19 that if an automorphism of B fixes
the edge {#, K} then it must be trivial, as required.

The graph H in this last construction has 248 vertices and 408 edges, and
therefore this again glves a graph with 464 edges all of which are paleed by
pewdosimilacity, The follewing guestion therefore naturally ariscs.
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Figure 1: All the S-cyeles passing through the edges ineldent to X

CQuestion 2 Are there graphe wilh less than J6] edges in which cuery adge has
o peendesimilar male?

Alsn, the non-vertex-teansithve graph whose automorphism group acts regu-
larly on its edges, and which was used o the previous construction, could very

well be the frst such graph o an infinite family, analogous to Hap, p = 31, for
Thesrem 5. Therefore one can ask,

Question 3 Find an anfinale fomly of graphs adidch are nol verlec-transilive
but whose aulomaorphism groups acl regularly on the mespectiog edpe-gels,

Finally, gne can ask for pseudosimilar edges a question analegous to (ues-
tion 1 of the previows sectbon.

Question 4 s Here o chamelerisalion, snalegous toe Theoremn I, of graphs all

of whage verfices have o peendosimilar male? Are all such gragphs oldaineble tia
the K858 construction adapled for edges?



4 Cayley line-graphs

Wheress the peoblom of constructing graphs In which every vertex has a pseu-
dosimilar mate turmed out to be an easy application of the cdstenee of GGRRa
for finite groups of odd order, the analegous problem or psewdosimilar edges
was more difficult because there It was not sulfflebent 1o know that a group had
a GEBR; the GER had to have some partleular structure—not any GRR of the
groaep wiolld do.

The situation s pechaps best understood in teems of lne-graphs, for oo,
sinee we are looking lor & graph H whose automoephlsm group acts regulaely on
itg edpge-set, the line graph L(H) s a2 GRR of Itz automerphism group (+hich s
Isomorphie to Aut(H)). Therefore L{H) I8 a Cayley graph of Aut{H) [(see 2],
for example]. Hence we are now leoking for partleular Cayley graphs, namely
those which are line-graphs.

It Is therelore natural 1o ask, In this context, what form the set. § must take
for the Cayley graph Cay(I', 5] to be & line graph. The answer ls glven by the
mesl. Plienram.

Theorem & Let T' be o finite group and let S CT with 5~ =5, 1 ¢ 5 and
I'={58). Let §* = S {1}. Then G = Cay(T, 5] is a line-graph if and omly if
5% = 5 U5 such thal:

1. 5 nk&y = -[l}, mmd
2 elther heth 5 and 52 are sulbgroups of T

i orelse 5 = HUHe and So = o "Hala™ "N, for some M <T anda e T
with Hna—'Ha ={1}.

Proof We fiest recall the charactorization of line-graphs In toerms of the Krausz:
decomposition of its edge-sot (seo [8]), namely, that a 2-connected graph (as s
oalr Cayley graph O slnee It 18 vertex-transitive)} 1s a lne-graph I and only 1 s
edges can be partitioned so that the edges In each part Induee a complete graph
and every vertex I8 Incldent 1o edges eom exactly two parts of the partition. In
the case of 7 (agaln slnce 1t 18 vertex-teansitlve) 1t & a lne-graph IF and only
if the nelghbowrs of one of 118 vertlees oy together with vy Induee two complete
graphs which lntersect anly In oy We can take oy to be the veetex 1, whoso set
of nelghbouwrs s 5. Therefore 7 18 a line-graph i and only If 8% = 5; U5, such
that

(i} & rS = {1}, and

(1) If &1, 82 € 5° then & "8 € 5 I and only If both & and & are In 5 or
Sy,

If Conditlon 1 and one of Conditlons 2 or 3 of the theorem hold, then so do
Conditions (1) and (L), that =, & 1s a Upe-geaph. Therebore, for the converse,
suppose 7 ls a loe-grapl, that 18, Conditions (1) and (1) hold. In the sequel,



for #,4 € 5% we shall use the notation & ~ y to denote that & and 3 arve hoth
in 5 or In 53

We now make two observatlons:

Cihgerwation 1.

Suppose 5 (i = 1 or 2] eontalns two subgroups A, 8 ol I, Then 5; also eontalng
the subgroup ¢ = {4 U B) generated by A4 U B. For, by (l) and sinee each of
A, B econtalns the Inverse of each of s elements, we have that for all ¢ € 4 and
b€ B, the elements ab = [a—')~'band be = (b~ )t are both in 5*. Moreover,
gince o~ {eb) and 5—'{be) are in 5 and a, b € 5, then, by (i), ab and be are
also In 5;. Therelore, If an element like w = aypbprg .. oa,_ b, 15 & prodect of
elements a; € A.b; € B, we can show that w € 5; by Inductlon on n: since n,‘l
and by . .. a, b, are both In 5; then w = l:ul"]-’b,aj.-.a,,_|b,, Is Im 57
also, sloce ay € 5; amd ﬂ,"w s In 5=, then w 18 also In 5;, by (iL).

Therefore 5; eontalng a subgroup of T which |5 maximal In the sense that
it contalng every subgroup of I found In 5. We denote this maximal subgroup
by Hi.

Chaervation 2

Each &5 Is the unlon of rlght cosets of ;. Fore, let g € 5. Then, lor any b £ H;,
E~'g € 8%, that s, H7'g = Hig © 5%, But, for any hy € H; and hag € Hig,
we have that h]"hgg £ 5% Therefore hag must be In 55 that s, Hig € 5.
However, g € Mg, that k=, any element of 5 18 In some right coset of ;.

We now clalm that any two elements of 55 not contalned in Ny must be in
the same right coset of H;.

Conslder, without loss of generallty, 5. Let 2,y € S, x #yand et 27y =
# € 5. From the relation 2 = y and yz~' = z It follows that 2" ~ z and
g~ ! ~ 2!, There are now four cases to consider. (Note that below we use the

fact that if both @ and o~ are In 5; then so i {a).)

Cage It 2 € 5.

Cage L1: 2~V € 5.

Therefore ', 3! € 5, and so, (x) and {y} ave In §,. Therefore all pairs
of elements #, y € 5y such that x—'y = 2z € 5 with £~V also in 5; must be in
Hy-

Cage 18 2-1 € 5,

Therefore (&) € 5y and so & € H,. Moreover, y=' & 8, therefore y & #,,

that k=, i I8 in & nontrivial coset oy of H) contalned In 5.

Cage I: 2 £ 8y
Case IL1: =" € 8§

Therefore y,y~" € Si, that Is, (p} © 5. Again, y € Hy and ¢ Is In &
nontebvial right coset Wiz contalned ln 5.
Case IL2: =" € S

Therefore 2", " € Sy Consider #y~' = (27")" 'y~ € & But = '-
ey~ = y '8, Therefore x ~ zy~", that ks, xp~' € 5. Similarly, g~ 5.



Therelore 5 contains |:1‘I|'_I:| < Hy. Therefore x, % are In non-trivial coseis of
Hy (nootrivial sinee 2%, " @ Sa). But My contalns xy~" -y = =, that ks, ¢
and i are in the same nontrivial rlght coset of Hy.

Thiz proves oue clalm, and hones we can say that 5, = Hy or 51 = Wy UM
and E.]!I'I:'l.]]ﬂ.'l'l].' Sa=THs or B = Has U Hab IT 5 = Hy and 5 = N then we are
done. S0, suppese 5y = Hy U Haa with o ¢ M. Therefore 2" ¢ 5, otherwlse
{a} < 51 and @ would therefore be In M.

Hence a=' € Ha, and sinee a~' @ Ha then a=' € Hab, which Is therefore
Hya~'. That i3, 853 = Ha U Haa™'.

Wow, Tor all g £ Mya, ¢~ Is in 5 but not In He (sloce g & 52). There-
fore g~' € Haa™', so that (Hie)™' C Hase™'. Similarly, (Hea™ "' € Hia
Therefore (Hie) ™ = a~ "M = Haa™', henee Hy = a~"Mya. Therefore 5, =
Hy UMy aand 55 = a~ Hioae e H,, as reguired. O

[ The line-graph of the Cayley graph Ha, for p = b consbdered in the previous
secilon Is, In fact, the Cayley graph Cay(=Z, 5} (where 2 15 the group considered
later In the same section) with §° = HUHwUw el w "M, where H = (m).)

The problem of Onding a graph whose automoerphlsm group acts regularly
on 18 edges can therelore be regarded as a problem of nding & Cayley graph
Cay([", 5 which Is a GRR and such that & has the speclal form described in
the previous theorem. From this theorem, the simplest way to guaranies that
Cay(T, 5] is a line-graph i to let § = HUK — {1} where H, K are subgroups
of I' with teivial Intersection. (In this case, I Cay(I', 51 Is the lne-graph L H)
of H then i Is the graph Cos(T,H, K a8 dellned In the previous sectlon.)

Mow, for the Cayley graph to be a GRE I is necessary that no automor phism
of I fixes 5. This necessary eondition 1s not, In general, sufllcient. The following
result of Godsll [6], however, affirms that for a wide class of p-groups this simple
condition = also sulflclent o guaraniee that the Cayley graph Is a GRR.

Theorem 8 ([(6]) Let T be a finite p-group which admits ne homomorphism
onto the wreath product of 2, by £, Lt SCIL, S=5" and ' = {5} such
that no nosdrivial aulemorphisn of T fiees 5. Then the Cagley graph Cagdl5)
g a GRA of T

Crodsil's theorern and the above discussion have led Laurl and Scapellato
21] to pose the following questhon:

Question 5§ Does there el a p-group I (p an edd prime) having oo sulgroups
H, K with the following propertice: () HOK = {1}, i) T = (HUK), and {iii)
war seen brdedad artonerphigm of T fiees WU seludge?

I k= not a pegroup then foding such subgroups 18 possible. For example, i
E Is again the group deflned 1o the peevions sectlon, then 1t s routine to check
that the subgroups H = {a) and X = {w) have the required properties.

W wore, howevor, heen unable to And even any nilpotent group which lag
twn such subgraphs —nilpotent groups might therefore b the right class of geoup
to look at I one 8 trying to show that the answer to the above guestion s
megEative.



5 Sheehan’s fixing subgraphs

The idea of fxing subgraphs was introduced by John Shoehan n (26, 26, 27].
Slnee then It has turned out that fixing subgraphs aro Important in many aveas
of graph theory—an excellent survey of this development I8 glven by [24]. We
shall here polnt belefly to the connection between fxing subgraphs and pseu-
dosimilarity, focusing bn particular on a consequence of Theoram 4.

A spanning subgraph U7 of a graph 7 B termed & fidng subpaph of & HG
contalng exactly [Aut{(7] ]/ [Awt(E] M Aut(L7)| subgraphs momorphie o I7 [the
graph & must contaln at least thls npumber). I In additbon, Aut(L7) < Aut{d7)
then L7 I8 called a siromyg fieing sulgragh of G, Let F(G) (F*E)) be the set of
fixing (strong fxing) subgraphs of .

The connection with pseudosimilarity Is that i an edge & has & pseudosimilar
mate then the spanning subgraph 7 —e cannot he In F* (7). As a direct corollaey
of Theorem 4 Sheshan proves,

Theorem 10 ([24]) There are infinitely mony graphs & such that
(il G—eg F*(G) for all e € E{G), and
(i) |F(&) = 1.

6 Large sets of mutually pseudosimilar vertices
or edges

With the seitling of the gquestlon of the exlstence of graphs In which every
cdge has & pseudosimilar mave, the most Interesting and difficult problem in
peewdosimilarity would now sepm o be the following,

CQuestion 8 fua gaph & of order i, what 45 the lorgest possilde size k of o sl
af mlually perudesimilar derlices¥ Allenabinely, @uen &, whal is the smalles!
graph which crmtans & owlually peewdosimilar verbicesY  What i the answer
Jeor the analmprns questions on muduelly peeudestmilar sdges?

This seems to be a very difficult questbon. We shall here review some con-
structions which attempt o pack as many a8 possible mutually pseudosimilar
vertices (or edges) In a graph of order . It I8 clear that nod all of V(&) can
be mutually peeudosionllar, for such a graph & would be regular and an lsenor-
phism rom & — w w & — @ could theeefore be extended to an automorphizm of
O mapping w loto v With slightly more work one can also show that kB mouost
be less than n — 1. Also, this question has been resolved for trees (in [5] it s
shown that & < 3 for any tree), for & = 2 {[7]; & must have order at least G)
and, it seems, for & = 3 (In [13] a graph on 17 vertices with three mutually
perdosimilar vertices s constructed, and this seems to be the smallest possible
graph lor & = 3).

The difficulty of Questlon 6 and these partial results suggest two questbons.
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Cuestion T Are there ofher inleresting clusses O of graphs such thal, for ang
graph & i O, the nuwmber of mulsally peewdostmilar verdices i O mus! be less
than seme constant ¥

CQuestion 8 Verfy thal a gmph with & = 3 malually peensosimilar werlices
musl have order af least 17 What would be the analogous resull for E =49

But mow we shall be considering sequences of graphs lor which k| the number
of mutually pseudosimilar vertices, Increases without bound.

The simplest way [12] obtain such a sequence s to start with the tran-
sitlve tournament T on &k vertiees (that ls, the tournament with vervpx-sel
{1,2,... ,n} In which i dominates j if and only 14 < j}. Clearly the vertices of
T, are all mutually pseudosimilar, but the tournament has 1o be transforoed
Into an undirected graph while preseeving the pseudosimllacity of s vertlees.
This process 1s Dustrated lor Ty in Flguree 2.

2

Figure 2: Transformlng Ty Into a graph with 4 mutually pseudosimilar vertioes

This construction gives a sequence of graphs Ge baving B mutoally pseu-
dosimilar vertices and oeder k).

Anciher general egnstructlon for creating & sequence of graphs with large
sets of mutually peeudosimllar vertlees runs as lollows:

Lot & he a graph contalning ¢ endvertices, all of which are mu-
tually peeudosimilar. Let 07 be the graph obtained om & by me-
moyving all 1ts endvertioes, and et B be the set of nelghbowrs of the
endvertiees of F—sloee no twoe endvertioss are similar, oo two can
share & common nelghbour, therefore || = . Let X be the set of
all those vertioes of & which are In the same orbit &8 some vertex
in B under the actlon of Aut({F). We now econstrect & sequence of
graphs &y, ¢t = 1.2,. .., contalning #* mutually pesudosimilar end-
vertioes. Let & = & and 1ot Hy be & less one of its endvertices.
Having constructed €7, let Hy be 7y less one of s preudosimilar
cndvertiees, Then, (i B obtalned by attaching a copy of & to
cach vertex In B and a copy of H: to each of the other vertioes In

i1



X—K. By attaching a copy of & (or Hy ) o a vervex o of (7 we mean
Jolning v to every vertex of Gy (or Hy) which Is nol an endvertex. )

Each graph ¢ 50 obtalned has r* mutually pseudosimilar end-
vertloes and fJ:|I|‘:| vertlees. Therefore If B = r* 18 the number of

pEeudosimilar endvertioes, then the total number of vertioes In &) Is
e | X | g 1Ry

[(Slnee the pseudosimilar vertioes pesulting mom this constroction are end-
vertices, that I8, vertbees of degree 1, the edges Incldent to these endverilecs are
also mutually peeudosimilar. )

The cruclal step In the above construction s finding the starting graph &,
that =, one with endvertioes all of which are mutually pseudosimilar, 'We ghall
describe different methods which have heen emploved in order to do this.

Krishnamoorthy and Parthasarathy [16] started with the tournament on
three vertices forming a divected eyele. I an endvertex 5 attached to two ver-
thees of the tournament. and the aves ave teansformed Into edges using “gadgets”
as In the proofl of Friocht's Theorem, then the twoe endvertices are psendosimilar
and the resulting graph &7 = &) can be wsed a8 the base graph In the above
construction. The graph s obtained In this sequence, containing 2* = 4 motu-
ally psewdosimilar vertioes, Is shown In Flgure 3. Starting with this base graph
theeefore gives & sequence of graphs & with £ = 2 mutually pseudosimilar
endvertices and order Q83 ee2y

Flgure % The graph (o with 2* mutually pseudosimilar vertices p, g, r, 2
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In [30] a different starting graph was used by exploiting the arc homoge-
necus property of the guadratle residue tournaments. Thus, consider QT(T),
the guadeatle residue tournament on seven vertioes (that s, the towrnament
with vertes-set {1,2,... 7T} such that {i,§) 1s an arc If and only If § —i 05 &
noneero square modsle 7). The vertices 1,2, 3 form & transitive subiournament
of GFT(T) so that I an endvertex 5 jolned o each of 1, 2.3 and the aves of the
tournament arve transformed Into edges by means of appropriate gadgeis, then
we get the graph ' = ) with throee endwertices all of which are peeudosimilar.
The aheve construction thoen ylelds a sequence of graphs &, with & = 3F muotu-
ally peeudosimilar endvertlees and order Ok T2 5 which Is better than the
congtewctlon of Kimble, Sehwenk and Stockmeyer using transltive tournaments,
but not as good as the constructlon of Krishnamoorihy and Parathasarthy.

The problem of Onding a bhase graph € a8 the starting graph of the abowve
constructlon can be deseribed In terms of permuotatbon geoups. Suppose I s a
group of permutations actlng on some set X such that, for some B C X, the
Iollowing two conditions hold: (i} the setwise stabiliser I'jpy of B s the identity
and, (i) for any two (|B] — 1}-subsets A, B of R, there s a permutation o n T
such that (A} = B. Then, by & result of Bouwer (3], one can construct a graph
7 with minlmum degree at least 2 and X Z V(7] and whose automorphism
groap ls somorphic to I and such that X s Invariant under the action of Aut|7)
and also Aut(fs) has the same actlon as T on X. Therefore If we attach one
endvertex o each vertex of B © V(7] we obialn the starting graph &' all of
whose pndvertiees are mutnally peewadosimilar. Heonee such stariing graphs can
be constructed 5 pormutatlon groups satiafving conditions (1) and (18} ave Tpund.

In [17] such & permutation group with |X| = 8 and |R| = 4 was constructed.
Let T' b the geoup of affine transbformations on the field &F(8). This group I8
not, F-transitive but it & 3-homogeneous [22] (that s, any two 3-sets are similar
under the action of T}, Therefore all we need = a dset B such that Tyg
Ia trivial. If we represent GF(B) as Egfe]/p(x), where p(x) ks the primitive,
Irreducible (over Ey) polynomial #% 4+ ¢ + 1, and if we let B = {0, 1, £, #*}. then
one can easily check that the only permutation in I which fixes R setwise Is the
Identity.

This then gives a starting graph &' with 4 cndvertlees all mutually peeu-
dosimilar, and therelore & sequence of graphs 7 with & = 4° mutually psea-
dosimilar endvertlees and order O{E%2), Till now, this sequence seems to be
the one which gives the best “packing™ of mutually pseudosimilar vertlees.

In [17] there ks also described & construetion which produces, for all £, & graph
contalning ¢ endvertioes ol of which are mutually peeudosimilar. However, this
constructlon requires that | X| = Of|R*1)) and it therefore does not solve the
problem of obtalning a8 dense a packing of mutually paesdosimilar vertlees ag
posalble.

In [17] it is also shown that a permutation group satisfyving Conditions (1)
and (i) above must have |X| = 2|RH| — 1. Therefore the above eonstructlon can,
at best, produce a sequence of graphs Oy with k = 7 mutually pseudosimilar
endvertices and order O R*E2r—1)/egr)
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The above consiructions suggest the following guestions, the Orst two of
which are restrlcved veesbons of Question 6. In view of the preceding comments,
a positive answer to (Questlon 8 would require a totally difforent constewction
from the one we have been discussing. The constructions used in (8 13) employ
Cayley graphs and explolt the equivalence of the actbon of a permutation group
T on & set X with ts action on the set of cosets of a stabiliser. In [15], Kocay,
Nieslnk and Zarnke systematically search for groups T with a subgroup X such
that the action of I' on the cosets of K can be wsed 1o consteuct graphs with
4 = k> 2 prendosimilar vertioes. Poerhaps these methods neced to be Investigated
and extended further In order to tackle this problom.

Question 9 Ti il possible Lo construct o seguence of graphe () such that 7,
fag & mutually peeadosimiler vertices and order (&) ¥

Cuestion 10 Fauen &, whal @5 the smallest graph which containg & endnertices
all af which are mulually peeadosimalar?

The next guestion asks whether there are tournaments which extend the are
homogeneeus property of the guadreatie resldue towrnaments to a type of lecal
homogeneity with respect o one of s subtournaments. Such tournaments eould
be used (as the touwrnament QT (7)) was wsed above] In order to obtaln the hase
graph {7 for the above constenction.

Question 11 Can one conslruct, for ang & > 4, a towrnemend A with the
Jelloiming properly: Ap containg, as a sublowrnomend, o iramslive doarfmend
Ty om k verlices sueh thal, for any two sublowrnoments Te_y and T, of T}
ofi k— 1 werbices, there is an autemorphism o of Ae such thal alTe_1) = Ti_,.

Finally, one can ask questlons analogous to Cuestion 1, namely whether
there Is a characterlsatbon similar to Theprem 1 of graphs with & > 2 mutoally
pseudosimilar vertices. In [14] a theorem analogous to Theorem 1 was proved,
but there the graph H could be infinite. In (8] this problem was partially solved
for & =3 with the exira assurmption that there are no edges between a certaln
sl of vertioes contalning the pseudosimilar ones, Qe can therefore ask the
Tollowing.

Question 12 Suppose a graph ¢ fas & > 2 outwally peeandosimilar vertices
g oo . T8 7 the tnduced subgraph of o finite graph H dnosldef wy, oL g

are germilar ased wlideh has k — 1 aoulomerplismes oy, .o oo such that o[ —
iy ) = —iyyy and such thal the verlices in VI H) —V[7) are in the same orbil
e g, .- e urder the aclion of Aull H) ¥
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