
Runtime Verification
and

Compensations

Christian Colombo

Supervisor: Gordon J. Pace

Faculty of ICT

University of Malta

October 2012

Submitted for the degree of Doctor of Philosophy

Faculty of ICT

Declaration

I, the undersigned, declare that the dissertation entitled:

Runtime Verification and Compensations

submitted is my work, except where acknowledged and referenced.

Christian Colombo

October 2012

ii

Acknowledgements

I would like to sincerely thank Gordon J. Pace for his continuous support
and enthusiasm particularly through frequent meetings and discussions which
served as a major inspiration throughout the past years.

I would like to thank my colleagues, particularly Adrian Francalanza and
Mark Micallef, and my family and friends, particularly Jennifer Fenech, for their
presence and continued support during my studies.

The research work disclosed in this thesis has been partially funded by the
Malta National Research and Innovation (R&I) Programme 2008 project number
052.

iii

Abstract

As systems grow more complex, it becomes increasingly difficult to ensure
their correctness. One approach for added assurance is to monitor a system’s
execution so that if a specification violation occurs, it is detected and poten-
tially rectified at runtime. Known as runtime verification, this technique has been
gaining popularity with its main drawback being that it uses system resources
to perform the checking. An effective way of minimising the intrusiveness of
runtime verification is to desynchronise the system from the monitor, meaning
that the system and the monitor progress independently. The problem with this
approach is that the monitor may fall significantly behind the system and by the
time the monitor detects a violation, it might be too late to make a correction.
To tackle this issue we propose a monitoring architecture, cLarva, providing
fine control over the system-monitor relationship, enabling the monitor to be
synchronised to the system by fast-forwarding through monitoring states, and
the system to synchronise with the monitor by reverting it to an earlier state.

Going back through system states is generally hard to automate since not all
actions are reversible; reverse actions may expire, the reverse of an action may
be context-dependent and so on. This subject, known as compensations, has been
studied in the context of transactions where the reversal of incomplete trans-
actions is used to ensure that either the transaction succeeds completely or it
leaves no effect on the system. Although a lot of work has been done on com-
pensations, the literature still presents challenges to compensation program-
ming. We show how these limitations can be alleviated by separating compensa-
tion programming concerns from other concerns. Inspired by monitor-oriented
programming — a way of using runtime verification to trigger functionality
— we propose a novel monitor-oriented notation, compensating automata, for
compensation programming. Integrated within a monitoring framework which
we call monitor-oriented compensation programming, this notation enables a pro-
grammer to program and trigger compensation execution completely through
monitoring with the system being unaware of compensations.

Finally, we show how compensating automata can be used for programming
the synchronisation between the system and the monitor in cLarva, enabling
complex compensation logic to be seamlessly programmed. To evaluate our ap-
proach, we applied it to an industrial case study based on a financial system
handling virtual credit cards, consisting of thousands of users and transactions.
The results show that the architecture has been successful in both synchronising
the monitor to the system by fast-forwarding the monitor, and also in synchro-
nising the system to the monitor using compensations to reverse the system state
— achieving a virtually non-intrusive runtime monitoring architecture.

iv

Contents

1. Introduction 1
1.1 Aims and Achievements . 4
1.2 Overview of Subsequent Chapters 9

I Background 12

2. Runtime Verification 13
2.1 Instances of Runtime Verification 16

2.1.1 Logic-Based Monitoring . 16
2.1.2 Automata-Based Monitoring 22
2.1.3 Monitor-Oriented Programming 27
2.1.4 Discussion . 29

2.2 Conclusion . 31

3. Compensations 32
3.1 Error Recovery Techniques . 33
3.2 Compensations . 37
3.3 Compensation Formalisations . 42

3.3.1 Compensating CSP . 43
3.3.2 StAC . 45
3.3.3 SOCK . 48
3.3.4 Communicating Hierarchical Transaction-Based

Timed Automata . 51
3.3.5 Discussion . 54

3.4 Formalising Compensation Correctness 55
3.5 Conclusion . 59

II Runtime Verification for Compensations 60

4. Compensating Automata 61
4.1 Designing a Compensation Notation 63

4.1.1 An E-Procurement Case Study 64

v

4.1.2 Proposed Architecture . 68
4.1.3 Design Options in Compensation Programming 70
4.1.4 An Informal Introduction to the Compensation Notation . 79

4.2 Compensating Automata . 84
4.2.1 Semantics . 92
4.2.2 Communication Amongst Compensating Automata 95
4.2.3 Self-Cancellation in Compensating Automata 104
4.2.4 Determinism of Compensating Automata 115
4.2.5 Stability in Compensating Automata 118

4.3 Programming with Compensating Automata — A Case Study . . . 122
4.3.1 Other Solutions to the Case Study 123

4.4 Related Work . 124
4.5 Conclusions . 138

5. Monitor-Oriented Compensation Programming 140
5.1 Monitor-Oriented Compensation Programming 142
5.2 Case Study . 144
5.3 Related Work . 151
5.4 Conclusion . 153

III Compensations for Runtime Verification 154

6. Compensation-Based System-to-Monitor Synchronisation 155
6.1 Synchronous and Asynchronous Monitoring 158
6.2 Compensation-Aware Monitoring 160
6.3 Compensation Scopes . 169
6.4 Desynchronisation and Resynchronisation 176
6.5 A Compensation-Aware Monitoring

Architecture . 178
6.5.1 Automating the Decision of Monitor Mode Switching . . . 180
6.5.2 Monitor Demultiplexing and Scheduling 182

6.6 Industrial Case Study . 184
6.6.1 Specifying Properties for Monitoring Entropay 185
6.6.2 Specifying Compensations for the Case Study 188
6.6.3 Implementing Heuristics as DATEs 189
6.6.4 Monitoring Results . 192
6.6.5 Discussion . 195

6.7 Related Work . 196
6.8 Conclusion . 197

7. Monitor-to-System Synchronisation 200
7.1 A Theory of Monitor Fast-Forwarding 201
7.2 Instantiating Fast-Forwarding to Larva 204

vi

7.3 Adapting Larva Scripts . 208
7.4 Applying Monitor Fast-Forwarding to Entropay 209

7.4.1 Performance Results . 210
7.4.2 Discussion . 211

7.5 Related Work . 212
7.6 Conclusion . 213

8. Synchronisation Programming with Compensating Automata 214
8.1 Proposed Architecture . 215
8.2 Case Study . 217
8.3 Conclusion . 219

IV Conclusions 223

9. Conclusion 224
9.1 Future Work . 225
9.2 Concluding Thoughts . 227

A. System-Monitor Synchronisation Extended Case Study 228

B. Publications 233

References 236

vii

List of Figures

1.1 The complete system-monitor architecture 7

2.1 The phases of runtime verification 16
2.2 The automaton which monitors for the LTL formula ¬redUyellow . 22
2.3 The DATE automaton and Larva code of the bad logins scenario . 24
2.4 MOP example . 27
2.5 The MOP specification for the server authentication scenario . . . 28
2.6 Violation-time — when the system just violated the specification

[left] and detection-time — the point at which the monitor detects
the violation [right] . 30

2.7 Synchronous [top] and asynchronous [bottom] runtime verification 31

3.1 A representation of the online bookshop example. 39
3.2 A representation of L = A1 �B1 · {A2 �B2} · A3 �B3 [top] and its

compensation [bottom] . 53
3.3 A representation of the Order CHTTA. 54

4.1 The proposed compensation programming architecture 69
4.2 The interplay of system and compensation execution 69
4.3 Examples of different compensation constructs 80
4.4 An example of a compensating automaton 86
4.5 An example of a compensating automaton with compensations . . 87
4.6 An example of a structure or configurations 88
4.7 Basic semantic rules . 96
4.8 Basic steps example . 98
4.9 Basic steps . 98
4.10 Speculative choice . 100
4.11 Communicating compensating automata 103
4.12 The compensating automata vector for the e-procurement system 125
4.13 The compensating automata vector for the comparison example

with synchronised compensations 132
4.14 The compensating automata vector for the comparison example

with synchronised compensations 133
4.15 The compensating automata vector for the comparison example

with full synchronisation . 135

viii

5.1 The monitor-oriented compensation programming architecture . . 143
5.2 The parametrised monitor-oriented compensation programming

architecture . 144
5.3 Managing compensations for an e-procurement system 146
5.4 Monitoring for triggering compensations for an e-procurement

system . 150

6.1 Asynchronous monitoring . 156
6.2 The proposed architecture . 157
6.3 Semantics of synchronous and asynchronous monitoring 159
6.4 Violation time vs. detection time 161
6.5 Semantics of compensation-aware monitoring 161
6.6 Semantics of scoped monitoring . 172
6.7 Semantics of adaptive monitoring 176
6.8 The asynchronous architecture with compensations cLarva 179
6.9 The pseudo code representing the monitoring manager 180
6.10 The asynchronous architecture with synchronisation and desyn-

chronisation controls . 180
6.11 The monitoring architecture with heuristics 182
6.12 The monitoring architecture with heuristics, demultiplexing, and

scheduling . 183
6.13 The lifecycle property . 185
6.14 The dormancy property . 186
6.15 The property monitoring rights . 187
6.16 The property monitoring transaction amounts 188
6.17 The DATE which listens to other DATEs for messages to synchro-

nise or desynchronise the monitor from the system 190
6.18 The DATE which tracks the user risk factor and notifies of a risk

change over channel revise . 191
6.19 The DATE which decides whether to synchronise or desynchronise 192
6.20 Detection by asynchronous monitoring, compensating actions af-

ter detection . 193
6.21 Detection by asynchronous monitoring, compensating actions af-

ter detection, and executing a corrective action after compensating 194
6.22 Monitor synchronises based on heuristics and stops a violating

action from taking place . 195

7.1 The dormancy property expressed as a Larva script [top] and as
a DATE [bottom] . 206

7.2 The typical timeline of fast monitor bootstrapping 207
7.3 The dormancy example augmented with fast bootstrapping code . 210

8.1 Monitored and buffered events . 214
8.2 The cLarva architecture with the compensation manager 216

ix

8.3 A monitor which detects load limit excess and the EoB signal
[top], a compensating automaton which manages compensations
when excessive loads occur [bottom] 221

8.4 A monitor which detects user fraud and the EoB signal [top], a
compensating automaton which manages compensations when a
fraudulent user has performed a load [bottom] 222

A.1 A user life-cycle compensating automaton which manages com-
pensations for a user life-cycle . 230

x

List of Tables

5.1 Compensation specification approaches vs. expressivity 153

6.1 Actions and their compensations 189

xi

1. Introduction

Computer systems have been growing in size and complexity for decades, mak-

ing it virtually impossible for such systems to be faultless. Besides, their role in

sensitive human activities have put higher pressures on their correctness. While

exhaustive verification techniques such as model checking are available, they

do not scale well to typical industry-scale software systems. On the other hand,

testing is scalable and is heavily used for bug detection, but it often cannot en-

sure the absence of bugs since it lacks coverage.

Although checking all of a system’s potential behaviour is surely a way of

avoiding the occurrence of incorrect behaviour, an alternative is to check the

behaviour which actually occurs. Runtime verification is a lightweight formal

methods technique which captures a live system’s events and detects any diver-

gence from the specification. Naturally, runtime checking consumes system re-

sources with potential repercussions on the monitored system’s behaviour such

as slowing it down. One way of significantly reducing the impact is to desyn-

chronise runtime verification from the system, enabling the system to progress

independently while the monitor processes the events at its pace. The down-

side of asynchronous runtime verification is that violation detection may occur

significantly later than its occurrence, meaning that the system state could have

evolved since.

However, synchronous and asynchronous runtime verification are only two

1

Chapter 1. Introduction

extremes of the synchronisation spectrum: synchronous runtime verification

gives full control to the monitor while in the asynchronous version control never

leaves the system. A potentially better solution seems to lie in between — finer-

grained control over the system-monitor interaction can be achieved if it is pos-

sible to switch between synchrony and asynchrony at runtime. In this way, syn-

chronous monitoring can be used when security concerns are high such as in

the case of an impending violation, while asynchronous monitoring can be used

when efficiency concerns are high such as during a period of heavy load. This

combination can be useful for example in the case of a financial system where

users pose different levels of risks to the system, and where the load level typi-

cally tends to be very high during short periods of times.

Switching between synchrony and asynchrony is however challenging: while

going from synchrony to asynchrony is trivial since synchrony can be considered

as a special case of asynchrony with zero delay, the other direction is not as

straightforward. In general, one way this can be done is by pausing the system to

wait for the monitor to reach the same execution point as the system. However,

if the monitor has already detected a violation, it is useless for the system to

wait since the monitor cannot proceed forward. Instead, the only option would

be to somewhat revert the system state back to the point where the violation had

occurred.

Although reversing a system’s state may seem far-fetched, the topic has long

been studied; not in the context of runtime verification, but in the context of

undoing completed parts of failed transactions — giving the impression that

no part of the transaction had ever occurred. The main problem is that undo-

ing activities whose results might have been used by other activities can poten-

tially leave a system in an inconsistent state. A traditional solution is to isolate

a transaction so that no other transaction can use intermediate results. How-

ever, in real-life scenarios this is not always possible since intermediate results

may have consequences outside the realm of the computer system, e.g., revers-

2

Chapter 1. Introduction

ing a bank account transfer might involve a fee. Thus, reversing such actions

cannot be done by “undoing” but rather by executing “counteractions”, better

known as compensations, e.g., executing the reverse bank transfer and charging

the fee. Compensations have thus become particularly useful in programming

transaction-like interactions which cannot be isolated during their execution

such as web service compositions which typically multi-party. The increasing

interest in compensation programming has led to several attempts of formal-

ising the essence of compensations with significantly different notations being

proposed. Still, the state-of-the-art approach to compensation programming

approaches has been shown to be limited with respect to particular realistic sce-

narios.

A main reason behind the challenges of compensation programming is that

since they enable the logical reversal of past actions, by their nature they crosscut

other programming concerns. For example consider a payment which should

be refunded free of charge if the customer has earlier bought some items but

against a fee if not. Programming such a compensation from basic principles

would require some form of record-keeping of the customer’s history and a

mechanism through which the refund action is associated to the payment ac-

tion as its compensation. Such additions clutter the code and intertwine pro-

gramming of system actions with their compensations. The current solutions

essentially provide standard patterns which can be conveniently instantiated

for programming compensations. However, the problem is that frequently real-

life scenarios diverge from standard patterns, requiring more flexibility. Unfor-

tunately, while flexible approaches have been proposed, they quickly become

very complex or leave a lot of effort to the programmer. A better compromise

between rigid patterns and flexible programming seems to be lacking.

3

Chapter 1. Introduction

1.1 Aims and Achievements

Runtime verification provides an effective way of detecting specification viola-

tions but leaves the programming of violation correction completely up to the

programmer. On the other hand, compensations provide a means of structur-

ing error recovery actions. While the two tackle the detection and recovery as-

pects of violations respectively, the question of how these two could be com-

bined remains largely unexplored. One obvious way of combining runtime ver-

ification and compensations is to verify behavioural properties of compensat-

ing programs using runtime verification. Another possibility is to use compen-

sations to structure the runtime-verification-triggered recovery actions. While

these may be useful, such applications yield clearcut relationships with no real

cross-fertilisation of one research area to the other. Our aim is precisely to ex-

plore how the two can be intertwined together for mutual enrichment:

• A main concern of adopting runtime verification is the overheads it in-

duces on the system being monitored. One way of doing away with this

overhead is by desynchronising the system from the monitor, allowing the

system to proceed independently from the monitor. However, by the time

an asynchronous monitor detects a problem, the system would have usu-

ally progressed further. The consequence is that the recovery which would

have been appropriate at the point of violation, the violation-time recovery,

might no longer be appropriate at the time of detection because the sys-

tem state would have changed. The solution is to either use a tailor-made

recovery which takes into consideration what happened between violation

and detection, or to somehow revert the system state to the point of viola-

tion and use the violation-time recovery. Naturally, the latter is preferred

since it is able to use a single recovery method for numerous scenarios.

An aim of this work is to use compensations as a means of reverting a

system detection-time state to the violation-time state so that violation-

4

Chapter 1. Introduction

time recovery can be applied. However, under certain practical scenar-

ios, a large discrepancy between the violation and its detection may not

be compensable since compensations may expire. We aim to tackle this

problem in two ways: on the one hand compensations should be automati-

cally discarded when they are no longer applicable, and on the other hand,

monitors should be synchronisable at runtime when required — executing

compensations before it is too late. The former is useful when compensa-

tions are time-bound or not applicable after the occurrence of a particular

action, e.g., once an order has been concluded and the delivery has started,

the order cannot be compensated. The latter is useful for monitoring sen-

sitive elements of a system where the risk of late error detection is not ac-

ceptable, e.g., in the case of untrusted users, the delivery should not start

unless the transaction has been verified.

• Runtime verification has been used as a means of separating programming

concerns through the monitor-oriented programming paradigm. This al-

lows different concerns to be programmed independently in terms of mon-

itor-triggered “reparation” code. Using this approach, we aim to facil-

itate compensation programming by delegating compensation program-

ming to runtime monitors. This approach relieves the clutter of program-

ming compensations with the rest of the programming concerns. Mon-

itors, not only provide separation of concerns as in approaches such as

aspect-oriented programming, but also improve the quality of the code

since monitors are synthesised from formal specifications. In this regards,

we aim to provide a formal notation for programming compensations in

the context of runtime verification. Such a notation should be able to both

process the input from the monitored system while simultaneously con-

structing compensation programs accordingly. When the system signals

the need to execute compensations, the monitor-constructed compensa-

tions are executed.

5

Chapter 1. Introduction

To address the first of the above aims, i.e., of managing runtime overheads,

we have devised a compensation-based architecture which enables finer control

of runtime verification overheads. As regards facilitating compensation pro-

gramming, we propose a dedicated automata-based notation and show how this

can be integrated with runtime monitoring. More details describing our main

contributions are given below:

Compensation-based system-monitor synchronisation To reduce monitoring

intrusiveness on the monitored system we propose a practical architecture

supported by a theoretical framework which manages the system-monitor

interaction. Figure 1.1 depicts the architecture with the system producing

a trace and the monitor processing it, possibly falling behind if it can-

not keep up with the system. To manage their relationship, we provide a

number of operations (metaphorically related to typical cassette deck ac-

tions), some of which are applied to the system while others are applied to

the monitor: a running system can be conceptually stopped (�), reversed

(�), fast-reversed (��), paused (), or unpaused () while the monitor can

be fast-forwarded (��) to keep up with the system by ignoring irrelevant

intermediate monitoring states. Stopping the system (or part thereof) is

useful to perform corrective actions when the monitor detects a violation

while reversing the system is useful when the system has progressed more

than the monitor and corrective actions need to be carried out. Pausing

and unpausing the system can be used to allow the monitor to synchronise

with the system.

In this architecture compensations play a central role since they are able

to reverse the system state to a past state. Using the mathematical frame-

work which underpins the architecture, we prove that under certain as-

sumptions, employing compensations to synchronise the system with the

monitor is equivalent to using synchronous monitors. Furthermore, since

compensations may not be applicable beyond a certain time bound or af-

6

Chapter 1. Introduction

Trace

System

Monitor

a ex n s o vc z r a v

Figure 1.1: The complete system-monitor architecture

ter the execution of a particular action, the architecture allows the user to

discard expired compensations by specifying compensation scopes — by

the end of which compensations are discarded. Depicted as a fast-rewind,

this feature enables the architecture to cater for more realistic scenarios.

Moreover, synchronous and asynchronous monitoring may sometimes be

needed for a single system’s behaviour and potentially during a single

run. A typical example is that at peak times of system load, monitoring

is switched to asynchronous to be able to maintain a better quality of ser-

vice, while monitoring untrusted users might require the opposite. For

this reason, the architecture supports compensation-based synchronisa-

tion by enabling on-the-fly synchronisation and desynchronisation of the

system and the monitor, depicted in Figure 1.1 as the pause symbol on a

cassette deck. Again, we prove that on-the-fly synchronisation and desyn-

chronisation yields the same logical behaviour as synchronous monitoring.

Compensating automata To facilitate compensation programming through

runtime verification we propose an automata-based notation, compensat-

ing automata — from which monitors can be automatically synthesised for

managing complex compensations. This notation is dedicated to comp-

ensation programming, providing specialised constructs which are par-

ticularly suited for programming the combination of the normal system

execution and the monitor’s contribution of compensation execution.

7

Chapter 1. Introduction

Monitor-oriented compensation programming Monitor-oriented programm-

ing (MOP) is a programming paradigm advocating separation of concerns

through runtime verification where additional functionality is triggered

via monitors. In our instantiation to compensations, monitor-oriented

compensation programming (MOCP), we extend MOP to not only trigger

functionality but is also able to configure the compensation functionality

while monitoring. With this addition, compensations are configured on-

the-fly based on monitored events and consequently executed upon being

triggered by designated monitors. Exploiting specialised compensation

constructs of compensating automata, MOCP enables a fine interplay be-

tween normal system execution and compensation execution.

Compensating automata for system-monitor synchronisation Finally, we

combined the previous achievements and used compensating automata to

enable the user to program the system-monitor compensation-based syn-

chronisation. This approach delegates the management of monitor syn-

chronisation to a dedicated module, leaving the system free from comp-

ensation synchronisation concerns.

To test the above contributions, we have applied the theory to two significant

case studies:

E-procurement case study The first case study is an e-procurement system

taken from the literature [57] which has been used to demonstrate that

“compensations are not enough”. The main problem of existing approaches

of compensation programming is that the distinction between system pro-

gramming and compensation programming is not clearly outlined. This

has several consequences such as lack of modularity and inflexibility when

it comes to programming complex scenarios. The case study has been suc-

cessfully programmed using compensating automata, completely separat-

ing compensation concerns from others and clearly outlining the complex

8

Chapter 1. Introduction

interplay between system execution and compensation execution.

Industrial financial case study The theoretical and practical framework rev-

olving around system-monitor synchronisation has been motivated by an

industrial case study from Ixaris Ltd based on a financial system called

Entropay. Using Entropay, users can use virtual credit cards to affect pay-

ment/purchases to/from third parties. Although such a system has many

security-critical aspects which can benefit from runtime monitoring, syn-

chronous runtime verification was not possible due to performance con-

cerns. The proposed compensation-based asynchronous monitoring ar-

chitecture has been successfully applied to Entropay with encouraging re-

sults.

1.2 Overview of Subsequent Chapters

The document is organised into four main parts starting with the background,

followed by the two main parts — tackling how runtime verification can be use-

ful for compensations and how compensations can be useful for runtime verifi-

cation respectively — and concluded by the last part. In more detail:

Part I: Background This part provides the necessary background for later parts.

Given that this work explores the relationship between runtime verifica-

tion and compensations, this part is divided into two corresponding sec-

tions:

Chapter 2: Runtime Verification This chapter gives a brief overview of

runtime verification by presenting a number of instances including logic-

based and automata-based runtime verification, and the monitoring-orient-

ed programming paradigm which enables functionality to be programmed

in terms of monitors.

Chapter 3: Compensations The third chapter introduces the basics of

9

Chapter 1. Introduction

compensations including the main stages of compensation programming

and the notions of compensation correctness. Furthermore, we review a

number of significant compensation formalisms, highlighting the distinc-

tions amongst them.

Part II: Runtime Verification for Compensations This part focuses on how run-

time verification can be used for compensations, particularly for program-

ming compensations in a modular fashion — separated from other pro-

gramming concerns. In more detail:

Chapter 4: Compensating Automata This chapter presents a novel autom-

ata-based compensation programming notation — compensating automata

— and proves that these have desirable compensation and monitoring at-

tributes. Next, a case study from the literature is encoded in compensating

automata to highlight their expressivity and finally they are compared to

other notations supporting compensations.

Chapter 5: Monitor-Oriented Compensation Programming In this chap-

ter we integrate compensating automata with runtime monitoring to form

an architecture which is able to support compensation programming in a

completely transparent way to the system.

Part III: Compensations for Runtime Verification This part explores how com-

pensations can be useful for runtime verification, particularly how moni-

tors can be synchronised and desynchronised effectively from the system

being monitored. The approach is then evaluated over an industrial case

study. This is described in the following chapters:

Chapter 6: Compensation-Based System-to-Monitor Synchronisation

This chapter presents a monitoring architecture which supports both syn-

chronous and asynchronous runtime monitoring, possibly switching across

the modes at runtime, using compensations as a synchronisation tech-

nique.

10

Chapter 1. Introduction

Chapter 7: Monitor-to-System Synchronisation Taking an opposite ap-

proach to synchronisation, in this chapter we investigate the possibility of

synchronising the monitor to the system rather than the opposite. This is

achieved by conceptually fast-forwarding the monitor through monitoring

states to synchronise it with the system.

Chapter 8: System-Monitor Synchronisation with Compensating Aut-

omata This chapter combines aspects from previous chapters of this work,

presenting the use of compensating automata (presented in Chapter 4) for

programming elaborate system-to-monitor synchronisations (the architec-

ture of which is presented in Chapter 6).

Part IV: Conclusions The last part concludes the work:

Chapter 9: Conclusion This chapter gives a summary of the work followed

by thoughts on possible directions of future work and concludes with some

final remarks.

11

Part I

Background

The section which provides the background for

the rest of the work is divided into two chap-

ters: one dealing with runtime verification and

another dealing with compensations.

12

2. Runtime Verification

Correctness remains a major concern in the development and deployment of

software systems. To date, testing is commonly used to check software depend-

ability which, despite its effectiveness, is not exhaustive and thus does not guar-

antee the absence of bugs. On the other hand, techniques such as model check-

ing aim to exhaustively verify all execution paths of a system against a set of

formally specified properties. While this approach has been successfully used

to check small pieces of software such as device drivers, it is usually impractical

for checking typical software systems.

A midway approach is that of runtime verification [12, 36, 47, 77] which

checks an execution trace at runtime, thus covering all encountered traces while

remaining scalable since checking a single trace is relatively cheap. In its basic

form runtime verification is similar to assertion checking which is frequently

used for debugging purposes. However, runtime verification introduces further

powerful features:

• Assertions are inserted manually in particular points in the execution while

runtime monitors are typically weaved automatically.

• Assertions are evaluated on a particular point is a system’s execution, while

runtime monitors are usually evaluated over an execution path.

• Assertions are typically expressed in the host language, while runtime

13

Chapter 2. Runtime Verification

monitors are typically specified in formal notation from which monitors

are automatically synthesised.

Applying runtime verification usually involves the formal specification of

the acceptable runtime behaviour which is then compiled and automatically

instrumented into the target system. If the observed runtime behaviour diverges

from the formal specification, runtime verification can be used to either issue a

meaningful error message, or execute corrective actions to restore the system to

a sane state. In more detail, the process of applying runtime verification can be

loosely described through five phases (depicted in Figure 2.1):

¬ Specification The first phase includes the specification of the system’s prop-

erties in some kind of formal notation. The choice of the notation mostly

depends on the domain of the problem with typical notations being tem-

poral logics (e.g., JavaMOP [84]), regular expressions (e.g., Java-MaC [94]),

and automata (e.g., Larva [41]).

­ Synthesis Once the system properties are specified, they are usually synthe-

sised into some form of executable verification code or an intermediate

representation which is then manipulated at runtime. For example in the

case of Larva [41] the automata-based properties are directly synthesised

into code while in the case of JavaMOP [84], logic-based specifications

are transformed into automata and then into code. On the other hand,

Java-MaC [67] and Hawk [44] manipulate a representation of the specifica-

tion at runtime. Approaches which generate executable code are generally

preferred since compilation takes place before runtime, avoiding runtime

overheads.

® Event extraction To monitor a system, the monitor has to be somehow con-

nected to the system so that the former is aware of relevant events. To

automate the event extraction process, thus minimising the chances of er-

rors, techniques such as tracing and instrumentation are typically used

14

Chapter 2. Runtime Verification

e.g., Hawk [44], JavaMOP [84], Larva [41], tracematches [18] and Java-

MaC [67] all use automated instrumentation to elicit event, with the first

four using aspect-oriented programming [66] which automatically instru-

ments code (source or binary) into a system by pattern matching.

¯ Monitoring Subsequently, the actual monitoring of the system is carried out

by running the synthesised monitor or monitoring algorithm concurrently

with the system and passing it system events. A major issue of monitor

execution is the intrusiveness of the monitor on the system: if the moni-

tor is running on the same address space as the system, then the monitor

would be competing for resources while if the monitor is on a separate

address space, the system would still have to wait for monitor feedback

before progressing.

° Feedback to system The next phase would be to react to any detected run-

time violations. Such reactions may vary from simply raising an exception,

stopping the offending system, or initiating an appropriate fault-handling

mechanism. Several runtime verification tools (including Hawk [44], Java-

MOP [84], Larva [41], tracematches [18] and Java-MaC [67]) favour the

last option, supporting the execution of a reparation in response to a de-

tected violation.

To substantiate the runtime verification life cycle briefly described above,

in this chapter we give a number of instances of runtime verification, starting

with the monitoring of the linear-time temporal logic (Section 2.1.1) followed

by the synchronous monitoring tool Larva (Section 2.1.2), and a programming

paradigm based on runtime verification — monitoring-oriented programming

(Section 2.1.3). Finally, before concluding, Section 2.1.4 discusses the limita-

tions of runtime verification.

15

Chapter 2. Runtime Verification

5

Events

 Monitor

Feedback

Specification

Synthesis

1

4

System

 Event Extraction

2

3

Figure 2.1: The phases of runtime verification

2.1 Instances of Runtime Verification

Along the years numerous approaches to runtime verification have been pro-

posed. A significant body of work revolves around linear-time temporal logic

which has been originally used for model checking but has now been adapted

for runtime verification. A lot of work has also been done to provide tools (e.g.,

Hawk [44], JavaMOP [84], Larva [41], tracematches [18] and Java-MaC [67])

which differ not only in the specification languages they support, but have also

other significant differences as alluded in the previous section. While refraining

from going into the details of each tool, in this section we focus more on the un-

derlying approaches: logic-based runtime verification, automata-based runtime

verification, and monitoring-oriented programming.

2.1.1 Logic-Based Monitoring

When introducing runtime verification we noted that a distinguishing factor

from assertion checking is that runtime verification supports the checking of

trace properties, i.e., properties which can be verified over a system run. One

natural way of relating events over a system run is through temporal operators.

In fact temporal logics, particularly Linear-time Temporal Logic (LTL) [89], have

16

Chapter 2. Runtime Verification

been heavily used in the area of runtime verification. LTL enables the specifi-

cation of properties about a program’s behaviour over time such as (i) “it is al-

ways the case that something bad does not happen” (known as safety properties),

denoted by G¬x, where x is something bad; or (ii) “eventually something good

should happen” (known as liveness properties), written Fy, where y is something

good.

Definition 2.1.1. The full syntax of LTL including both temporal and stan-

dard binary operators is given recursively below, assuming a set of propositions

ranged over by p:

ϕ ::= true | p | ¬ϕ | ϕ ∨ϕ | ϕUϕ | Xϕ

with the following abbreviations:

ϕ1 ∧ϕ2
def= ¬(¬ϕ1 ∨¬ϕ2)

ϕ1 =⇒ ϕ2
def= ¬ϕ1 ∨ϕ2

Fϕ def= trueUϕ

Gϕ def= ¬(trueU¬ϕ)

�

Assuming a sequence of system states, a basic LTL formula is a logical com-

position of propositions which is satisfied if it holds on the current system state.

The two main temporal operators include the Next operator (denoted X ·) which

asserts its operand on the next system state, and the Until operator (denoted

·U ·) which asserts that its first operand is continually true until the second one

is satisfied.

Definition 2.1.2. Let a system be represented by a set of propositions P whose

truth values change with time, a system’s state, s ∈ 2P , be the subset of propo-

sitions which are true at the time, and a system’s behaviour, w = s1, s2, s3, . . ., be

17

Chapter 2. Runtime Verification

an infinite sequence of states with wi = si , si+1, si+2, A behaviour suffix wi

satisfies a temporal formula ϕ, written wi � ϕ by the following definition:

wi � true iff true

wi � p iff p ∈ si
wi � ¬ϕ iff wi 2 ϕ

wi � ϕ1 ∨ϕ2 iff wi � ϕ1 or wi � ϕ2

wi � ϕ1 Uϕ2 iff ∃j ≥ i ·wj � ϕ2 and ∀i ≤ k < j ·wk � ϕ1

wi � Xϕ iff wi+1 � ϕ

�

While LTL has long been used in the context of model checking [35], the

developed techniques cannot be directly used for runtime verification. There

are three main reasons for this [15]:

• Model checking verifies that all the possible behaviours of a system adhere

to the specification, i.e., the system-generated language is included in the

language satisfying the property, while runtime verification only needs to

check that one behaviour (the current one) is included in the language

accepted by the property. The latter problem is known to be generally

simpler than the former and thus it pays to develop techniques which are

specific to runtime verification.

• While model checking is able to check infinite executions due to its ex-

haustive nature, in runtime verification only finite prefixes of (potentially

infinite) traces can be (observed and hence) checked in practise. This

prompted the need for an adaptation of LTL semantics from one which

reasons about infinite traces to others which handle finite traces.

• Since typically runtime verification occurs during a system’s execution,

the system trace would only become available gradually. Thus runtime

18

Chapter 2. Runtime Verification

verification techniques can benefit if the checking process in runtime veri-

fication occurs incrementally, considering one additional symbol at a time

while using the result of the prefix.

In this overview we consider two main approaches to defining LTL seman-

tics for finite traces. The first approach [92] simply assumes that the traces are

finite, i.e., the length of the trace is known. The main problem of this approach

is when it comes to give a verdict for a temporal property which concerns an

(unavailable) extension of the trace. For example this situation arises when at-

tempting to define the semantics of the next operator at the end of the trace —

the formula has certainly not been satisfied but neither has it technically been

violated. In this case the semantics we are considering evaluate the operand on

the last element of the trace. A similar situation occurs with the until operator.

The formal definition of these two operators in the finite trace setting are given

below, leaving out the other definitions which are identical to the ones given

earlier.

Definition 2.1.3. The suffix wi of a finite trace satisfies a formula ϕ if either the

formula is satisfied as with the semantics for infinite traces, or else if the end

of the trace is reached, the formula is evaluated on the last element available.

Mathematically:

wi � Xϕ def=

 wi � ϕ if i = length(w)

wi+1 � ϕ otherwise

wi � ϕ1 Uϕ2
def=


wi � ϕ2 if i = length(w)

wi � ϕ2 or

(wi � ϕ1 and wi+1 � ϕ1 Uϕ2) otherwise

�

19

Chapter 2. Runtime Verification

The disadvantage of this approach is that it is not in line with the idea of

incremental traces which are synonymous to runtime verification. Rectifying

this issue, another approach to finite semantics [15] considers finite traces as

prefixes of infinite traces. A major difference from the previous semantics is that

when considering a prefix, it makes more sense not to give a final verdict if the

verdict can change later on. For this reason, the semantics enable the possibility

of a third verdict apart from the usual true or false: inconclusive, denoted by ?.

Thus using the original semantics on infinite traces, the following definitions

give the LTL semantics on finite prefixes.

Definition 2.1.4. A finite prefix u is said to satisfy a property ϕ, written [u � ϕ],

if for any extension σ , the resulting trace still satisfiesϕ. Similarly, a finite prefix

u is said to violate a property ϕ if for any extension σ , the resulting trace still

violates ϕ. Otherwise, the result is inconclusive. Formally:

[u � ϕ] def=


> if ∀σ ∈ Σω ·uσ � ϕ

⊥ if ∀σ ∈ Σω ·uσ 2 ϕ

? otherwise

�

Having a specification language and its formal semantics is of little use to

runtime verification unless a verification technique is available for checking ad-

herence of runtime behaviour to the specification. In the context of LTL there

are two main approaches: one using term rewriting techniques (e.g., [92]) and

another by compiling the formula into an automaton (e.g., [15]). The two ap-

proaches are intimately linked with the main difference being that in the case

of rewriting the formula is expanded in a step-by-step fashion during monitor-

ing, while in the case of automata the expansion occurs upfront before monitor-

ing starts. Their relationship is thus similar to the relationship of interpreted

and compiled languages: in the case of rewriting one needs the rewriting en-

gine to be running in the background, applying rewriting rules on the current

20

Chapter 2. Runtime Verification

state of the formula; while in the case of automata, they are directly executable.

Naturally, the automata approach has a significant advantage when it comes

to keeping the runtime processing overhead of monitoring low. Furthermore,

using automata one would know upfront the amount of memory required for

monitoring while in the case of rewriting, the memory requirements have to be

estimated. On the other hand, this means that using automata, more memory

would be required on average to enumerate the whole state space in advance.

In what follows we give an example of using term rewriting and automata to

monitor a LTL property.

Example 2.1.1. Consider a traffic lights system (inspired from [92]) whose state

is defined by the lights which are on/off at a particular moment. A typical trace

of the system would be w = {green}, {yellow}, {red}, {red,yellow}, Note that start-

ing the cycle from the green light being on, the red light should not appear be-

fore the yellow light. Thus a property which should be true at the start of w is

¬redUyellow. Taking the rewriting approach, recursive definitions are used to

expand the formula as shown below:

w1 � ¬redUyellow

{ U rewrite }

w1 � yellow or (w1 � ¬red and w2 � ¬redUyellow)

{ Left-hand side evaluation and logical rewrite }

w1 � ¬red and w2 � ¬redUyellow

{ Left-hand side evaluation and logical rewrite }

w2 � ¬redUyellow

{ U rewrite }

w2 � yellow or (w2 � ¬red and w3 � ¬redUyellow)

{ Left-hand side evaluation and rewrite }

true

21

Chapter 2. Runtime Verification

On the other hand, compiling the formula1 yields the automaton shown in

Figure 2.2 which starts at q0, takes the self loop (¬red∧¬yellow) upon green, and

then reaches q1 upon yellow. Note that reaching q1 signifies that the property

has been satisfied and that based on the three-valued LTL semantics, the formula

cannot be violated by any extension of the trace in the future.

yellow

0

q " "
1

red yellow

red yellow

2

true

true

q " "

q "?"

Figure 2.2: The automaton which monitors for the LTL formula ¬redUyellow

Apart from being useful for logic compilation as explained in the previ-

ous subsection, automata may also be useful for directly specifying correctness

properties. This is further expanded in the next subsection.

2.1.2 Automata-Based Monitoring

Since automata are directly executable, using them for specifying monitors im-

plies that there is no need for compilation (except for an encoding into a pro-

gramming language). This means that what the programmer specifies is being

monitored directly with a number of favourable aspects:

• The user is directly aware of the memory overheads involved in monitor-

ing; there are no further compilation/expansions which are outside of the

user’s direct control.

• Avoiding compilation also means that debugging is significantly easier —

the connection between the user specification and the point of violation

1The compilatin is based on the algorithm given in [15] where the standard LTL to Büchi aut-
omata conversion is applied on the formula and its negation followed by a number of automata
operations such as composition and determinisation.

22

Chapter 2. Runtime Verification

is explicit in the case automata while due to the compilation of a logic,

further effort is required to understand why a formula has been violated.

• Due to the proliferate knowledge of automata, users might find it easier to

express specifications in terms of automata rather than having to learn a

logic. Automata might also be preferred due to their pictorial nature while

on the other hand (from our experience with industry) sometimes even the

word “logic” puts many potential runtime verification users off.

These significant advantages have led us in past efforts to propose an autom-

ata-based runtime verification tool Larva [41], enabling the synchronous mon-

itoring of Java programs against properties specified in terms of Dynamic Aut-

omata with Timers and Events (DATEs) [40]. These automata are similar to

timed-automata [4] enriched with stopwatches, variables, and channel commu-

nication. Using the Larva compiler the specification is transformed into the

equivalent monitoring code, together with aspect-oriented programming code

that extracts the events from the system.

As an example, consider a Java system where one needs to monitor bad logins

and the activity of logged in users. By having access to badlogin, goodlogin and

interact events (each of which corresponds to method calls in the Java system),

one can keep a successive bad login counter and a clock to measure the time a

user is inactive.

Figure 2.3 shows the specification of a property stating that there should

be no more than two successive bad logins nor more than 30 minutes of inac-

tivity when logged in, expressed as a DATE automaton. Transitions have three

(backslash-separated) labels: (i) the event triggering it; (ii) the condition which

is checked before taking it; and (iii) the action performed when it is taken. A

total ordering on the transitions is used to ensure determinism. Note that the

foreach construct causes the property to be monitored for each user who uses

the system, i.e., a monitor instance is instantiated upon the monitor detecting

23

Chapter 2. Runtime Verification

an event from a non-monitored user.

goodlogin\\t.reset();

Foreach User

badlogin\\c++; interact\\t.reset();

loggedout loggedin

badlogins

badlogin\c>=2\

inactive

t@30*60\\
logout\\c=0;

Global {

Foreach (User u) {

Variables {

int c = 0;

Clock t;

}

Events {

badlogin() = {User u.badlogin()}

clk() = {t@30*60}

...

}

Property authentication {

States {

Bad { badlogins inactive }

Normal { loggedin }

Starting { loggedout }

}

Transitions {

loggedout -> badlogins [badlogin\c>=2\]

loggedout -> loggedin [goodlogin\\t.reset();]

...

loggedout -> loggedout [badlogin\\c++;]

loggedin -> inactive [clk\\]

}

}

}

}

Figure 2.3: The DATE automaton and Larva code of the bad logins scenario

Events in the context of DATEs can be system methods calls, timer events

(e.g., a monitor stopwatch triggers an event after 30 minutes since it was reset),

synchronisation events, or a disjunction of events. Since basic events contribute

to disjunction events, then at any time instant several events may fire simulta-

24

Chapter 2. Runtime Verification

neously.

Definition 2.1.5. A system trace s is a sequence of time instants such that each

instant, si , is composed of a set of events, Ei ∈ 2Event and a timestamp ti ∈ R+
0 :

si = (Ei , ti). The set of possible instants will be written as Ω: Ω def= 2Event ×R+
0 . �

A DATE automaton has a set of states Q and transitions → which trigger

upon receiving a system event given that a condition holds on the system’s and

timers’ state (with Θ ranging over system states and CT ranging over timer

states). A subset of states B ⊆ Q are considered bad; representing a property

violation if a bad state is reached. Furthermore, each DATE transition can carry

out an action modifying the system or/and timer states.

Definition 2.1.6. A DATE automaton, M ∈ M, running over a system state of

type Θ is a quadruple 〈Q, q0, →, B〉 with set of states Q, initial state q0 ∈ Q,

transition relation →, and bad states B ⊆ Q. Transitions are labelled by (i) an

event expression which triggers them; (ii) a condition on the system state and

timer configuration which will enable the transition to be taken; (iii) timer ac-

tions to perform when taking the transition; (iv) a set of channels upon which

to signal an event; and (v) code which may change the state of the underlying

system:

Q ×Event× ((Θ ×CT)→B)×TA× 2channel × (Θ→Θ)×Q

�

A monitor consists of a vector of DATE automata and directives to instantiate

new automata dynamically upon receiving certain events. Full details of the the

formalism of DATEs can be found in [40]. For the needs of this report, it suffices

to identify the configuration of a vector of DATE automata and explain how they

form a run depending on the system events observed.

Definition 2.1.7. A configuration c ∈ C of a vector of DATE automata, M ∈ M,

consists of the current system and monitor state, θ ∈ Θ, the current state of

25

Chapter 2. Runtime Verification

the stopwatches, ct ∈ CT , a vector of locations representing the location each

automaton is in, q ∈Q, and the vector of automata itself, M: c = (θ,ct,q,M). �

We can now outline the semantics of a vector of DATEs.

Definition 2.1.8. The semantics of a vector of DATEs, M ∈ M, can be given by

extracting from M a labelled transition system over configurations 〈C, c0,→M〉

— with states C (the configurations of M), initial configuration c0 ∈ C, and tran-

sition function labelled by events and timestamps→M ∈ (C ×Ω)→ C. We write

c
a−→M c′ to refer to a particular (c,a,c′) ∈→M and c

w
=⇒M c′ (with w ∈Ω∗) for the

transitive closure of→M .

The set of bad configurations, CB⊆ C, corresponds to the configurations aris-

ing from the states which are tagged as undesirable in the original DATEs, i.e.,

one of the DATEs in the vector reaches a bad state. We will assume that the

transition system guarantees that recovery from a bad state is not possible — if

c ∈ CB and c
a−→M c′, then c′ ∈ CB.

The set of bad traces starting from a configuration c, written B(c), are the

strings leading to a bad configuration: B(c) = {w | ∃c′ ∈ CB · c
w
=⇒ c′}. A config-

uration c2 is said to be as strict or stricter than c1 (written c1 vM c2) if c2 rejects

all traces rejected by c1 (and possibly more): B(c1) ⊆ B(c2). We say that they are

equivalent if they reject the same traces: c1 =M c2
def= c1 vM c2 ∧ c2 vM c1. �

Upon reaching a bad state, Larva allows the user to execute a reparation to

mitigate the violation (which the bad state represents). In this sense, runtime

verification is used as a sort of high-level exception handler which performs a

double check over and above the native exception handling provided by the sys-

tem. However, this outlook over runtime verification is not consistent through-

out the field. Interestingly, runtime verification has also been proposed as a

programming paradigm through which parts of functionality are managed by

the runtime verification framework. The next subsection elaborates on this.

26

Chapter 2. Runtime Verification

2.1.3 Monitor-Oriented Programming

Monitor-oriented programming (MOP) [31, 33, 84] is a paradigm which com-

bines the specification and the implementation of a system. MOP is based on

the same principles of runtime verification which allows system behaviour to be

matched against formally expressed properties and possibly trigger some action

in response. Unlike runtime verification though, it not only specifies proper-

ties to detect violations and raise exceptions, but the monitoring mechanism is

itself part of the design of the system’s functionality. Hence, the monitoring

is not simply an extra check on top of the system but an integral part of the

system’s design. For example, consider a plain vanilla server which does not

handle user authentication. Through MOP, the user authentication layer can be

implemented without changing the code of the server and keeping functionality

concerns separated from authentication concerns (see Figure 2.4).

MOP framework

Vanilla Server

Authentication

Figure 2.4: MOP example

More concretely, in Figure 2.5 we give an example of how the authentica-

tion can be managed through Java-MOP [32] (a tool-supported instantiation of

MOP): the user is allowed to register, login, download, and upload files but if

the download or upload activities are attempted without being logged in, then

the pattern matches the finite state machine specified in MOP. At this point, the

authentication process starts and the user is redirected to the login screen. Note

that full-binding enables the property to match on a per-user basis.

Similar to authentication, other concerns such as tracking user activities, de-

tecting malicious behaviour, managing promotional offers, etc., can be imple-

27

Chapter 2. Runtime Verification

login

loggedout loggedin

full−binding User

authenticate

logout

upload
download

download

upload
download

upload

login

register

full-binding Authentication(User u) {

event login after(User u) :

call(* User.login()) && target(u) {}

event upload before(User u) :

call(* User.uploadRequest()) && target(u) {}

...

fsm :

loggedout [

login -> loggedin

upload -> authenticate

...

]

loggedin [

logout -> loggedout

...

]

...

alias match = authenticate

@match { doAuthentication(); }

}

Figure 2.5: The MOP specification for the server authentication scenario

mented separately and connected through MOP, enabling the actual implemen-

tation to remain uncluttered. In this sense MOP is similar to aspect-oriented

programming since it can manage different concerns of a system in a modu-

lar fashion e.g., a monitor for handling a graphical user interface, a monitor

for handling authentication aspects, another for handling file access, etc. The

main difference, however, is that while aspect-oriented programming is defined

in terms of pattern matching of the program structure, in MOP matching oc-

curs through formally specified properties. This distinction promises to enable

28

Chapter 2. Runtime Verification

MOP to specify significantly more complex patterns than aspect-oriented pro-

gramming. Given the popularity of aspect-oriented programming with virtually

all major programming languages having an aspect-oriented extension, it seems

that (with only a few instances of MOP currently available [84]) the potential of

MOP is far from exploited.

2.1.4 Discussion

Whilst each instance of runtime verification presented in the previous subsec-

tions define a significantly distinct point in the runtime verification design space,

they all suffer from a major problem: runtime overheads. Runtime overheads are

a major concern for adopting runtime verification in real-life systems. The prob-

lem does not only include resource overheads required for running the moni-

tor, which might cause a system to slow down, but also other concerns such as

whether the system’s behaviour would change in terms of the events generated

and their sequence. At the heart of the problem is the synchrony between the

system and the monitor: the system is not allowed to progress unless the moni-

tor gives the go ahead. While this arrangement may potentially slow down the

system considerably, it is crucial for giving timely feedback to the system. One

way of considerably minimising the runtime overhead is to verify an execution

trace asynchronously, i.e., the system can progress without waiting for monitor

processing. Asynchrony limits the impact of runtime verification to just logging

of events which usually has to take place anyway in real-life security-critical

systems. The downside is that asynchronous monitoring cannot reliably give

feedback to the system since the system state might change from the time of

the violation to the time of detection. Figure 2.6 shows two snapshots of a hy-

pothetical monitoring scenario with the left-hand side showing the setup at the

time the system committed the violation while the right-hand side shows the

setup when the monitor detects the violation. Note that by the time the moni-

tor detects the violation (marked by ×), the system has already progressed and

29

Chapter 2. Runtime Verification

produced two additional events (r and x).

System

sc z r v r x

Monitor Monitor

o vaTrace

Violation Time

a ex n s o vc z r a v

System

Detection Time

a ex n

Figure 2.6: Violation-time — when the system just violated the specification
[left] and detection-time — the point at which the monitor detects the violation
[right]

Architecturally, synchronous and asynchronous monitoring can be depicted

as in Figure 2.7 with two major aspects differentiating them:

• Since the monitor might not be able to keep up with the system in asyn-

chronous monitoring, a buffer is required to store the events which the

system has produced but which the monitor has not yet processed.

• The feedback line from the monitor to the system is omitted in the case

of asynchronous monitoring since the monitor may not have an updated

view of the system and any monitor feedback might be outdated.

On one end, synchronous runtime verification leaves control up to the mon-

itor — the monitor is free to take any resources it requires — while on the other

hand, asynchronous runtime verification gives absolutely no control to the mon-

itor relegating it to a mere observer. What could be a better solution is a compro-

mise between the two where the user can configure the amount of control which

can be afforded to the monitor at any particular time during the execution of the

system. This idea is further expanded in Part III of this report.

30

Chapter 2. Runtime Verification

Asynchronous Monitoring

Buffer

Events

System

System Monitor

 Monitor

Feedback

Events

Synchronous Monitoring

Events

 Event Extraction

 Event Extraction

Figure 2.7: Synchronous [top] and asynchronous [bottom] runtime verification

2.2 Conclusion

Runtime verification has evolved as a compromise to the scalability problem of

exhaustive verification techniques and the lack of coverage of software testing.

Significant work has been carried out in the field with a number of mature tools

and various approaches to runtime verification taking root. Nonetheless, run-

time verification still has the problem of competing for runtime resources, po-

tentially undesirably impacting the system behaviour and performance. While

asynchronous monitor considerably alleviates this problem, it is generally im-

practical to take corrective actions at the time of error detection due to the lack

of synchrony between the system and the monitor. By striking a balance be-

tween synchronous and asynchronous monitoring, the system resources can be

better managed without compromising the possibility of the monitor taking ef-

fective corrective measures.

31

3. Compensations

Although debugging small and simple systems tends to be manageable, an in-

crease in complexity brings about a disproportionate increase of complexity

when detecting and fixing bugs — increasing the possibility of undetected bugs.

To this end, fault tolerance techniques started playing a crucial role in software

development with the idea that although faults may (or are expected to) hap-

pen, a system would be able to cope correctly. A commonly used mechanism

consists of attempting to fix the system state upon the discovery of an error to

enable normal execution to proceed unhindered. The challenge here is the pro-

gramming and management of the potentially prohibitive number of distinct

fixes — different errors in different contexts typically require different fixes. To

address this issue, attempts have been made to homogenise error fixes by having

the fix adapt to the context. One way of achieving this is by undoing the most

recent actions which led to the error, reaching a previous sane state. While this

approach requires the programmer to keep track of the history (or part thereof),

it significantly simplifies the task of error recovery since the fix automatically

takes the context into consideration.

Unfortunately, history-based recovery where previous actions are undone

cannot be used in all circumstances. Typical scenarios would be systems in-

teracting with real-life processes such as bank account transfers, shipping, etc.

Such processes cannot be simply undone and forgotten. For example in the

32

Chapter 3. Compensations

case of bank account transfers, one might have to add a processing fee over and

above the return of funds to the original account, while in the case of shipping

one might need to ship some items back rather than “undo” the shipping. In

such cases, instead of undoing some actions, one might actually need to exe-

cute further counteractions, better known as compensations, such as the reverse

transfer plus a fee or the return of shipped items.

Compensations have become even more relevant with the advent of the Inter-

net which enabled widespread interaction particularly through the use of web

services. This phenomenon facilitated interactions across entities which might

not even have been aware of each other before the interaction. In such a scenario,

with multi-party interactions which are typically long-running, it is usually not

possible to control the visibility of the actions involved across all parties. Once

actions are visible to the rest of the world, discarding past actions would leave

the overall system in an inconsistent state (since the rest of the world might have

acted on actions which have been obliterated). To this end, compensations are

heavily used to support such interactions, allowing actions to be logically un-

done, taking into consideration the impact which the action might have left on

the rest of the world.

In the rest of the chapter we start by giving a high level overview of error

recovery approaches which then enables us to introduce and place compensa-

tions into context in Section 3.2. Subsequently (Section 3.3), we delve deeper

into the concept of compensations by presenting a variety of compensation for-

malisations and explain how the correctness of compensations can be specified.

Finally, we conclude in Section 3.5.

3.1 Error Recovery Techniques

The higher the reliability expected of a system, the more precautions have to be

taken, ironically potentially introducing additional complexity and sources of

33

Chapter 3. Compensations

unreliability. The situation is further aggravated by the many possible sources

of faults in a computer system: hardware faults, operating system faults, and

faults within the computer system itself. Potentially, faults cause the system to

reach an erroneous state which may then lead to failure1, i.e., making the effects

of having reached an erroneous state visible to the outside world.

Given the probability of failure in large systems due to their complexity, the

solution is typically not to try to engineer systems which never fail but rather to

create safety nets within and around the system so that the system can tolerate

faults in such a way that they do not lead to failure. A commonly used fault-

tolerance technique [90] is error recovery — the task of dealing with an error

before it has time to cause a failure.

The various strategies of error recovery [90, 98] are typically broadly clas-

sified as backward or forward recovery. Backward recovery refers to strategies

which first revert the current (erroneous) state to a previous (correct) state be-

fore attempting to continue execution, while forward recovery attempts to cor-

rect the current (erroneous) state and then continues normal execution. The

main difference is that backward recovery inherently keeps track of the historic

context to fix the problem, while it is not necessarily the case in forward recov-

ery. On one hand, backward error recovery can be considered as a special case

of forward recovery, in which additional data structures are used to store the

history of execution. On the other hand, forward error recovery can also be con-

sidered as an optimisation of backward error recovery [90], in that the recovery

path is deduced without keeping a log of the past actions.

Forward error recovery is particularly useful when the failure — the symp-

tom of the error — is sufficient to determine which solution to apply. A sim-

ple mechanism to encode forward recovery in most modern programming lan-

guages is the use of exception and error event handlers. The recovery code acts

as a reparation, intended to fix the problem encountered. Note that, unless addi-

1The terminology is used in line with that introduced in [83].

34

Chapter 3. Compensations

tional mechanisms are used to keep a log of what actions the system performed,

exception handlers are simply aware that a failure occurred within a particular

block of code — no historical data is explicitly available. On the other hand, to

make backward recovery possible, one has to keep track of the system’s previous

states or transitions, which involves recording data or actions previously carried

out. One approach to backward recovery is that of backing up the system’s data

(also called checkpointing) so that if an erroneous state is reached, the data can

be restored to a past but sane copy. Another approach is that of keeping an

audit trail, recording sequences of actions which had been carried out, so that

the system state can be restored by reversing the actions previously performed.

While the first approach incurs a high overhead in terms of data storage, the

latter, commonly known as a rollback mechanism, requires knowledge on how

to reverse a system’s actions.

Rollbacks, being perfect reversals of previous actions, which leave no ev-

idence of either the original action or its reversal, have been heavily used to

implement transaction frameworks. A transaction is a means of isolating an

operation such that it appears (to processes outside the transaction) as an un-

interruptable (atomic) action. The main motivation behind transactions is that

consistency rules cannot always be maintained on a per-action basis. For exam-

ple, if a bank system has the following consistency constraint: “unless a deposit

or withdrawal takes place, the total sum of money in the bank cannot change”,

then in a money transfer between accounts, the constraint will be violated after

the update of the source account (before the update of the destination account).

Thus certain actions have to be grouped into a transaction and appear to other

processes as a single action which either succeeds or fails. These principles to-

gether with that of durability (see below) form the bases of transactions and are

referred to as the ACID principles (due to which the transactions we are describ-

ing are something referred to as ACID transactions): atomicity — ensuring that

either the transaction fully succeeds or else it leaves no effect on the system state;

35

Chapter 3. Compensations

consistency — ensuring that the system state progresses from one correct state to

another; isolation — ensuring that intermediate results of a transaction are not

visible to other transactions, giving the impression that each transaction works

in isolation; and durability — ensuring that the outcome of a transaction is per-

sisted and never undone. The implementation of ACID transactions often relies

on a resource-locking policy whereby transactions operate under the illusion of

complete isolation from the rest of the world. Thanks to this strict approach,

recovering from an error during a transaction simply requires the application of

rollbacks to undo any successful parts of the failed transaction.

For many years the ACID principles have proven to be an adequate way

of handling database operations. However, perfect action reversal is not al-

ways possible, particularly when a system interacts with other external sys-

tems/processes (e.g., a bank system or a shipping agent) which do not support

perfect reversal of actions2. In this case, rather than a perfect reversal of an

action, one would need to execute a counteraction, better known as a compensa-

tion which semantically undoes the original action as much as possible. So, for

example, to compensate for a bank transfer one might need to reverse the in-

volved sum and charge an extra fee. Observe that, even if no fee is incurred,

the two transfers (back and forth) would distinguish the account from another

one which was never involved in a transfer (although their resulting balances

would be identical). Similarly, to compensate for a wrong shipment, one might

need to book a reverse shipment followed by shipment to the correct destina-

tion. Note the fundamental difference between rollback and compensation in

that the latter does not remove evidence of the erroneous action but simply ex-

ecutes a correction.
2Even if the external system does support perfect reversal, interactions with external systems

are typically long-running, requiring long periods of isolation with repercussions to availability.

36

Chapter 3. Compensations

3.2 Compensations

Compensations have been around at least since 1973 [46] as a form of forward

recovery [90] which attempts to correct the state of a system given some knowl-

edge of the previous actions of the system. For example, consider a bookshop

which is processing an order — as long as the bookshop’s computer system does

not interact with the outside world, say, the shipping agent, then backward re-

covery would be possible because all processes involved are under the control

of the bookshop. However, as soon as the bookshop places the shipping or-

der, an interaction commitment would have taken place as the bookshop does

not have access to backward recover the shipping order at the shipping agent’s

site (and even if the shipping agent was part of the bookshop system, the order

might have already started being carried out, i.e., an interaction has taken place

with another process outside the control of the system — the physical process).

If a client decides to cancel an order, then a special forward recovery, termed a

compensation, has to be carried out to check whether the shipment is still in time

to be cancelled. If the shipment is successfully cancelled, the client is possibly

charged a fee and notified of the cancellation. On the other hand, if it is too

late to cancel the shipment, an apologetic message is sent to the client explain-

ing the situation. Note that although at a high level of abstraction cancelling

the order might be considered as a backward recovery (cancelling the shipping

order), in actual terms the order has not been undone but rather a “counter”-

transaction took place whether or not cancellation succeeded. Expanding the

same concept, [56] presents compensating transactions, later as sagas [54], as

an extra layer on top of ACID transactions. The argument for this addition is

two-fold: (i) long-running transactions render ACID transactions impractical

as locking resources for long periods of time is infeasible in a highly concur-

rent system; and (ii) ACID transactions do not support nesting since committed

ACID transactions cannot be undone (to ensure the atomicity of the higher-level

transaction). Through the notion of compensation, ACID transactions can be

37

Chapter 3. Compensations

composed together to form a saga where some transactions are compensations

for others3.

Later (e.g., [7, 59]), with the advent of transactions across entities over the

Internet, compensations became completely independent of ACID transactions.

Rather, Internet transactions, better known as web service compositions, can be

considered as ACID transactions with less stringent constraints on the atomic-

ity and isolation principles, namely that atomicity occurs at a higher level of

abstraction — either the transaction happens or it is logically undone — and

that isolation is ignored but has to be handled during compensation by also un-

doing any actions which depended on the failed transaction.

In the rest of this chapter we attempt to focus on the essence of compen-

sations and abstract away from either ACID transactions or web services, and

refer to generic actions. To pave the way for a deeper understanding of com-

pensations, at this point we present an extended example of an online bookshop

scenario which will be used to highlight features and design issues of compen-

sations.

Example 3.2.1. Consider the process a bookshop undertakes upon receiving an

order: the bookshop first checks whether the requested books are in stock. If this

succeeds, optional promotional offers are presented to the customer and subse-

quently the bookshop concurrently sends the books to be packed and charges

the client’s bank account. If both operations are successful, a courier is booked

to deliver the order. In the eventuality of a failed activity, any completed ac-

tivities are compensated by executing the associated compensating activities in

order to remove the effects of the transaction. For example a bank charge is

compensated by a refund, whereas packing is compensated by unpacking. Note

that the compensation need not be the exact reverse of the normal activity; for

instance, apart from incrementing the stock as a compensation to a stock decre-

ment, an email is sent to the client as a notification of the transaction failure.
3In the rest of this work we use the term transactions to refer to compensable transactions.

38

Chapter 3. Compensations

It is usually important to decide in which order the compensations should be

executed. In this case, if for any reason, the unpacking was unsuccessful then

it does not make sense to increment the stock level and thus a sequential order

would enforce the increment of the stock level to wait for the outcome of the

unpacking operation. Generally (as in this case), the order of executing com-

pensations is the reverse order of their normal execution. For example, if the

courier booking fails, then both the client charge and the packing need compen-

sating (in parallel) followed by withdrawing the offer and the compensation of

the stock decrement.

Figure 3.1 represents the bookshop scenario with the upper half of the boxes

representing forward behaviour and those below representing the associated

compensations. The arrows with a filled head represent successful execution

control flow, while the others represent a fault which triggers compensation ex-

ecution. Once compensation is triggered, the control flow continues in reverse

order of the forward behaviour. For example, failure when processing the client

payment will trigger the unpacking of the order (if this has been completed

before the processing of the payment failed) followed by withdrawing the offer

and sending an email and increasing the stock. If a compensation fails, a human

operator is notified (not shown in the diagram). Note that the related backward

actions are not intended to fix the related forward actions if it fails halfway

through, but rather to undo it if it had previously been successfully completed.

or none

Pack

Unpack

Charge client

Refund client

Book courier

Cancel courier

Dec. stock

Inc. stock
Send email

Withdraw

Offer 1 or 2

Figure 3.1: A representation of the online bookshop example.

39

Chapter 3. Compensations

With reference to the bookshop example, we briefly go over the issues in-

volved in programming compensations, introducing the related terminology.

Specification A specification is required to relate compensation actions to their

counterparts. At its most basic form this can be a table-like structure

such that each action has a specified corresponding action. However, this

is rarely sufficient to describe complex compensations where actions re-

quire contextual compensations, i.e., the same action may have a different

compensation depending on the context. A specification similar to the one

shown in Figure 3.1 would suffice to specify contextual compensations.

There are yet other complexities which would need to be specified such as

the point at which a compensation expires, known as compensation scoping,

i.e., up to which point of execution a compensation remains valid. Expired

compensations may also need to be replaced upon their expiration by an-

other compensation. Compensation specifications may also include other

details such as how a failure during compensation execution is to be han-

dled, or how to continue after a successful compensation execution.

Installation During the normal runtime of a system with compensations, the

appropriate compensations are stored — more technically installed — so

that if a failure occurs later, the successful actions may be compensated

by executing the stored actions. Compensation installation usually occurs

upon the successful completion of an action which has a specified comp-

ensation (e.g., upon successfully reducing the stock level, “increase the

stock and email the client” is installed as a compensation). Another de-

sign issue concerning compensation installation is the order in which ac-

tions are installed. Usually these are installed sequentially in a stack-like

structure, meaning that eventually they will be executed in reverse order

of the corresponding actions.

40

Chapter 3. Compensations

Discarding/Replacing/Forwarding Compensations Upon completion of a

transaction, it might no longer make sense to execute the stored compen-

sations (e.g., if an order has been completed and shipment has left it is

usually impractical to reverse the shipment). Considering the completed

order as the compensation scope, in such cases compensations are dis-

carded upon termination of the scope. Alternatively, there are cases where

it makes sense to replace the discarded compensations by another appro-

priate compensation (e.g., the sequence of actions handling courier book-

ing cancellation, unpacking, stock increase, etc., is replaced by returning

the bought goods). Note that returning the bought goods is in itself an-

other transaction involving a number lower-level actions. For this reason

such a compensation (used as replacement) is sometimes referred to as

coarse-grained compensation. If compensations remain valid at the end of a

transaction, i.e., the compensation scope does not correspond to the trans-

action scope, then stored compensations may need to be forwarded to the

parent transaction (if it exists) so that these can be executed if a failure

occurs.

Executing Compensations Compensation execution typically occurs upon a

failure, triggering the execution of any stored compensations at that point.

However, to enable more flexibility (e.g., using compensations to program

normal functionality rather than failure handling) sometimes compensa-

tions are triggered by the programmer. There are a number of design is-

sues related to compensation execution for example if a process is com-

pensated, are concurrently-running processes also terminated and com-

pensated? And if so, are they simply forcefully terminated, or are some

operations protected from forceful termination? Finally, do concurrent

processes wait for each other’s termination before starting compensating,

or can each one start compensating as soon as it has terminated? Another

major issue is how to continue after successfully compensating. One op-

41

Chapter 3. Compensations

tion is to retry the failed and compensated transaction or to try out an

alternative transaction which achieves a logically equivalent result (e.g.,

after compensating a failed courier booking, one may try booking with

another agency). The latter is known as alternative forwarding.

Handling Failure while Compensating As with any other operation, compen-

sations may fail and appropriate action may need to be taken by com-

pensating for the successful part of the failed compensation for instance,

or using some exception handling mechanism. This raises the question

of whether compensations can have compensations of their own. Subse-

quently, one would have to decide on how to continue after handling a

failed compensation. For example one might continue executing the rest

of the program or stop execution altogether, notifying a human operator.

Along the years, a rich literature on compensations has developed and there

are numerous formalisations of compensations, each tackling the questions rais-

ed above in its own way. In the following section, we review a number of dif-

ferent formalisations with highly diverse answers to the compensation design

issues with the aim of giving a fuller picture of the compensation landscape.

3.3 Compensation Formalisations

Given the numerous design aspects of compensation programming, each with

a number of possible options, it is not surprising that the literature [38] pro-

vides a plethora of formalisms which tackle compensations differently. Inter-

estingly, these formalisms do not only enable the programming of compensa-

tions but rather the programming of compensable transactions. There are two

main views of compensable transactions: the orchestration and the choreography

view. The former provides a centralised view of how an activity is carried out

across a number of participants, while the latter focuses on the interaction each

42

Chapter 3. Compensations

participant is expected to carry out. In more practical terms, an orchestration

defines activities (possibly involving a number of participants) while a chore-

ography defines participants (possibly involving a number of activities). Since

this work focuses on the monitoring of monolithic systems (as opposed to dis-

tributed ones), the natural choice is an orchestration approach. For this reason

in this section we review three orchestration approaches and one choreography

approach which will be useful for comparing our solution later on4.

3.3.1 Compensating CSP

Compensating CSP (cCSP) [26, 28] is an extension to CSP [63] with the aim of

providing support for compensable transactions. In cCSP, all basic activities

succeed and failures are explicitly programmed using a special throw activity

which always fails. A compensation in cCSP is a process (possibly consisting

of a single action) which is associated to another process using the ÷ operator.

Such processes, however, cannot themselves have compensations, i.e., in cCSP

one cannot program a compensation for a compensation. Similar to other comp-

ensation formalisms Sagas and t-calculus [20, 79], cCSP installs compensations

in such a way as to reflect the forward behaviour, i.e., sequential compensations

for sequential processes and parallel compensations for parallel processes. A

special feature of cCSP is that once a transaction completes, installed compen-

sating actions are automatically discarded. Therefore, by associating a comp-

ensation to a transaction one would effectively be replacing the accumulated

compensations with a coarser-grained compensation for the whole transaction.

Another particular feature of cCSP is that in case of a process failing within

a parallel composition, it allows the programmer to decide at which point the

other processes (in the composition) can be interrupted by the failure. This is

achieved by using a yield operator such that if this operator is not used, it is

assumed that the process cannot be interrupted if it is still executing. It is also

4For a more complete review we refer the reader to [39].

43

Chapter 3. Compensations

interesting how fault handling and compensations are intermixed in cCSP: when

a failure occurs, the compensation is only triggered if the exception handler

(preceded by the B operator) fails (or no exception handler is available). Finally,

cCSP offers two choice operators: a normal choice operator (�) which starts

either one of its operand processes, and a speculative choice operator (�) which

starts both operand processes simultaneously but compensates one when the

other succeeds. Using these operators the bookshop scenario (from the previous

section) can be encoded as follows:

Order def= Order′ � throw

ReStock def= ReStock′ � throw

Transaction def= [(Order÷ (ReStock ||Email)) ;

((Offer1 B (Offer2 B skip))÷Withdraw) ;

((Pack÷Unpack) || (Credit÷Refund)) ;

((Courier1 ÷Cancel1)� (Courier2 ÷Cancel2))

]BOperator

To model the fact that all the involved activities can possibly fail, each ac-

tivity (e.g., Pack, Credit, Unpack, etc.) should be defined in a similar fashion

to Order and ReStock where Order′ and ReStock′ are some lower level activi-

ties. Thus, each activity can non-deterministically fail (including compensat-

ing activities). Because cCSP does not offer an explicit construct for alternative

forwarding, we have used the exception handling operator which achieves the

same result: if Offer1 fails, Offer2 is triggered5 while if Offer2 fails, the skip opera-

tion is triggered. Note that due to this workaround the Withdraw compensation

is installed even if both offers fail. Otherwise the example has been success-

fully modelled in cCSP, fully adhering to the description, including triggering

the Operator action if a compensation fails (using square brackets to signify the

5Note that this would not have been possible if Offer1 was itself a transaction having pro-
grammed compensations since exception handling can only be used on non-compensable pro-
cesses.

44

Chapter 3. Compensations

transaction boundaries).

3.3.2 StAC

StAC [23, 24, 34] decouples the compensation mechanism from failure handling

and thus compensations can be used freely as any other programming construct.

Compensations in StAC are stored in so called compensation stacks such that

compensations can be installed, executed and discarded through stack opera-

tions. This approach provides total freedom to the programmer to use compen-

sations as deemed necessary, enabling the pattern of compensation program-

ming to be used for any context — not necessarily because of a failure.

StACi is an extension of StAC supporting concurrent compensation stacks,

implying that several compensation scopes can be maintained concurrently dur-

ing the execution of a process. For example, consider programming a book-

ing process involving multiple sub-bookings whereupon if all provisional sub-

bookings succeed they are confirmed, while if one fails, all the sub-bookings are

cancelled. In StACi this can be conveniently programmed using two compensa-

tion stacks: one for storing a confirmation and the other for storing a cancella-

tion for each successful sub-booking. Depending on whether all sub-bookings

succeed or not, the appropriate stack is activated. Additionally, StACi (but

not StAC) provides a mechanism for protecting a process from early termina-

tion originating from another process. This guarantees that processes are inter-

rupted only when it is safe to do so.

The example of the bookstore encoded in StACi is given in parts, explaining

the StACi syntax progressively. We start with the definition of the basic actions,

using primed names to represent lower level activities:

45

Chapter 3. Compensations

Order def= Order′ 8 (�0 ;early)

Pack def= Pack′ 8 (�0 ;early)

ReStock def= ReStock′ 8�

Offer1
def= Offer1

′ 8�

Offer2
def= Offer2

′ 8�

Recall that the example requires that any of the activities might fail. To model

such behaviour we use non-deterministic choice (represented by 8), which in

case of the failure option, any previously successful activities are compensated

by activating the appropriate compensation stack (using �i to activate stack i)

and terminates execution early. This is the case of Order, Pack, etc. On the other

hand, if compensating activities fail, we opt to simply signal a failure (�). Other

compensating activities should be defined in a similar fashion to ReStock. Note

that in the case of the offer activities no compensations are activated since these

are optional, i.e., they do not cause the whole transaction to be undone. Rather,

their definitions are called from within two nested TRY statements which in

StACi executes the THEN clause if the TRY clause succeeds or the ELSE clause

if otherwise.

Offers def= TRY Offer1 ÷0 Withdraw

THEN skip

ELSE (TRY Offer2 ÷0 Withdraw THEN skip ELSE skip)

Note that if Offer2 fails, no failure is signalled to the rest of the transaction

since the failure is caught by the TRY statement and continues as the inert pro-

cess skip.

The most complex part of the example is the speculative choice of the couri-

ers as shown below:

46

Chapter 3. Compensations

Couriers def= TRY new(2).new(3).(

|Courier1 ÷2 Cancel1|true || |Courier2 ÷3 Cancel2|true) ;

IF Ready1 THEN �3 ; {2}B 0

ELSE (IF Ready2 THEN �2 ; {3}B 0 ELSE �0 ;�))

In order to encode speculative choice, we require two extra boolean variables,

Ready1 and Ready2, which become true when Courier1 or Courier2 succeed, re-

spectively. Note that the booking of the couriers is put inside a TRY block so that

failure is contained and furthermore, each booking is placed inside a protected

block so that it is protected from the other booking’s failure. When the book-

ings complete (successfully or not), if at least one of the bookings succeeds, its

compensation is relayed to the outer compensation (using B0 to push the con-

tents of a stack onto the outermost stack 0) while the other compensation stack

is executed. If neither booking succeeds, the compensation is executed and early

termination is signalled.

Finally, the overall transaction process is given below:

Transaction def= TRY ((Order÷0 (ReStock ||Email)) ;

Offers ;

((Pack÷0 Unpack) || (Credit÷0 Refund)) ;

(Couriers)

) THEN skip

ELSE Operator

Note that the transaction is enclosed within a TRY block so that if it results

in failure, the operator is notified. The StACi specification diverges from the

example specification in that the speculative choice implementation does not

stop executing as soon as one of the alternatives succeeds.

47

Chapter 3. Compensations

3.3.3 SOCK

SOCK [58, 59, 69] is aimed specifically as a calculus for service-oriented comput-

ing. For example, SOCK provides the request-response mode of communication

through which a client can request an activity on a server and receive back the

output of the activity. For such a scenario, SOCK also offers other notions such as

the concept of a location — a process is not only distinguished by its definition

but also by the location where it is running. SOCK provides three error han-

dling mechanisms: fault handling (similar to traditional exception handling),

termination handling (invoked when the process is externally terminated) and

compensation handling — all centred around a process container called a scope.

The scope associates fault names with fault handlers and the scope’s own name

is associated with the termination handler. If the scope terminates and the ter-

mination handler has not yet been invoked, then the termination handler be-

comes the compensation handler for that scope (as the scope has been success-

fully completed). Subsequently, the name of the scope can be used to trigger the

compensation handler in case the successful scope needs to be compensated.

In SOCK, handlers (any type) can be modified at any point of execution. This

provides a high degree of flexibility and does not impose any predefined policy

on the programmer. A special feature of SOCK is that it provides a mechanism

for distributed compensation, allowing a server to send a failure handler to the

client. Thus, if the operation on the server fails, the client is informed by the

server how compensation can take place.

SOCK models interaction among processes as channel communication with

c and c representing input and output on channel c, respectively. Furthermore,

compensation and failure handlers are installed as processes attached to han-

dler names and scope names. For example s 7→ cH || (IncStock ||Email) represents

the fact that in parallel with anything already associated with handler s (rep-

resented by cH), two additional actions are composed: increasing the stock and

sending an email to the client. The example modelled in SOCK is given below

48

Chapter 3. Compensations

in parts:

Order ′ def= order ; (x || (x+ (x ; throw(st))))

Order def= order([s 7→ (ReStock ||Email), st 7→ throw(f)]) ||Order ′

ReStock ′ def= restock ; (x || (x+ (x ; throw(rs))))

ReStock def= restock([rs 7→ throw(g)]) ||ReStock ′

Modelled in a service-oriented fashion, the Order activity contacts the Store

through channel order and if the activity succeeds (modelled as a non-determinis-

tic choice using the + operator), the activity exits, otherwise, it throws fault

st. This fault is handled by DecStock and rethrown as fault f which is in turn

handled by Transaction (below) — triggering the compensation for scope s. If

the compensation (ReStock) fails, fault g is triggered instead of f , causing the

Operator activity to start. The activities which are not given above should be

modelled in a similar fashion to Order and ReStock.

Offer1
def= offer1([failedOffer 7→Offer2])

Offer2
def= offer2

Offers1
def= (offer1 ; (x || (x ; inst([s 7→ (cH ;Withdraw)])))) +

(x ; throw(failedOffer))

Offers2
def= offer2 ; (x || (x+ (x ; inst([s 7→ (cH ;Withdraw)]))))

If the first offer fails, the exception failedOffer is thrown. However, this is

caught by Offer1 and is not propagated further. failedOffer is handled by at-

tempting Offer2. If this fails as well, no action is taken. On the other hand, if

either of the offers succeeds, the compensation Withdraw is installed. Next we

consider the courier booking:

49

Chapter 3. Compensations

Courier def= {courier1([c1 7→ Cancel1, failedCourier1 7→ failed1]) ;

booked1}c1 ||

{courier2([c2 7→ Cancel2, failedCourier2 7→ failed2]) ;

booked2}c2 ||

((booked1 ; (failed2 + (booked2 ;comp(c2)) ;

inst([s 7→ (cH ;Cancel1)]))) +

(failed1 ; (booked2 ; inst([s 7→ (cH ;Cancel2)]) +

(failed2 ; throw(f)))))

For the Courier process, the non-deterministic choice has been used to distin-

guish among the possible outcomes. If both succeed, then the second courier is

compensated by running the compensation (comp(c2)) associated to the scope. If

either of them fails and the other succeeds, then the appropriate compensation

is added to the higher compensation scope s. Finally, if both fail, then the fault

f is thrown, causing the whole transaction to fail.

We end this example by giving the topmost transaction which refers to the above

defined processes:

Transaction def= {inst([f 7→ comp(s), g 7→Operator]) || (Offers1 ||Offers2) ||

(Order ;Offer1 ; (Pack ||Credit) ;Courier)}s

At the transaction level, we compose the previous definitions and install fault

handlers f and g, the former for initiating the compensation of scope s and the

latter for triggering the Operator action if a failure occurs during compensation.

Note that in SOCK we have fully kept to the example specification.

50

Chapter 3. Compensations

3.3.4 Communicating Hierarchical Transaction-Based

Timed Automata

Communicating hierarchical transaction-based timed automata (CHTTAs) [71,

72] are communicating hierarchical machines [5] enriched with time (similarly

to timed automata [4]), and with other slight modifications to accommodate the

representation of transactions. Two appealing features of CHTTAs (apart from

the inherent graphical aspect) is that they support the notion of time and can

be reduced to timed automata (making them model-checkable). Long running

transactions (LRTs) are defined over and above CHTTAs such that a CHTTA can

be specified as the compensation of another CHTTA. Furthermore, LRTs can

also be nested or composed in parallel or sequentially. Similar to a number of

other approaches such as cCSP, the order of compensation execution in LRTs

is in reverse order in case of sequential composition and in parallel in case of

a parallel composition. A major limitation of LRTs is that they do not show

clearly (graphically) which compensation corresponds to which component. In-

deed the main motivation for being automata-based seems to be the benefit of

model-checking techniques for time automata rather than clarity for the pro-

grammer. Corroborating this claim is the fact the programmer would typically

more likely program compensations in LRTs rather than CHTTAs, leaving aut-

omata behind the scenes. Thus, although automata-based, programming using

LRTs is effectively similar to logic programming, giving up the advantages of

programming with automata.

LRTs are defined on compositions of CHTTAs which in turn are defined on

top of transaction-based timed automata (TTAs). A CHTTA is the parallel com-

positions of hierarchically arranged TTAs where a TTA is a timed automaton

with a number of additions: (i) a set of communicating channels enabling aut-

omata to communicate; (ii) super states to enable hierarchical composition of

automata; (iii) two special states � and ⊗ representing the commit state and the

51

Chapter 3. Compensations

abort state respectively; and (iv) special transitions labelled with � or � which

are the only transitions possible from superstates representing success and fail-

ure respectively.

Although supporting special states and transitions, hierarchy and communi-

cation, note that CHTTAs do not support compensations directly, instead they

rely on sophisticated communication arrangements across CHTTAs to encode

compensation control flows. To facilitate the programming of such flow, LRTs

provide the syntactic sugar for typical basic compensation constructs, namely:

(i) designating a CHTTA as the compensation of another: given two CHTTAs A

and B, an LRT L = A�B signifies that B is the compensation of A; (ii) sequential

composition of two LRTs, denoted by L1 · L2; (iii) parallel composition of two

LRTs, denoted by L1 || L2; and (iv) a nested LRT, written {L} signifying that the

failure of L should not trigger compensation to the parent transaction.

For example, the LRT L = A1 �B1 · {A2 �B2} ·A3 �B3 (where A1,A2,A3,B1,B2,

B3 are CHTTAs) should (i) execute A1 followed by A2 followed by A3; but (ii) if

A1 fails, execution stops; while (iii) if A2 fails, execution progresses normally

to A3 since A2 is nested; (iv) if A3 fails, A2 has to be compensated (if it has not

failed) followed by A1’s compensation; and (v) if all of A1, A2 and A3 succeed,

then T commits and it can be undone through the compensation B3, followed

by B2, followed by B1. Pictorially, the LRT is shown in Figure 3.2[top] while its

compensation is shown in Figure 3.2[bottom]. In particular note how the wiring

across automata is done through special transitions � and �, and communicat-

ing channels. For example the nested CHTTA A2 will always lead to a commit

state because its failure should not affect its parent. Furthermore, channels no

and yes record whether the compensation for A2 needs to be executed if the par-

ent is compensating. Finally note that it is assumed that compensations always

succeed, a significant limitation of CHTTAs.

There are a number of limitations in LRTs which do not allow the faithful

specification of the bookshop example. Unless one manually adds more op-

52

Chapter 3. Compensations

yes!
A

1
A

3

1
B

B
3

A
2

2
B

B
1

2
B

no!

yes?

no?

yes?

no?

Figure 3.2: A representation of L = A1 �B1 · {A2 �B2} ·A3 �B3 [top] and its comp-
ensation [bottom]

erators through channel communication, features such as exception handling,

alternative forwarding and speculative choice are not available. Thus the book-

shop example in terms of LRTs can be encoded a follows:

(Order�(ReStock || Email)) · {Offer1 �Withdraw}·

((Pack�Unpack) || (Credit�Refund)) · (Courier1 �Cancel1)

Note that the following features could not be encoded: (i) alternative forwarding

to try the second offer if the first one fails; (ii) speculative choice among the

couriers; and (iii) exception handling reporting failure to a human operator.

The basic activities such as Order and ReStock can be encoded as a CHTTA

53

Chapter 3. Compensations

having channel communication with a third-party which then communicates

back on other channels indicating whether the action was successful or not. This

is depicted in Figure 3.3.

order_Failed?

0

order?

order_OK?

q

Figure 3.3: A representation of the Order CHTTA.

3.3.5 Discussion

The four formalisms presented in this section provide a rich backdrop for com-

parison due to their diversity in approaching compensations. cCSP is notorious

for its succinctness, mainly due to the significant number of dedicated operators

provided. However, cCSP is not flexible — attempting to model a non-standard

compensation pattern is impossible. If one requires flexibility StAC would be

a much better option, giving full control of the stack to the programmer. Nat-

urally, this comes at the cost of longer and less straightforward specifications.

Similar comments can be made with respect to SOCK which provides a rich mix-

ture of error handling mechanisms which is fully programmable. Furthermore,

SOCK gives visibility to interactions across entities where each action is mod-

elled in terms of channel communication. Admittedly, for the example above,

SOCK is not the natural choice since we attempted to model a process at a book-

shop rather than a choreography across different entities. This contributed to

making the SOCK definitions seem somewhat unintuitive. However, one can

still appreciate the advantages of SOCK had it been used to model a business

process with a focus on the participant interactions rather than the activities.

Finally, we have presented the example in CHTTAs. Unfortunately, while being

54

Chapter 3. Compensations

the only automata-based notation in the compensation literature which we are

aware of, the pictorial aspect does not really aid the programmer to write the

compensation specifications.

While significantly diverse, the formalisms presented have at least one thing

in common: they do not simply program the compensations of a system, they

program the system with its compensations. When compensation logic might

already be significantly complex, incorporating it with the system logic does

not promise to keep things at their simplest. It is not surprising then that the

semantics behind the compensation formalisms presented are not straightfor-

ward to say the least. This issue is the main motivating factor for Part II of this

report.

Another worrying element in the compensation literature is that little work

has been done on formalising and proving the soundness of compensation for-

malisms. In fact of the four formalisms presented only the first one defines a

notion of compensation soundness. This aspect is further elaborated in the next

section.

3.4 Formalising Compensation Correctness

The complexity of compensation semantics raises the question of the soundness

of a given compensation language or approach as to whether it really deals with

compensations correctly. Self-cancellation has been proposed for cCSP [26] in

an attempt to formalise the correctness criterion of compensation semantics. In

essence self-cancellation states that, a system built from atomic actions, all of which

have a perfect compensation6 associated to them, will either successfully complete its

6The strong assumption of perfect compensations is rarely the case in practice, but is only
used to ensure that the order of execution of triggered compensations is as expected. How perfect
a compensation is, depends on the level of abstraction one is viewing the behaviour. For example
delete is a perfect compensation for insert if one views an index at the level of abstraction of an
index. It is highly improbable though, that at the bit level the original index is identical to the
index following an insert and a compensating delete.

55

Chapter 3. Compensations

behaviour, or will be aborted but will not leave any side effect on the system state.

The approach adopted to define soundness, is to consider perfect compensa-

tion of basic activities, and proving that the formal semantics guarantee that

the derived compensation of a transaction (built compositionally from basic ac-

tivities) is still a perfect compensation of the transaction. The semantics of a

compensable process in cCSP is given as sets of pairs of traces — the forward be-

haviour, and the accumulated backward (compensating) behaviour. The sanity

check for compensating programs is thus that the trace semantics of a transac-

tion block may only include: (i) successfully terminating traces; and (ii) traces

which after cancellation are equivalent to the inert action skip. For the sanity

check to hold, two assumptions are crucial: (i) each basic action A and its comp-

ensation A′ satisfy A,A′ = skip, i.e., their sequential occurrence is equal to skip;

and (ii) parallely composed compensation actions commute, i.e., with respect to

a formula (A ÷A′) || (B ÷ B′), the trace A,B,A′,B′ is equal to the trace A,B,B′,A′,

enabling actions to cancel with their corresponding compensations7.

We adopt the same approach in the rest of this work for proving the sanity

of our theory. To enable reasoning about system behaviour and compensations,

we will be talking about finite strings of events.

Definition 3.4.1. Given an alphabet Σ, we will write Σ∗ to represent the set of

all finite strings over Σ, with ε denoting the empty string. We will use variables

a, b to range over Σ, and v, w to range over Σ∗. We will also assume a subset of

actions Γ ⊆ Σ indicating internal system behaviour, which will be ignored when

investigating the externally visible behaviour.

Given a string w over Σ, its external manifestation, written wx, is the same

string but dropping instances of Γ elements.

Two strings v and w are said to be externally (or observationally) equivalent, writ-

ten v =x w, if their external manifestation is identical: vx = wx. We say that a set

7Note that associativity — enabling compensations to cancel with their corresponding actions
— is implicit as a property of the trace structure.

56

Chapter 3. Compensations

of strings W is contained in another set W ′ up to external manifestation, writ-

ten W ⊆x W ′, if for every string in W , there is an externally equivalent string in

W ′. Set equality up to external manifestation, W =x W ′, is defined as contain-

ment in both directions. External equivalence is an equivalence relation, and a

congruence up to string concatenation. �

For every event that happens in the system, we will assume that we can au-

tomatically deduce a unique8 perfect compensation.

Definition 3.4.2. Corresponding to every event a in alphabet Σ, its compensa-

tion will be denoted by a where we assume · to be a total injective function. We

will write Σ to denote the set of all compensation actions. For simplicity of pre-

sentation, we will assume that the set of events and that of their compensations

are disjoint9.

We also overload the compensation operator to strings over Σ, in such a way

that the individual events are individually compensated, but in reverse order:

ε
def= ε and aw def= wa. For example, abc = cba. �

To check for consistency of use of compensations, the approach is typically to

consider an ideal setting in which executing a, immediately followed by a will

be just like doing nothing to the original state. Although not typically the case,

this approach checks for sanity of the triggering of compensations.

Definition 3.4.3. The compensation cancellation of a string simplifies its oper-

and by removing actions followed immediately by their compensation. We de-

fine cancel(w) to be the shortest string for which, after dropping all internal ac-

tions, there are no further reductions of the form cancel(w1aaw2) = cancel(w1w2).

�
8Uniqueness of compensations ensures that no compensation can cancel out with more than

one action.
9One may argue that the two could contain common elements — e.g., deposit can either be

done during the normal forward execution of a system, or to compensate for a withdraw action.
However, one usually would like to distinguish between actions taken during the normal for-
ward behaviour and ones performed to compensate for errors, and we would thus much rather
use redeposit as the name of the compensation of withdraw, even if it behaves just like deposit.

57

Chapter 3. Compensations

Proposition 3.4.1. Strings may change under cancellation only if they contain

symbols from both Σ and Σ. Cancellation reduction is confluent and terminates.

Proof. The proof follows from the fact that the sets of normal and compensation

events are disjoint, by the definition of cancel(), and by the injectivity property

of the · function.

Definition 3.4.4. Two strings w and w′ are said to be cancellation-equivalent,

writtenw =c w′, if they reduce via compensation cancellation to externally equiv-

alent strings: cancel(w) =x cancel(w′). A string w for which cancel(w) =c ε is said

to be self-cancelling.

A set of strings W is said to be included in set W ′ up-to-cancellation, written

W ⊆c W ′, if for every string in W , there is a cancellation-equivalent string in

W ′:

W ⊆c W ′
def= ∀w ∈W · ∃w′ ∈W ′ ·w =c w

′

Two sets are said to be equal up-to-cancellation, written W =c W ′, if the inclusion

relation holds in both directions. �

Cancellation equivalence is an equivalence relation, and is a congruence up

to string (and language) concatenation. Furthermore, a string followed by its

compensation cancels to the empty string:

Proposition 3.4.2. The concatenation of a string with its compensation is can-

cellation equivalent to the empty string: ∀w · ww =c ε.

Proof. The proof follows by string induction on w using Definition 3.4.2.

These definitions and propositions are the basis of the theory which we pres-

ent in the coming chapters. While simple, the notion of self-cancellation is at

the heart of what it means for a compensation approach to be sane. Indeed, the

relaxed notion of atomicity which is synonymous to compensating transactions,

58

Chapter 3. Compensations

relies on self-cancellation — if a failure occurs, executing compensations is as

if nothing has been executed. In later chapters, the theory of self-cancellation

proves useful to demonstrate the soundness of our approach.

3.5 Conclusion

In complex systems, particularly systems interacting with real-life processes, er-

ror recovery is crucial to increase fault tolerance. Whilst closed systems can ben-

efit from automated localised backward error recovery, this is not possible where

interaction occurs with non-reversible real-life processes. This motivates com-

pensations — providing a means of execute actions which semantically undo

partially successful activities.

Throughout the years since the inception of the idea of compensations, a

number of common basic aspects of compensations have emerged. Still, these

aspects are distinguishably combined in a plethora of compensation models

which can be found in the literature. These divergences [38] with little reflec-

tion about the differences and the soundness indicate that the study of compen-

sations is not yet over.

A major drawback of compensation formalisms is that they do not separate

compensation programming from programming the rest of the system. This is

unfortunate since compensation programming is itself not straightforward. We

believe this to be a serious limitation which we address in the next chapter.

59

Part II

Runtime Verification for
Compensations

This part outlines how monitoring can signifi-

cantly contribute towards compensations, par-

ticularly by facilitating their programming in a

modular fashion.

60

4. Compensating Automata

Compensations have become particularly useful in areas which program real-

life processes such as in work flow management systems, long-lived transac-

tions, and more recently web services, enabling loosely-coupled interactions

across entities. To facilitate programming such interactions, several notations

and architectures have been proposed along the years with the current de facto

industry standard being the Business Process Execution Language (BPEL) [9].

From an academic point of view, extensive research [38] has been conducted in

the area, particularly by suggesting different formal models of compensations

[21, 24, 26, 59, 72] and defining formal semantics for BPEL [49, 52, 62, 75] in

which compensations play a crucial role.

Since compensations enable the logical reversal of past actions whose actual

ordering would only be known at runtime (as is the case with non-deterministic

systems e.g., concurrent systems and user-input-based execution), their pro-

gramming has to be dynamic, i.e., “programmed” at runtime. While program-

ming compensations statically is possible, it limits their expressivity [68] and

they cannot affectively mirror the actual runtime behaviour. This contrasts with

programming forward recovery which is usually programmed statically in a try-

catch-block fashion. Thus, it is no surprise that using traditional means of code

organisation for programming (dynamic) compensations results in unstructured

code: such code would have to continually keep track of the execution history

61

Chapter 4. Compensating Automata

which is crucial for programming two main aspects of compensations: what to

compensate for, and how to compensate for it. For example if a purchase fails,

the system has to compensate only for the actions which have been completed —

constituting what is to be compensated. Furthermore, how to compensate would

entail issues such as: the purchase payment should be refunded free of charge

if the customer has earlier bought some items, but against a charge if not. Pro-

gramming such a compensation from basic principles would require some form

of record-keeping of the customer’s history and a mechanism through which the

applicable refund action is associated to the payment action as its compensation.

Such additions clutter the code and intertwine programming of system actions

with their compensations, making it difficult for the programmer to manage.

A recurrent approach for structuring compensation logic [38] involves as-

sociating compensation blocks to corresponding system blocks in a try-catch-

block fashion. However, as with the try-catch-block for exception handling, this

approach still has difficulty in expressing highly cross-cutting concerns such

as the interplay of system logic and compensation logic (e.g., a failing transac-

tion might trigger compensation execution but at some stages the system might

retry some actions to avoid the costly compensation of the whole transaction), or

compensation logic spanning different modules (e.g., refunding a payment only

once the transport cancellation has been carried out so that any cancellation

costs can be factored out of the refund)1. In the case of exception handling, this

limitation has been overcome by technologies and approaches such as aspect-

oriented programming [66] and monitor-oriented programming [84]. The ad-

vantage of these programming paradigms is that they allow the programmer to

program cross-cutting concerns in a modular fashion.

Inspired by these solutions, we propose an automata-based monitor-oriented

notation, compensating automata, solely dedicated for programming the what

and how questions of compensations. The novelty of this notation is that it can

1See [57] for more concrete examples.

62

Chapter 4. Compensating Automata

only be used to program compensations with respect to a given input of system

events, i.e., it cannot be used for programming the system itself. This approach

enables a separation of concerns with the programmer only focusing on what

system actions to compensate for and how to compensate for such actions. Note

that through this arrangement compensation programming can easily cross-cuts

all the other system modules since events which reach compensating automata

may emanate from any part of the system (potentially even from third party

systems).

Through an e-procurement system case study from the literature [57], we

present in more depth the problem of programming compensations (Section 4.1).

Next, we propose compensating automata (Section 4.2) as a means of program-

ming compensations and show how these can be used to program compensa-

tions for the e-procurement system (Section 4.3) which existing compensation

notations have difficulty in handling.

4.1 Designing a Compensation Notation

Attempting to program complex compensations using standard compensation

formalisation has been shown to be impractical for particular case studies such

as the e-procurement scenario presented in [57]. Interestingly, in what fol-

lows we show that programming the e-procurement scenario without handling

compensation concerns is relatively straightforward. This leads us to expect that

separating compensation concerns from other programming concerns would

greatly simplify the programming of systems having compensations. To this

extent, throughout this section we describe a novel design paradigm which en-

ables compensations to be programmed separately — leaving the system code

uncluttered.

63

Chapter 4. Compensating Automata

4.1.1 An E-Procurement Case Study

A procurement is a business process involving a merchant supplying the goods,

and a customer ordering them. The basic logic of a procurement starts by the

merchant receiving a quote request from a customer. The merchant then checks

that the customer is a valid one — that is, registered and with no overdue pay-

ments. If invalid, a message informing the customer that he or she can no

longer place an order is sent and the business process terminates. For valid

customers, a quote is calculated and sent to the customer. If the customer

chooses to proceed with the order, the customer sends a purchase order to the

merchant. Upon its receipt, the merchant reserves the ordered goods and con-

currently initiates the payment and delivery processes. The payment process

consists of the merchant sending an invoice, receiving payment and issuing a

receipt. The delivery process consists of arranging transportation, shipment

of goods, sending notification to the customer that ordered goods are now in

transit and receiving an acknowledgement that goods have been received by

the customer. The transaction is considered complete once the delivery and

payment processes have completed. The vanilla version of the e-procurement

system (S) may be defined in terms of three programs: reservation of goods (R),

payment (P), and transport (T) such that the parallel composition of P and T fol-

lows R, written S = R; (P || T), and each program may be expressed as follows2:

2Abbreviations: rec (receive), req (request), msg (message), not (notification), ack (acknowl-
edgement).

64

Chapter 4. Compensating Automata

Program R

RecQuoteReq

If !checkCustomer

Then

sendInvalidCustomerMsg

Return

CalculatePrice

SendQuote

RecPurchaseOrder

ReserveGoods

Program P

SendInvoice

RecPayment

SendReceipt

Program T

ArrangeTransport

ShipGoods

SendGoodsNot

RecGoodsDeliveredAck

However, there are numerous ways in which the business process may di-

verge from the expected behaviour. This may happen for several reasons e.g.,

explicit cancellation by the customer, software or hardware crashes, loss of com-

munication, third-party system failure, etc. Divergences one would like to han-

dle are listed below:

1. If the customer decides to cancel the order before the merchant has re-

served the goods, the business process can be simply terminated.

2. If a user cancellation is received after goods have been reserved and trans-

portation arranged but before an invoice has been sent and the goods

shipped, then the order can be cancelled by running compensations in

reverse chronological order for those activities that have successfully exe-

cuted.

3. If ordered goods have already been shipped, then a cancellation process

will require the invocation of a return goods process, i.e., it would arrange

the delivery for the unwanted goods back from the customer. It would also

involve an inspection to make sure that the goods returned were the ones

originally delivered. Notice that the return goods process may itself fail

and this needs to be appropriately handled by charging the customer an

extra fee if the delivery or inspection fails.

65

Chapter 4. Compensating Automata

4. If an order is cancelled then the cancellation fee is dependent on the state

of the delivery. If there is a fee for the cancellation of delivery, then the

costs are passed onto the customer in either of the following ways: if an

invoice has not been sent, then an invoice for the cancellation fee is sent

to the customer; if an invoice has been sent and payment has been re-

ceived, then a partial refund is sent to the customer (assuming the charge

is cheaper than the cost of the order, otherwise the discrepancy is invoiced

to the customer).

5. The merchant can choose whether to accept or to reject user-initiated can-

cellation requests (e.g., some goods cannot be returned). During the time

the merchant needs to decide, the transaction should be paused to avoid

race conditions.

6. If one transportation company cannot deliver the order then the merchant

can find an alternative.

7. An activity may fail due to a network or remote server failure. In this case,

the most practical way of handling such a failure (such as a failure to affect

payment) is to periodically retry the activity until it succeeds.

8. If the goods were sent to a wrong address, the shipment is first returned to

the merchant, and after attempting to determine the correct address, the

shipment is retried.

9. When a merchant cannot provide all the goods at the time of delivery, the

merchant ships the available goods and later it arranges transport of the

other goods (when they become available). Consequently, the invoice to

the customer is not for the full amount but only for goods that have been

shipped. A later invoice is sent when the unavailable goods are shipped.

In view of the strict interpretation of compensation programming we advo-

cate, i.e. compensations are logical reverses of corresponding activities, a sub-

66

Chapter 4. Compensating Automata

stantial number of the listed divergences of the e-procurement system do not

fall within the realm of compensations. For example stopping or pausing the

business process, trying an alternative transport company, or retrying an activ-

ity are not compensation operations. On the other hand, giving a refund, and

returning shipped goods are compensations. In fact, only items 2–4 and par-

tially item 8 (from the above list) give any information about compensations.

The rest of the items should be reflected in the system code. Note that this ap-

proach is significantly different from that taken in [57] where the difficulty of

programming these divergences in terms of compensations is considered as a

limitation of the compensation paradigm.

Taking our compensation definition into account, we modify the system to

include the non-compensation-related divergences. Considering component R,

we rename it to R′ and add a loop to handle partial shipments of the order (item

9). Updating component P to P ′, we add a loop to retry payment receipt when

this fails (item 7). Similarly, we update program T to T ′ to handle transport

alternatives (item 6) and reshipping in case of a wrong address (item 8)3.

Program R′

RecQuoteReq

If (!checkCustomer)

Then

SendInvalidCustomerMsg

Return

CalculatePrice

SendQuote

RecPurchaseOrder

ReserveGoods

While (!allGoodsAvailable)

(P || T)(partialOrder)

(P || T)(fullOrder)

Program P ′

SendInvoice

RecPayment

While (!RecPayment

&& (NetworkIsDown

|| BankIsDown))

Wait

RecPayment

SendReceipt

Program T ′

If (!ArrangeTransport(A))

Then ArrangeTransport(B)

ShipGoods

SendGoodsNot

RecGoodsDeliveredAck

If (!RecGoodsDeliveredAck)

VerifyAddr

If (UnavailableAddr

|| AddrOk)

Compensate

Else If (CorrectedAddr)

Run(T’)

3Abbreviations: rec (receive), req (request), msg (message), not (notification), addr (address),
ack (acknowledgement).

67

Chapter 4. Compensating Automata

Thus, we have effectively defined a new system, S ′ = R′; (P ′ || T ′), which how-

ever, still does not address all the features. Particularly, the system does not

pause to process user cancellations and compensate if the cancellation is ap-

proved (items 1 and 5). To address this limitation, we add a process U which

receives user cancellations and is able to pause and resume the system.

Program U

If (UserCancel)

Pause

VerifyCancelValidity

If (cancelValid) then

Compensate

Else

Continue

By combining component U with S ′, we get an e-procurement system,

S ′′ =U || S ′, which knows when compensation is required (denoted by the com-

pensate action) but does not know what or how to compensate. We propose to

program compensations separately through a novel architecture on which we

elaborate in the following subsection.

4.1.2 Proposed Architecture

To support the specification of the e-procurement case study we propose to use a

dedicated compensation notation which enables total separation of concerns as

pictorially shown in Figure 4.1: a compensating specification component listens

to relevant system events4 and at any point the system may signal the activation

of the configured compensations through the signal compensate. At this point

the compensation specification starts signalling compensations to be executed

at the system side while still listening to any relevant events during the system’s

execution of compensations. When compensation execution stops, control is

passed back to the system through the deviate signal.

4We will be assuming a fully ordered sequence of events.

68

Chapter 4. Compensating Automata

Specification
System

events

compensate

deviate

compensations

Compensation

Figure 4.1: The proposed compensation programming architecture

time Compensate Deviate

Compensation Configuration

System Execution

Compensation Execution

Figure 4.2: The interplay of system and compensation execution

A typical timing diagram of the interplay between system execution and

compensation execution could be depicted as shown in Figure 4.2 where control

passes back and forth between the system and the compensation specification

module. Note that the compensation module continues performing compensa-

tion configuration even during compensation execution. This is crucial for con-

figuring compensations for compensations such as for example compensating a

failed return of goods in the e-procurement scenario.

In view of the proposed architecture, the compensation module should be

able to both listen to the system events for configuring compensations, while

also being able to instruct the system what actions to execute and when to con-

tinue normal execution. More concretely the two aspects of the architecture

involve:

Configuration of compensations Upon designated system events, the comp-

ensation module is responsible for installing and scoping compensations

with the possibility of replacing compensations upon being discarded at

the end of their scope.

69

Chapter 4. Compensating Automata

Executing compensations Configured compensations should be executable at

the system side in programmer-specified orderings and at programmati-

cally specified points, after which the control of execution should be re-

turned back to the system.

Note that the proposed architecture is conceptually similar to monitoring-

oriented programming (MOP) which has been introduced in Section 2.1.3 —

the compensation module in our architecture is essentially a monitor. How-

ever, a significant difference between MOP and our proposal is that MOP has

been proposed as a means of detecting when a particular reparation is to be ex-

ecuted, i.e. it is the monitor and not the system which triggers reparation. On

the other hand, in our approach the monitor’s aim is to configure the “repara-

tion” according to the observed sequence of events, effectively deciding what is

to be compensated and how, i.e. it is still the system’s responsibility to trigger

compensations.

A crucial aspect of MOP is the specification language from which the moni-

tor is synthesised. Accordingly, the proposed architecture requires a specialised

compensation specification language which is able to express the elements pre-

sented above. In the next subsection, we delve deeper in the design of such a

compensation notation by considering the design options in the literature and

choosing the best suited approach in view of the e-procurement system. Fol-

lowing this, in Section 4.1.4 we give an informal introduction to the proposed

compensation notation showcasing the basic constructs through examples.

4.1.3 Design Options in Compensation Programming

The main challenge of designing a compensation notation which would fit within

the architecture presented in the previous subsection is that there is a significant

underlying difference from existing notations — the compensation notation we

are designing should be purely dedicated to compensation programming. The

notations we have reviewed in the previous section and other similar ones in

70

Chapter 4. Compensating Automata

the literature (see [38]) are more concerned with programming the “transac-

tion which has compensations” rather than the “compensations which happen

to belong to a transaction”. In other words, the former are transaction-centric

while our approach is compensation-centric. As such, in our proposed nota-

tion we provide no notion which is equivalent to transactions; the only related

construct is that of the compensation scope (which frequently coincides with

a transaction). Thus, it is no surprise that some aspects related to compensa-

tion programming found in other notations have no equivalent in our proposed

notation. The most obvious example is that of alternative forwarding: this op-

erator enables the compensation of an action to be followed by the execution

of an alternative. Note that while executing compensations for a failed action

should be programmable in our notation, choosing an alternative, i.e., a way of

continuing after compensating, is the prerogative of the system. Hence, in our

strict separation of concerns approach, alternative forwarding can be encoded

implicitly through the alternation between system and compensation execution.

In what follows we outline the design decisions involved in the proposed

notation in view of the design choices of related work in the literature. The

structure used is inspired from the compensation design choices presented in

[38] and is organised according to the compensation life cycle stages (see Sec-

tion 3.2), with each subsection corresponding to a different life cycle stage.

1. Specification of Compensations In this point we focus on designing the

way compensations can be specified in the novel notation. In particular,

we discuss a number of aspects: (i) compensation operators — what opera-

tors are supported for specifying compensations; (ii) action compensations

versus transaction compensations — whether a compensation is itself a ba-

sic action or a transaction; (iii) compensating for failure of compensations

— whether compensations can have compensations; and (iv) concurrent

compensation scopes — how simultaneously active scopes can be dealt

with.

71

Chapter 4. Compensating Automata

Compensation Operators We have identified four main compensation op-

erators used in the literature [38]: (i) the scope operator, which is

responsible for defining the boundaries up to which a compensation

remains valid; (ii) the compensation installation operator, which is

responsible for associating compensations to a scope — ready to be

activated in case of a failure; (iii) the compensation discard operator

which discards the installed compensations in the active scope; and

(iv) the compensation activation operator which triggers the execu-

tion of the currently installed compensations.

Compensation operators, with the exception of the scope operator

which is always explicit, can be provided explicitly or implicit (via

default behaviour). Unlike a number of notations [22, 70, 72] which

install compensations implicitly at the start of a transaction scope, we

choose the approach of enabling compensations to be explicitly desig-

nated as the compensations for system events (similar to [21, 26, 79]):

when the system event occurs, the compensation action is installed.

This allows more flexibility to the programmer since compensations

are more finely defined and a clear (intuitive) correspondence can be

drawn between actions and their compensations.

For the discard operation, several notations [22, 26, 70] implicitly as-

sociate it to the termination of a transaction scope. Since our pro-

posed notation does not have the notion of a transaction, we provide

a dedicated compensation scope which is dedicated to discarding and

replacing compensations. Indeed, when the compensation scope does

not coincide with the transaction scope, the approach we propose is

the only option. For example consider the concurrent execution of

two transactions composed of actions a ;a′ and b ;b′ respectively. If

the sequence a,b should be compensated by c, there is no way a for-

malism such as cCSP can encode such a specification, and similarly

72

Chapter 4. Compensating Automata

for any compensation pattern crossing over the transaction boundary.

On the other hand, formalisms which give full freedom to the user

such as StACi are able to model such scenarios but do not provide

a structured means of doing this. We believe that the compensation

scope suggested for our notation is a good compromise between cus-

tomisability and adequate support for compensation programming.

As regards compensation activation, our notation is completely de-

pendent on the compensate signal from the system. This gives freedom

to the system to use the compensation module as required, not neces-

sarily using compensations as a means of failure recovery (similarly

to the concept of MOP).

Over and above the operators found in the literature, our compensa-

tion notation requires an additional operator, termed deviation, which

transfers control back to the system. Naturally, this operator is not re-

quired in other notations since the system and compensations are im-

plicitly intertwined and they assume that once compensation starts,

the whole transaction is compensated. As motivated by the e-procure-

ment scenario, the interplay between the system and its compensa-

tions is not always clearcut. For example, if the shipping of an order

failed, one reason may be a wrong address. In such a case compensat-

ing the whole transaction is an extreme measure when the transaction

may be fixed by simply reshipping the order to the correct address.

Basic Action Compensations versus Transaction Compensations

A compensation may either be an action or a whole compensable

transaction itself. The argument in favour of having only transac-

tions as compensations [9, 16, 22, 24, 69, 70, 74, 97] is that this pro-

vides a uniform approach such that the compensation may itself fail

and have its own compensations. On the other hand, a number of

formalisms [21, 26, 28, 79] choose to allow basic actions to have ac-

73

Chapter 4. Compensating Automata

tions as compensations while transactions have transactions as com-

pensations, thus providing a clear correspondence between actions

and their corresponding compensating actions. The problem with

this might be that in reality a compensation for an action may not

itself be an action. For example, the compensation for a bank refund

might involve the actual money transfer together with an email being

sent as an explanation to the client. In the case of our proposed no-

tation, since there is no notion of a transaction, a basic compensation

should simply be a place holder for potentially complex logic which

is outside the scope of the notation. However, such a compensation

might still require compensation programming itself. Thus our ap-

proach is a hybrid of the two found in literature: compensations are

actions but possibly having compensations.

Concurrent Compensation Scopes All notations except StACi [24] enable

only one compensation scope to be active at a time, i.e., all compen-

sations are installed within a single scope. The advantage of hav-

ing multiple active scopes is that the programmer can choose which

compensation scope to install to, and eventually activate. In our pro-

posed notation we follow this same approach which is useful when

compensating for parallel processes or when system event patterns

overlap. Furthermore, since all active compensation scopes are exe-

cuted in parallel when activated, this feature is also useful for run-

ning compensations concurrently. Consider again the execution of

(a ;a′) || (b ;b′) with compensation c for a followed by b, and c′ for a′

followed by b′. Having two concurrent scopes would not only enable

the potential matching of both patterns, but also the concurrent exe-

cution of c and c′.

2. Installation of Compensations The first arising issue concerning comp-

ensation installation is which points during the execution of a transaction

74

Chapter 4. Compensating Automata

can be used for compensation installation. Another important question is

the policy to be used in the ordering of compensations at the installation

location. The problem is particularly complex when there are parallel pro-

cesses — should the respective compensations also be activated in parallel

or in the order in which execution has actually taken place at runtime?

This is a delicate question to which one finds a variety of answers in the

literature.

Compensation Installation Points Usually, compensation installation oc-

curs upon the completion of an activity [21, 26, 28, 79] since a comp-

ensation can be thought of as the reverse of that activity. However,

sometimes one would like to compensate for a whole transaction rath-

er than a single activity and for this reason it is also reasonable to in-

stall a compensation upon the completion of a transaction [9, 16, 74].

Still there are various other options of allowing compensation instal-

lation at particular points in a transaction (e.g., after interactions [97])

or possibly allowing the installation of compensations anywhere dur-

ing the execution of a transaction [24, 69]. In the case of our no-

tation, since the compensation module is driven by system events,

we follow the more flexible approaches and allow the programmer to

define what events are and what compensation to be installed upon

such events. Having said this, one would generally expect the system

events to represent the end of system activities, and in this sense we

follow the majority of the literature instances.

Composing Compensations When installing a compensation, this is typ-

ically composed in some way to the already accumulated compen-

sations for that particular scope, defining the order in which com-

pensations are executed (if later activated). While any ordering is

theoretically possible, there are four main options in the literature:

(i) install compensations always in parallel [16, 97]; (ii) install com-

75

Chapter 4. Compensating Automata

pensations always in sequence — achieving reverse order of execution

[9, 24]; (iii) install compensations such that they match the forward

behaviour, i.e., parallel compensation for parallel activities and se-

quential compensation for sequential activities [21, 26, 28, 72, 79]; or

(iv) user-specific [69]. Since event patterns received from the system

are inherently sequential, we opt for option (ii), i.e., compensations

are always installed sequentially. However, compensations can still

be executed in parallel through concurrent scopes.

3. Replacing and Discarding Compensations Once the end of a transaction

is reached, a decision is required regarding the accumulated compensa-

tion: if transactions are considered independent (as opposed to nested),

the compensation may either be maintained as the compensation of a past

transaction [69, 74], or discarded [22, 70] — implying that completed

transactions cannot be compensated; if transactions are considered nested,

the compensation of a child transaction may either be forwarded as is

to the parent transaction [9, 97], or discarded with a coarser-grained re-

placement installed as part of the parent transaction’s compensation [16,

26]. Considering the e-procurement scenario it is clear that compensa-

tions are sometimes only valid in a particular context, e.g., as soon as the

ship leaves, it is futile attempting to perform the basic compensations of

cancelling the order; instead more complex compensations are required.

Thus, compensation replacement is sometimes unavoidable. Given that

our proposed notation does not have a notion of a transaction, providing

a structured compensation scoping operator seems to be a plausible way

of handling compensation replacement. Note that this scope is not nec-

essarily related to a transaction scope and thus effectively we allow the

programmer to maintain the compensation beyond a transaction bound-

ary. This level of flexibility lies in between the rigid, transaction-dictated

compensation boundaries and the full flexibility allowed in [24] where

76

Chapter 4. Compensating Automata

compensations can be modified (discarded and replaced) in any way, in

any instant. We believe that this approach strikes a good balance between

these two extremes since full customisation of compensations leaves all

the responsibility on the programmer and requires substantial syntactic

overhead in the specification.

4. Activation of Compensations Once a compensation is installed, it can

be activated and executed to compensate for already completed activities.

Since our notation need only be concerned with compensation program-

ming, a number of issues related to compensation activation in other no-

tations are a non-issue for our design. For example in our case it is the

role of the system to signal compensation activation and thus the prop-

agation of failure across active transactions (before starting compensat-

ing) lies within the system’s remit. Similarly, other issues such as how it

is ensured that transactions are gracefully terminated are outside of the

scope of compensation programming. However, since we have decided

that our compensation notation supports several compensation scopes and

the special deviation operator, questions arise: Can compensation scopes

synchronise? What happens if one of the scopes deviates while the oth-

ers are still compensating? In this case there are no relevant literature

sources from which we can take inspiration. In this scenario, we opt for

a flexible solution where the compensation scopes are allowed to synchro-

nise compensation execution. This feature is highly useful when comp-

ensation scopes are mostly concurrent but require a few synchronisation

points due to dependency issues. For example in the e-procurement sce-

nario, although the transport and payment can be generally compensated

concurrently, the refund has to take into consideration the transport can-

cellation costs if these occur. As regards having a scope deviating while

the other scopes are still compensating, we choose not to interrupt comp-

ensation execution since this creates other problems such as how to safely

77

Chapter 4. Compensating Automata

interrupt ongoing execution.

5. Compensation Execution While the proposed notation provides a means

of specifying compensations, we abstract away from the actual implemen-

tation details of compensations. In an implementation, deciding whether

the implementation details of a particular compensation lies at the system

side or the compensation module side is orthogonal to the design issues

being discussed here. The advantage of keeping to this level of abstraction

is that the compensation specifications would be technology agnostic, i.e.,

portable across platform, not brittle to technology improvements, can be

maintained by non-technical persons, etc.

6. Post-Compensation Execution Upon completion of a compensation exe-

cution, an important choice is how execution should resume. This obvi-

ously has to take into account whether compensation was successful or

not. Since the proposed notation should only be concerned with compen-

sations, the choice of how the system should continue after a successful

compensation is not within its remit. However, if a compensation fails,

it is still the compensation module’s responsibility to propose a solution.

As mentioned in earlier points, we plan to enable compensations to have

compensations which are executed in case a compensation fails.

In the above design discussion of a compensation programming notation,

a novel balance emerges between full flexibility — essentially reducing it to

stack programming — and the rigidity of strict compensation patterns which

are further restricted by the lack of separation of concerns. We believe that

this balance supplies the programmer with the necessary operators while still

allowing leeway for customisability.

Before going on to present the full account of the notation in terms of formal

syntax and semantics, in what follows we distil the above discussion, extracting

the salient aspects of the notation and giving an informal introduction to the

78

Chapter 4. Compensating Automata

main constructs.

4.1.4 An Informal Introduction to the Compensation Notation

After discussing the design choices of the proposed compensation notation with

respect to other similar formalisms, we now move on to give a more tangible

feel of the notation. Due to the advantages of automata-based runtime verifica-

tion (discussed in Section 2.1.2), we choose to concretise the notation in terms

of automata. In what follows, we graphically present the main features of com-

pensating automata taking into consideration the design options chosen. These

features are further expanded below with examples5:

Basic compensation installations The formalism should allow actions to be

designated as compensations for system events. Subsequently, upon re-

ceipt of an event, the corresponding compensation action is pushed onto

a stack. If compensation is activated, the actions in the stack are executed

in the reverse order of their installation. In the e-procurement scenario,

this corresponds to a number of examples such as releasing previously

reserved goods. This is depicted in Figure 4.3(a)[left] where the automa-

ton, with states represented as blobs, transitions upon the ReserveGoods

event6 while installing the compensation UnreserveGoods. Note that some

activities such as sending a quotation might not have a compensation (see

Figure 4.3(a)[right]). Similarly, we allow for the automatic installation of

compensations with no associated system event. The forward arrow in

such cases is annotated with τ — see e.g., Figure 4.3(a)[bottom].

Scoping and replacing compensations Compensations may have to be replaced

at some point and therefore it should be possible to delimit compensa-

tion patterns whereupon being matched, should be replaced by another
5We use the following abbreviations: trans (transport), canc (cancel), addr (address), not

(notification), gds (goods), del (delivery), ack (acknowledgement), rec (receive).
6We write labels referring to system events ending in ? while writing labels referring to

compensation actions ending in !.

79

Chapter 4. Compensating Automata

ReserveGoods?

UnreserveGoods! SendQuote?

transCancOk!

τ

(a) Associating compensations to actions

CancelA!

ShipGoods?

CancelB!

ReturnGoods!

ArrangeTransA?

ArrangeTransB?

(b) Scoping compensations

τ

UnavailableAddr?

RecGdsDelAck?

CorrectedAddr?

SendGoodsNot?

same as (b)

AddrOk?

(c) Deviating compensation execution

Figure 4.3: Examples of different compensation constructs (cont.)

80

Chapter 4. Compensating Automata

ReturnGoods!

InspectionOk?GoodsReturned?

charge!

τ

(d) Defining a compensation’s compensation

done?

done!

ok!

CancelB!

ArrangeTransB?

ok?

ok?

CancelA!

ArrangeTransA? done!

ShipGoods?

Cancel!

(e) Speculative choice

Refund!charge?
transCancOk?

RecPay?

ArrangeTrans?

transCancOk!

charge! Cancel!

ShipGoods?τ

(f) Communicating compensating automata

Figure 4.3: Examples of different compensation constructs

81

Chapter 4. Compensating Automata

compensation. For example, as soon as the goods are shipped, then it no

longer makes sense to cancel the transport arrangement. Instead, this is

replaced by the shipment back of the goods once they reach their des-

tination. Compensation replacement is depicted in Figure 4.3(b) where

an automaton monitoring transport arrangement is scoped (depicted as a

solid-lined box) so that when the goods are shipped (reaching the final

state), any accumulated compensations (CancelA or CancelB) are discarded

and replaced by the compensation ReturnGoods. Note that if the final state

is not reached the compensations will not be discarded.

Stopping compensation activation Sometimes a business process should not

be reversed completely. For example if the goods have been shipped, but

returned (e.g., the goods notification remains unacknowledged), then be-

fore cancelling the whole procurement the system checks whether the rea-

son is a wrong address. If it is the case, the compensation should be

temporarily suspended — deviated to another state — until the system

attempts to verify the address. If the address was correct then the sys-

tem signals compensation to continue. Otherwise, the system should con-

tinue by re-attempting shipping to the corrected address while the comp-

ensation manager continues to configure compensations from the deviated

state onwards. A deviation is shown in Figure 4.3(c) as a bold line with two

outgoing arrows: a plain arrow which is taken on the first traversal and a

double arrow which points to the deviation state.

Compensations having compensations Compensation actions may have com-

pensations themselves. For example, while goods are being shipped back

(the compensation in the previous point), compensations might still be

needed since the process might also fail at some stage. As depicted in Fig-

ure 4.3(d), the ReturnGoods action is expected to give rise to a number of

system events including the shipment of the goods back to the supplier

82

Chapter 4. Compensating Automata

and inspecting the goods to ensure that they are the expected goods in

the expected condition. If inspection fails, then the compensation of the

shipment would involve a charge to the customer’s credit card. Note that

compensations of compensations are enclosed in dotted boxes which par-

tially overlay the compensation action they are meant to compensate for.

Concurrent communicating compensation handlers To enable better decom-

position of compensation management, particularly for specifying comp-

ensation sequences which should run in parallel, it is more convenient to

have multiple concurrent compensation handlers which can communicate.

The alternative of conjuncting multiple automata would result in signifi-

cantly less understandable compensation specifications.

For example a more efficient way of arranging for transport might be to

start the booking process with two shipping companies and then cancel

one attempt as soon as the other is confirmed. Better known as a specula-

tive choice [27], this can be encoded by communicating automata as shown

in Figure 4.3(e)7. Most notably, the first arrangement to succeed synchro-

nises on channel done and goes past a deviation — ensuring that only one

of the bookings can go past the deviation, and the one which does would

be safe from the compensation signal to cancel the other. Communication

can also be used to synchronise during compensation execution. In our

case study, the refund operation has to wait for the transport cancellation

(if this has taken place) so that any fees incurred can be passed on to the

user. Figure 4.3(f) shows the payment automaton and the transport au-

tomaton where the Refund compensation has to wait for either the charge

signal or the transCancOk signal signifying a transport cancellation charge

and no charge respectively. Although we choose to abstract away from pa-

rameters to keep the notation simple, in practice these would be useful to

7Note that we use labels starting in lower caps for local communication with labels ending
with ? signifying blocking sinks while those ending in ! signifying non-blocking sources.

83

Chapter 4. Compensating Automata

communicate values such as the amount to be refunded.

In the next section we formalise compensating automata, giving their syntax

and semantics.

4.2 Compensating Automata

Compensating automata are intended to enable the user to program the com-

pensations so that depending on the sequence of occurring system activities,

compensations are configured and possibly later executed if the system signals

compensation. As such a compensating automaton should not only be aware of,

but also able to carry out system activities.

Definition 4.2.1. A compensating automaton event is defined in terms of a set

of system activities, Σ, and triggers if one of the system activities is received. We

take τ to be a special event which immediately triggers (Στ = Σ∪{τ}) and � to be

the symbol representing failure with Γ = {�, τ} (cf. Definition 3.4.1). A compen-

sating automaton event I is thus a non-empty disjunction of system activities,

I ⊆ Στ , and I is said to trigger upon a system activity i, if and only if i ∈ I .

A compensating automaton action O is a set of system activities, O ⊆ Σ,

which the automaton can instruct the system to carry out concurrently.

Compensating automata can run concurrently and may need to communi-

cate. This is achieved by distinguishing between the set of system activities ΣS

and the set of local activities ΣL (assuming that ΣS ∩ΣL = ∅ and ΣS ∪ΣL = Σ),

with the latter only used internally across automata. �

Once an event triggers, a compensating automaton takes transitions to move

through the automaton states.

Definition 4.2.2. A compensating automaton is composed of an alphabet Στ ,

a set of states Q, a set of transitions δ, an initial state q0 ∈ Q, and a set of final

states F ⊆Q. Thus, a compensating automaton is a quintuple A = (Στ ,Q,δ,q0,F).

84

Chapter 4. Compensating Automata

We use A to represent the set of compensating automata and Â for the set of

vectors of compensating automata. We will use variables A,A′ to range over

compensating automata and Â, Â′ to range over vectors of automata.

To support compensation scoping, each state q ∈Q may be nested with com-

pensating automata. When the nested automata complete, their accumulated

compensations are discarded and replaced. A state with no nested automata

is called a basic state. We use N to represent nested states and B to represent

basic states such that Q = B ∪N . Thus, q ∈ N is a tuple Â × C where C is the

compensation used for replacing the compensations of the vector.

A transition across states within a compensating automaton defines an event

upon which the transition is taken and what compensation should be installed

for that event. To enable local communication, a transition event can be a local

event and can also trigger a local action. Thus a transition t is a quintuple:

a source state, an event-action tuple together with their compensation, and a

destination state — t ∈ (Q × 2Στ × 2ΣL ×C ×Q).

Furthermore, compensating automata allow activated compensations to be

interrupted so that the process is allowed to perform a deviation. Thus, some

transitions specify a third state from where the automaton continues after stop-

ping the compensation process. A deviating transition t′ is a sextuple consisting

of a source state, an event-action tuple together with their compensation, a de-

viation state, and a destination state — t′ ∈ (Q × 2Στ × 2ΣL ×C ×Q ×Q).

To simplify semantics, we represent non-deviating transitions as deviating

transitions with a blank state, ◦. Using D = Q∪ {◦}, the set of transitions, δ, is a

subset of the Cartesian product (Q × 2Στ × 2ΣL ×C ×D×Q).

We will write event(t), action(t), src(t), dst(t), and dev(t) to respectively refer

to the event, action, source state, destination state, and deviation state appearing

on a transition t. �

Example 4.2.1. As an example of a compensating automaton we consider the

one in Figure 4.4 where we have intentionally left out compensations for the

85

Chapter 4. Compensating Automata

q
1

q
5

q
3 q

4

q
2

q
0

Event1?
Event2?

Event3?

τ

Figure 4.4: An example of a compensating automaton

time being (these will be added later). Instead, we focus on two major features:

nesting and deviation. State q5 contains a nested automaton with initial state

q1, final state q2 and a single transition with event Event2, no action, and no

compensation. The parent automaton has three basic states, q0, q3, and q4 and

a nested state. Furthermore, it has three transitions one of which is a deviation

connecting q0 with the nested state and q3 as the deviating state.

Next, we define what compensations are in the context of compensating aut-

omata.

Definition 4.2.3. A compensation is an action which may include both system

and local activities. To enable concurrent compensations to synchronise, the ac-

tion is guarded by a local event. Furthermore, the compensation may itself have

programmed compensations in terms of a vector of compensating automata

which collate compensations while the compensation executes. More formally a

compensation c ∈ C is an element of the Cartesian product: (2ΣLτ × 2Σ × Â). �

Example 4.2.2. Adding compensations to the previous example we now con-

sider Figure 4.5 which installs Comp1 upon receiving Event1, Comp2 upon com-

pletion of the nested automaton, and Comp3 upon receiving Event3. Note that

had Comp2 been installed directly upon receiving Event2, this would always be

discarded at the end of the scope.

Since a compensating automaton may have nested vectors of automata, its

configuration should be correspondingly nested by a vector of configurations.

86

Chapter 4. Compensating Automata

q
1

q
5

q
2

q
0

q
3 q

4
Comp3!

τ
Event2?

Event3?

Comp1!

Comp2!

Event1?

Figure 4.5: An example of a compensating automaton with compensations

We refer to a configuration with no nesting as a basic configuration. Each such

basic configuration has to keep track of: (i) the state it is in; (ii) whether it

is currently simply listening for system events (conceptually the system state

is progressing forwards) or executing compensations (conceptually the system

state is progressing backwards); and (iii) the configured compensation in terms

of a stack including the installed compensations and the points at which comp-

ensation activation should be deviated.

Definition 4.2.4. A configuration of a compensating automaton is either (i) a

basic configuration composed of an automaton in set A, a state in Q, a (forward

or backward) direction in R (defined below), and a stack in S (defined below);

(ii) a nested configuration consisting of a basic configuration and the configura-

tion of the nested automata vector; or (iii) a vector configuration encoded as a

sequence of nested configurations. This can be summarised as:

BConf ::= Basic(A×Q ×R×S)

NConf ::= BConf | Nest(BConf,Conf)

Conf ::= Vect(NConf∗)

A compensating automaton is either executing forwards, or backwards. Thus,

an automaton execution direction, is a member of R def= {S,R} signifying forward

and backward execution respectively.

87

Chapter 4. Compensating Automata

 [. . .]BConf

BConf BConfBConf BConf BConf

NConf BConf NConf

BConf

 [. . .]

 [. . .]

Figure 4.6: An example of a structure or configurations

A stack S ∈ S is a sequence of stack elements S def= Stack∗ where each element

is of type Stack and can either be a compensation or a deviation

Stack ::= C | D.

�

An example of a structure of configurations is shown in Figure 4.6 including

a vector of three configurations with two of them being nested configurations.

The first nested configuration consists of a basic configuration and a vector with

three basic configurations, while the second consists of a basic configuration and

a nested vector containing two basic configurations:

[(BConf,[BConf,BConf,BConf]), BConf, (BConf,[BConf,BConf])]

As abbreviations for configurations we use (q,S)r to denote Basic(A,q, r,S) (when-

ever A is clear from the context) where r ∈R (for instance if r =S, (q,S)S signifies

a forward executing configuration); and (q,S)rcf to denote Nest((q,S)r,cf).

Definition 4.2.5. The push operation, denoted s # S, adds an element s onto the

top of stack S where s is either a compensation c ∈ C or a deviation d ∈ D (using

“:” to represent the cons operator) the push operations is defined as follows:

c # S def= c :S

d # S def=


S if d = ◦

d :S otherwise

�

88

Chapter 4. Compensating Automata

Example 4.2.3. Referring back to Figure 4.5 if execution is in forward mode

in state q0 the configuration would be (q0, [])S. However, if execution is in for-

ward mode in state q1, the configuration would be nested and the compensation

Comp1! should be installed in the stack together with the deviation to state q3:

(q5, [q3, ({τ}, {Comp1}, [])])S(q1,[])S
. Because of the stack, it is difficult to give further

examples of configurations without first presenting the semantic rules. For this

reason more configuration examples will be given in the next section.

A configuration reaches a point where it cannot proceed further when either

the automaton has reached a final state during forward execution, i.e., no fur-

ther installations can occur, or all the compensations have been activated during

backward execution.

Definition 4.2.6. A basic configuration cf is said to be terminated, written �(cf),

if and only if it has reached a final state and it is in forward direction:

�((q,S)r) def= q ∈ F ∧ r =S.

A basic configuration cf is said to be compensated, written �(cf), if and only if

it has an empty stack and it is in backward direction: �((q,S)r) def= S = []∧ r =R.

Nested configurations are neither terminated nor compensated since execu-

tion continues with the parent.

A vector configuration is said to have terminated if the vector is empty, or all

sub-configurations are either terminated or compensated and at least one has

terminated:

�([cf1,cf2, . . . ,cfn]) def= n = 0∨ ((∀j ∈ 1..n ·�(cf j)∨�(cf j))∧ (∃i ∈ 1..n ·�(cf i)))

On the other hand, a vector configuration is said to have compensated if all

sub-configurations have compensated:

�([cf1,cf2, . . . ,cfn]) def= n > 0∧∀i ∈ 1..n ·�(cf i). �

We note that a configuration cannot both be terminated and compensated.

Proposition 4.2.1. A terminated configuration implies it is not compensated:

�(cf) =⇒ ¬ � (cf). A compensated configuration implies it is not terminated:

89

Chapter 4. Compensating Automata

�(cf) =⇒ ¬ � (cf). By the law of contrapositive it is enough to show that the

former holds.

Proof. The proof follows by considering basic and vector configurations: By Def-

inition 4.2.6 if �((q,S)r), then r =S and thus r ,R which implies ¬� (cf).

By Definition 4.2.6 if �([cf1,cf2, . . . ,cfn]), then there exists cf i such that �(cf i).

Clearly, this violates �([cf1,cf2, . . . ,cfn]).

Definition 4.2.7. The initial configuration of a vector of compensating automata

is given by the in function which starts each automaton from its respective ini-

tial state:

in(Â) def= [(q01, [])
S
in(q01), (q02, [])

S
in(q02), . . . , (q0n, [])

S
in(q0n)]

Note that to handle state nesting we call the in function overloaded to states: if

the state is nested, the configuration of the nested vector of automata is obtained

by calling in once more, otherwise in returns an empty configuration.

in(q) def=


in(Â′) if q = (Â′, c)

[] otherwise

�

Example 4.2.4. For example applying function in on a vector containing the

automaton shown in Figure 4.5 one would obtain the configuration [(q0, [])S]

while applying it on nested state q5 would result in configuration [(q1, [])S]. The

latter configuration is useful for obtaining the initial state of a nested automaton

during the parent’s transition (in this case from q0 to q5).

Since compensating automata are intended for monitoring systems, deter-

minism of the specification language is crucial to ensure that monitors behave

consistently upon identical input.

90

Chapter 4. Compensating Automata

Definition 4.2.8. A compensating automaton (Σ,Q,δ,q0,F) is said to be deter-

ministic if and only if:

(i) if a state has an outgoing τ transition then it may have no other outgoing

transitions: ∀t, t′ ∈ δ · (t , t′ ∧ src(t) = src(t′)) =⇒ τ < event(t);

(ii) there are no outgoing transitions with shared labels from the same state:

∀t, t′ ∈ δ · (t , t′ ∧ src(t) = src(t′)) =⇒ event(t)∩ event(t′) = ∅;

(iii) there is at most one outgoing transition from a particular state which is

listening for communication on local labels:

∀t, t′ ∈ δ · (t , t′ ∧ src(t) = src(t′)) =⇒ event(t)∩ΣL = ∅∨ event(t′)∩ΣL = ∅; and

(iv) once a final state is reached, no further transitions may be taken:

∀t ∈ δ · src(t) < F. �

Apart from the property of determinism, monitors are typically also ex-

pected to terminate, i.e. the monitor eventually stops monitoring and returns

control to the system. In more practical terms, this property, sometimes referred

to as stability [53], requires us to show that compensating automata cannot en-

ter infinite loops. Thus, compensating automata are not allowed to have τ-loops,

i.e. loops which do not involve system events, and, due to the adopted commu-

nication model (introduced later), cross-automata communication should not be

allowed to result into infinite loops.

Definition 4.2.9. A compensating automaton is said to be well-formed if it con-

tains no τ-loops. Hence, we define a dependency relationship over states which

are connected by τ- or local-channel-triggered transitions as follows:

dep(A) def= {(q,q′) | ∃t ∈ δA · src(t) = q∧ dst(t) = q′

∧ (τ ∈ event(t)∨ event(t)∩ΣL , ∅)}

A compensating automaton A is said to be τ-loop-free if, for any state q,

(q,q) < dep(A)+.

A vector of compensating automata is said to be well-formed if all its ele-

ments are well-formed. �

91

Chapter 4. Compensating Automata

Note that the above definition constraining local communication is sufficient

(see Theorem 4.2.3) to avoid communication loops but not necessary. In general,

it is up to the user to ensure that no loops are introduced, but if one sticks to the

above restriction, then one is guaranteed to have stability.

Another issue related to looping is that since compensating automata inter-

act with the system by listening for system events and instructing the system

to perform compensation actions, a loop can also occur if the system sends re-

peated events triggered by repeated compensations. Since in our approach we

do not model the system behaviour, it is not possible to check for such loops.

Furthermore, note that such looping behaviour does not violate our definition

of stability since the system would still repeatedly get control back from the

monitor.

In what follows when referring to compensating automata we implicitly refer

to deterministic, well-formed compensating automata.

4.2.1 Semantics

We give the semantics of compensating automata in SOS style [88] in terms of

a labelled transition system where states are configurations. Specifying the se-

mantics of compensating automata poses the issue of whether the semantics

should be concurrent or whether the execution of automata in a vector should

occur in a predefined order. The latter option is preferred from the point of

view of determinism since concurrency introduces various possible behaviour

interleavings. On the other hand, opting for a concurrent semantics means that

an implementation of the theory will not be bound to be sequential. This is an

important advantage in the context of highly concurrent settings such as the

service-oriented architecture. Thus, the semantics presented below are concur-

rent, allowing any order of execution amongst automata running in parallel.

Definition 4.2.10. The semantics of a vector of compensating automata is the

least transition relation
x−→: Conf ×Trace×Conf satisfying the rules in Figure 4.7

92

Chapter 4. Compensating Automata

where x is an element of type Trace and is either (i) an automaton transition,

i.e., an activity triggering local action, of type8 A×Στ ×2ΣL ; (ii) a compensation

action, i.e., a local activity triggering an action, of type A×ΣLτ ×2Σ; (iii) a com-

pensate signal, �, which signals the automaton to start executing compensations;

and (iv) a silent transition, τ , representing the rest of the automata activities.

Thus, we define the type Trace as

Trace ::= Forw(A×Στ × 2ΣL) | Back(A×ΣLτ × 2Σ) | � | τ

As abbreviation, we write Forw(A,i,O) as (iO)A and Back(A,i,O) as (iO)A

(subscripting the local symbols).

The first rule, Suc, deals with the basic automaton transitions such that if the

transition event triggers, then the transition action is carried out and the comp-

ensation and deviation are pushed onto the stack. If the destination state (q′) has

a nested automata vector, then the corresponding nested initial configuration is

given by calling the in function on q′. Otherwise, the function call returns in

returns an empty configuration vector.

When the compensating automaton receives the compensate signal, denoted

by �, rule Fail turns the execution mode of the automaton from forward to back-

wards. Once the execution direction is backwards, if the topmost stack element

is a compensation, then rule Comp pops it from the stack and activates it. Re-

call that each compensation action has an associated (possibly empty) vector

of automata as programmed compensation. Thus the resulting configuration is

a nested configuration including the configuration for the programmed comp-

ensation. If the topmost stack element is a deviation, then this signifies that the

automaton should stop activating compensations. Rule Dev deviates the exe-

cution by reverting the configuration direction from backwards to forwards and

sets the deviation state as the new configuration’s state. Since this state may have

nested automata, the new configuration is obtained through the in function.

8Note that transition trace elements are tagged by the automaton triggering them. This would
be useful to distinguish different automata symbols when proving properties about individual
automata.

93

Chapter 4. Compensating Automata

The rules covered above have dealt with the automaton whose configuration

is the topmost element of the configuration stack. The following rules deal with

what happens when the topmost configuration terminates or compensates. As-

suming a forward-executing parent configuration, upon successful completion

of a nested vector of automata, i.e., its configuration is terminated, rule NestSuc

is responsible to pass control back to the parent by discarding the corresponding

configuration and installing the programmed compensation. In case the nested

configuration is compensated, then the parent configuration starts compensating

itself. This scenario is handled by NestFail by discarding the nested configu-

ration and changing the parent’s direction to backwards. If the parent config-

uration has a backward direction, when the nested configuration is terminated

or compensated, rule NestComp triggers and passes control back to the parent

so that the latter continues with its compensation. Whenever a nested config-

uration is reached, the Nest rule is required to enable nested configurations to

progress. Similarly, the Vect rule enables individual configurations within a

vector to progress independently (α,β ∈ seq Conf). �

These rules specify the behaviour of a vector of compensating automata with-

out considering how they interact with a monitored system. In what follows we

build further semantics to formally specify how compensating automata behave

during monitoring and the subsections which follow prove that these semantics

possess the desirable monitoring properties of determinism and stability.

Example 4.2.5. Referring back to configuration examples given earlier with re-

spect to Figure 4.5, it should now be clearer how the transition from q0 proceeds

to q1 through rule Suc which pushes the compensation and deviation onto the

stack and invokes the in function on state q5. More interestingly, upon reaching

q2 with configuration (q5, [q3, ({τ}, {Comp1}, [])])S(q1,[({τ},∅,[])])S
, rule NestSuc trig-

gers and installs compensation Comp2! while discarding the nested configura-

tion. This leads to configuration (q5, [({τ}, {Comp2}, []),q3, ({τ}, {Comp1}, [])])S.

An interesting change occurs if the failure event occurs, triggering the Fail

94

Chapter 4. Compensating Automata

rule. In this case the configuration direction turns backwards to

(q5, [({τ}, {Comp2}, []),q3, ({τ}, {Comp1}, [])])R and subsequently rule Comp begins

consuming and triggering the compensations on the stack. After triggering

compensation Comp2, the resulting topmost stack element is a deviation. This

causes rule Dev to trigger and the configuration is turned into forward direction

once more: (q3, [({τ}, {Comp1}, [])])S.

A different scenario would have arisen if the failure occurred when running

the nested automaton. In this case only the nested configuration would have had

its direction turned backwards: (q5, [q3, ({τ}, {Comp1}, [])])S(q1,[({τ},∅,[])])R
. Due to the

empty stack in the nested configuration, rule NestFail would trigger, discard-

ing the nested configuration and changing the parent’s direction to backwards:

(q5, [q3, ({τ}, {Comp1}, [])])R. At this point, execution continues with rule Dev as

before.

A significant issue in the design of compensating automata relates to the way

automata in a vector interact with each other. While rule Vect above enables

each automaton to progress, it does not specify how synchronisation can take

place. This is discussed and defined in the following.

4.2.2 Communication Amongst Compensating Automata

Motivated by instances from the e-procurement case study, we enable compen-

sating automata to communicate. Yet, there are various communication patterns

which could be adopted. The first choice is whether to go for a point-to-point

or a broadcast system. We opt for a broadcast system to mimic the way system

events reach monitors, i.e. system events are broadcast to all monitors, provid-

ing a consistent event mechanism. Another design issue is whether or not events

are consumed by the receiver, and whether the receiver is blocking. Again, for

consistency and to avoid race conditions, events are not consumed and receiv-

ing is blocking. Moreover, just as the system does not block if no monitor listens

for a particular event, local communication senders do not block upon sending.

95

C
hap

ter
4.

C
om

p
ensating

A
u

tom
ata

Basic Configurations

Suc

(q,S)S
(iO)A−−−−→ (q′,d # c # S)Sin(q′)

(q, I,O,c,d,q′) ∈ δ
i ∈ I Fail

(q,S)S
�−→ (q,S)R

Comp

(q,c # S)R
(iO)A−−−−→ (q,S)R

in(Â)

c = I,O,Â

i ∈ I Dev

(q,d # S)R
τ−→ (d,S)Sin(d)

Nested Configurations

NestSuc

(q,S)Scf
τ−→ (q,c # S)S

q = Â, c

�(cf)
NestFail

(q,S)Scf
τ−→ (q,S)R

�(cf) NestComp

(q,S)Rcf
τ−→ (q,S)R

�(cf)∨�(cf)

Nest

cf
x−→ cf ′

(q,S)rcf
x−→ (q,S)rcf ′

¬(�(cf)∨�(cf))

Vector Configurations

Vect

cf
x−→ cf ′

α ++[cf] ++β
x−→ α ++[cf ′] ++β

Figure 4.7: Basic semantic rules

96

Chapter 4. Compensating Automata

This communication model also conforms to other similar models of monitoring

under concurrency such as [55]. In the rest of the section, we formally specify

this communication mechanism and explain how the system and the compensa-

tion monitors interact.

Upon receiving a system activity or the compensate signal, a vector of com-

pensating automata triggers the relevant transitions followed by other non-(dir-

ectly)-system-triggered transitions. All the steps triggered through a single sig-

nal are collectively called a compound step. To give the semantics of communica-

tion within compensating automata, the compound step is split into basic steps

which allow one transition to occur while taking into account local communica-

tion.

Definition 4.2.11. Basic steps are specified on basic-step configurations bsConf

which are each composed of a vector configuration plus a set of local symbols:

bsConf ∈ (Conf × 2ΣL). The set of local symbols is used to keep track of the lo-

cal communication, i.e., the symbols which have been triggered. There are five

kinds of basic steps (each described by a rule in Figure 4.9): two which are di-

rectly triggered as a result of a system signal (rules Sys and Fal) while there

are three kinds of transitions which are not directly system-triggered, namely:

(i) silent transitions (rule Sil); and (ii) local- or (iii) compensation-triggered ac-

tions (rules Loc and Cmp respectively). Note that local symbols are added to

the configuration whenever local communication triggers (rules Sys, Cmp, and

Loc). Furthermore, local communication (rule Loc and Cmp) can only trigger if

a corresponding symbol is present in the configuration set of symbols. �

Example 4.2.6. To help illustrate the communication mechanism formalised in

basic steps, we refer to Figure 4.8 where three automata communicate through

local channels. Assuming all automata are initially active at their first state with

no previous local communication, automata A2 and A3 cannot transition since

the side condition of basic step Loc is not satisfied (L = ∅). On the other hand,

97

Chapter 4. Compensating Automata

A

2

3

1
A

A

Loc2?

Loc2?

Loc1? Loc2!

SysEvent? Loc1!

Figure 4.8: Basic steps example

Basic Steps

Sys

cf
(iO)A−−−−→ cf ′

cf [L]
iA
↪−→ cf ′[L∪O]

i ∈ ΣS Fal

cf
�−→ cf ′

cf [L]
�
↪−→ cf ′[L]

Sil

cf
τ−→ cf ′

cf [L]
τ
↪−→ cf ′[L]

Loc

cf
(τO)A−−−−−→ cf ′ or cf

(lO)A−−−−→ cf ′

cf [L]
τ
↪−→ cf ′[L∪O]

l ∈ L Cmp

cf
(τO)A−−−−−→ cf ′ or cf

(lO)A−−−−→ cf ′

cf [L]
τ
↪−→ cf ′[L∪(O∩ΣL)]

l ∈ L

Figure 4.9: Basic steps

the first transition of automaton A1 triggers immediately over basic step Sys

(note the only side condition is that the event is an element of ΣS), contributing

Loc1 to the set of enabled local channels (L = {Loc1}). Subsequently, A2 may

transition over Loc1 due to the satisfaction of the side condition, contributing

Loc2 to the set of enabled local channels (L = {Loc1,Loc2}). Finally, both A1 and

A3 can transition since Loc2 ∈ L.

Grouping basic steps into compound steps, we use the notion of an exhaus-

tive transitive closure of a relation →. Denoted →•, the exhaustive transitive

closure is defined to be the maximal transitive closure with no further possible

compositions; more formally,→• def= {(α,β) ∈→∗ | β < dom(→)}.

Definition 4.2.12. Given a sequence e :es of system activities and failure signals,

e ∈ Σ ∪ {�}, the behaviour of a vector of automata Â, is characterised by two

phases.

1. Starting from the initial configuration in(Â), the compensation manager

98

Chapter 4. Compensating Automata

performs all possible non-system-triggered basic steps. More formally, the

first phase is characterised by a τ-compound-step (denoted by
τ
) and is

composed of sequences of non-system triggered basic steps (
τ
↪−→). Note that

L′ is discarded once all the internal steps have been carried out.

cf [L]
τ
 cf ′[∅]

def= cf [L]
ττ...τ
↪−−−−→•cf ′[L′]

2. Execution continues by repeatedly consuming elements from e:es until

either the sequence of system activities and failures is fully consumed or

the automata vector cannot proceed further. Processing each e element,

denoted by an e-compound-step involves triggering all possible transitions

waiting on e and collecting all the triggered local actions in the configu-

ration set of symbols —
eA1eA2 ...eAn
↪−−−−−−−−−−→• or

��...�
↪−−−−−→• depending on whether e is

a normal event or a compensate signal. Note that as per rule Sys the for-

mer labels are subscripted with the automaton triggering the event. This

enables us to limit each automaton to take only one step over a particular

event by ensuring that each automaton A1 . . .An is unique.

cf [L]
e
 cf ′[L′]

def=


cf [L]

��...�
↪−−−−−→•cf ′[L] if e = �

cf [L]

eA1eA2 ...eAn
↪−−−−−−−−−−→•cf ′[L′] otherwise

where ∀i, j ∈ 1..n · i , j =⇒ Ai , Aj

Putting the two phases together, the overall behaviour can be summarised as
τ
 (

e

τ
)∗. Note that each system-triggered step follows and is followed by

a
τ
 so that the automata vector exhausts all the internal basic steps before

considering other signals from the system. For abbreviation we use
es
 ∗ def=

τ

e1

τ

e2

τ
 . . .

en

τ
 where es = e1e2 . . . en.

�

99

Chapter 4. Compensating Automata

3

0q

q

q 1

q 1

q 2

q 2

q 3 q 4

q 4

q 3

q
14

q
13

2 2 2

2

2

03 3

3

3

0q
1 q

11 q
12

Cancel!

ArrangeTransA?

CancelA!

ArrangeTransB?

CancelB!

done!

ShipGoods?

done?

done!

ok!

ok?

ok?

Figure 4.10: Speculative choice

To better illustrate the semantics of compensating automata, we give two

examples: one having synchronisation during forward execution and another

with synchronising compensations.

Example 4.2.7. Consider the speculative choice example given in Figure 4.3(e),

reproduced once more in Figure 4.10, and let [A1,A2,A3] represent the vec-

tor composed of the three automata with Ai = (Σi ,Qi ,q0i ,Fi) and basic states

being numbered from left to right, top to bottom (as they appear in the dia-

gram), starting from zero9. The initial configuration, given by in([A1,A2,A3]) is

[(q01, [])
S, (q02, [])

S, (q03, [])
S]. Performing the initial phase (

τ
) would not con-

tribute any change since no local communication or τ events can trigger.

Following the initial stage, we assume that the system emits the following

events: (ArrangeTransB, ArrangeTransA, �, ShipGoods). Intuitively, this stream of

events means that initially the booking of transport B was successful but before

the booking with transport A got cancelled, it got confirmed as well. In such a

scenario, transport A should be cancelled and subsequently the shipping of the

9For simplicity we are ignoring the parent automaton in whose initial state the three aut-
omata reside.

100

Chapter 4. Compensating Automata

goods should be carried out by transport B. In what follows we explain step by

step how the compensating automaton processes each of the four system events:

1. Processing the first event changes the configuration into

[(q01, [])
S,

(q12, [({τ}, {CancelB}, [])])S,

(q03, [])
S]

through rules Suc, Vect, and Sys. Following this, the τ-compound-step

constitutes two basic steps (triggering rules Suc, Vect, and Loc) on local

channels done and ok yielding the following configuration:

[(q01, [])
S,

(q32, [q42, ({τ},∅, []), ({τ},∅, []), ({τ}, {CancelB}, [])])S,

(q23, [q33, ({τ},∅, []), ({τ},∅, [])])S]

In particular, note that the topmost element in the stacks of the second and

third configurations is a deviation. This means that these configurations

will simply deviate to another state of the automaton rather than execute

compensations from the stack. In this example, this is crucial to protect

the first booking from being cancelled when cancelling the second.

2. The second event, ArrangeTransA, is similar to the first but fails to progress

to the final state since no synchronisation occurs on ok. The resulting con-

figuration would be as follows:

[(q21, [({τ},∅, []), ({τ}, {CancelA}, [])])S,

(q32, [q42, ({τ},∅, []), ({τ},∅, []), ({τ}, {CancelB}, [])])S,

(q23, [q33, ({τ},∅, []), ({τ},∅, [])])S]

101

Chapter 4. Compensating Automata

3. At this point the system detects that at least a booking has succeeded and

thus signals the need for compensation through event �. This changes the

configuration direction of all configurations to backwards, triggering rules

Fail, Vect, and Fal. However, as soon as the second and third config-

urations start compensating during the τ-compound-step, the deviation

(through rules Dev, Vect, and Sil) changes the direction back to forwards:

[(q21, [({τ},∅, []), ({τ}, {CancelA}, [])])R,

(q42, [({τ},∅, []), ({τ},∅, []), ({τ}, {CancelB}, [])])S,

(q33, [({τ},∅, []), ({τ},∅, [])])S]

Next, through rules Comp, Vect, and Cmp, the compensation stack of the

first configuration is activated and the system compensates the booking of

transport A leading to configuration:

[(q21, [])
R,

(q42, [({τ},∅, []), ({τ},∅, []), ({τ}, {CancelB}, [])])S,

(q33, [({τ},∅, []), ({τ},∅, [])])S]

4. Finally, on event ShipGoods, the third automaton reaches the final state:

[(q21, [])
R,

(q42, [({τ},∅, []), ({τ},∅, []), ({τ}, {CancelB}, [])])S,

(q43, [({τ},∅, []), ({τ},∅, []), ({τ},∅, [])])S]

Example 4.2.8. Consider the communication example given in Figure 4.3(f), re-

produced once more in Figure 4.11, and let [A1,A2] represent the vector com-

posed of the two automata (with A1 = (Σ1,Q1,q01,F1) and A2 = (Σ2,Q2,q02,F2)

representing the top and bottom automaton respectively). The initial configu-

ration, given by in([A1,A2]) is [(q01, [])
S, (q02, [])

S]. Performing the initial phase

102

Chapter 4. Compensating Automata

1
q

0q
1

1

charge?
transCancOk?

Refund!

RecPay?

q 0

q 1 q 2

2

2

4

2 3
2

q

q

2

ShipGoods?

charge! Cancel!

transCancOk!

ArrangeTrans?τ

Figure 4.11: Communicating compensating automata

(
τ
) would result in the installation of compensation transCancOk,

[(q01, [])
S, (q12, [({τ}, {transCancOk}, [])])S], through rules Suc, Vect, and Loc.

Next we consider two scenarios for the second phase:

1. In the first scenario we assume the payment succeeds followed immedi-

ately by failure (RecPay, �). In this case, upon RecPay, the configuration

proceeds to

[(q11, [({transCancOk,charge}, {Refund}, [])])S,

(q12, [({τ}, {transCancOk}, [])])S]

through rules Suc, Nest, Vect, and Sys. Upon failure, execution direction

turns backwards for both automata and local communication takes place,

[(q11, [])
R, (q12, [])

R], first through rules Comp, Nest, Vect, and Cmp (storing

transCancOk in the basic-step configuration’s set of local channels), and

again through the same rules triggering the Refund compensation.

2. As a second scenario we assume that all actions succeed except for Ship-

Goods, i.e., (RecPay, ArrangeTrans, �). In this case, upon ArrangeTrans, first

through rules Suc, Nest, Vect, and Sys, and then by rules NestSuc, Vect,

and Sil the configuration evolves to

103

Chapter 4. Compensating Automata

[(q11, [({transCancOk,charge}, {Refund}, [])])S,

(q22, [({τ}, {charge,Cancel}, [])])S]

Upon failure, execution direction turns backwards for both automata and

local communication takes place, first through rules Comp, Vect, and Cmp

(storing charge in the basic-step configuration’s set of local channels), and

then again through the same rules, Comp, triggering the Refund compensa-

tion.

In what follows we define the sanity of compensating automata — i.e., events

are correctly compensated, and we prove that compensating automata are in-

deed sane.

4.2.3 Self-Cancellation in Compensating Automata

In order for compensating automata to be perfectly self-cancelling, it must be

ensured that installed compensations perfectly correspond to the event trigger-

ing the installation on every transition. Furthermore, note that when replacing

compensations, fine-grained compensations are discarded, and hence lose the

one-to-one correspondence of events and compensations. For this reason, to

prove self-cancellation, one must ignore both the actions of nested automata

and also the replaced compensations.10

Definition 4.2.13. A perfectly-compensating automaton is an automaton whose

transitions (q, I,O, (I ′,O′, Â),d,q′) ∈ δ are such that their events and compensa-

tions correspond perfectly, i.e., ∀i ∈ I ·O′ = i.

Next, since we lose event-compensation correspondence when discarding/

replacing compensations, we assume that all nested states of self-cancelling aut-

omata

(Â, (I,O,Â)) ∈N should have an empty compensation, i.e., O = ∅.
10Note that in what follows we will be freely quoting definitions and proofs from Chapter 3.

104

Chapter 4. Compensating Automata

In the rest of this section we use compensating automata to refer to perfectly-

compensating automata. �

To analyse the externally visible behaviour of a particular compensating au-

tomaton we ignore the strictly local components in the trace, and we leave out

any activities related to other automata.

Definition 4.2.14. Given trace elements of the form (iO)A we drop O (which

are local actions) and given trace elements of the form (iO)A we drop i (which

constitutes local events). Furthermore, for an automaton A, all elements tagged

with A′ (A′ , A) are dropped, ignoring any activities originating from nested

automata or compensations of compensations. Thus, given a trace w : Trace∗ and

automaton A ∈ A, we define ·A : Trace∗→ Tracex∗ where

Tracex ::= Στ | 2Στ

εA
def= ε

(aw)A
def=


i wA if a = (iO)A

OwA if a = (iO)A

wA otherwise

�

Using the cancelling function definition (Definition 3.4.4) we now go on to

define what it means for a compensating automaton to be self-cancelling.

Definition 4.2.15. A compensating automaton A is said to be self-cancelling if

and only if all traces originating from an initial configuration and ending in a

terminated configuration are self-cancelling:

∀w : Trace∗ · in(q0)
w
=⇒ cf ∧�(cf) =⇒ wA =c ε

A vector of compensating automata Â is said to be self-cancelling if and only

if all traces originating from an initial configuration and ending in a terminated

configuration are self-cancelling:

105

Chapter 4. Compensating Automata

∀w : Trace∗ · in(Â)
w
=⇒ cf ∧�(cf) =⇒ ∀A ∈ Â ·wA =c ε

�

To facilitate reasoning about stacks, we define a function which returns the

string representation of the stack, dropping any stack elements which do not

contribute to the trace.

Definition 4.2.16. Given a stack S, the function behaviour, denoted ·#, returns a

sequence of actions such that each character represents a compensation on the

stack, with the head being the bottom element of the stack. Since deviations

only contribute a τ action to the trace, we ignore deviation elements on the

stack. Similarly, empty actions are ignored.

((I,O,Â) # S)#
def=


S# if O = ∅

OS# otherwise

(d # S)#
def= S#

[]#
def= ε

�

The following propositions will be used later to prove the main result that

compensating automata are self-cancelling.

Proposition 4.2.2. Given an activity i ∈ Σ and a string w ∈ Trace∗x, then append-

ing i to w cannot contribute to cancellations which are not present in w. More

formally, cancel(w) i = cancel(wi)

Proof. By Definition 3.4.4, i can only cause a reduction if i i is a sequence of the

string. Thus, cancel(wi) would return the same cancellation result as cancel(w) i

since nothing follows i.

Proposition 4.2.3. Given a compensation i and a string s = w j (i , j), then

appending i to s cannot contribute to cancellations which are not present in w.

More formally, cancel(s) i = cancel(s i)

106

Chapter 4. Compensating Automata

Proof. By Definition 3.4.4, i can only cause a reduction if i i is a sequence of the

string. By Proposition 4.2.2, cancel(s) i = cancel(w) j i, and since j i by definition

of cancel and injectivity of the compensation function do not cancel out, then

cancel(w) j i = cancel(s i).

Proposition 4.2.4. Function cancel is idempotent: cancel(cancel(w)) = cancel(w)

Proof. The proof follows by string induction on w.

The base case for w = ε follows from Definition 3.4.4.

The inductive case w = k x is split into the following cases:

Case 1: x = i, (i ∈ Σ)

cancel(k x)

{ By Proposition 4.2.2 }

= cancel(k)x

{ By the inductive hypothesis }

= cancel(cancel(k))x

{ By Proposition 4.2.2 twice }

= cancel(cancel(k x))

Case 2a: x = i assuming k = k′ j (i , j)

cancel(k i)

{ By Proposition 4.2.3 }

= cancel(k) i

{ By the inductive hypothesis }

= cancel(cancel(k)) i

{ By Proposition 4.2.3 twice }

= cancel(cancel(k i))

107

Chapter 4. Compensating Automata

Case 2b: x = i and k = k′ i

{ By the inductive hypothesis }

cancel(k′ i) = cancel(cancel(k′ i))

{ By Proposition 4.2.2 thrice }

=⇒ cancel(k′) i = cancel(cancel(k′)) i

{ By removing i both sides }

=⇒ cancel(k′) = cancel(cancel(k′))

{ By Definition 3.4.4 twice }

=⇒ cancel(k′ i i) = cancel(cancel(k′ i i))

Proposition 4.2.5. Applying cancel on a string wi is the same as cancelling

out w and then cancelling the result appended with i: for any w,w′ : TraceA∗,

cancel(wi) = cancel(cancel(w) i).

Proof. The proof follows by string induction on w.

The base case for w = ε follows by Definition 3.4.4.

The inductive case w = k x follows from the following cases:

Case 1: x = j, (j , i)

cancel(k x i)

{ By Proposition 4.2.4 }

= cancel(cancel(k j i))

{ By Proposition 4.2.3 twice }

= cancel(cancel(k j) i)

108

Chapter 4. Compensating Automata

Case 2: x = i

cancel(k i i)

{ By Definition 3.4.4 }

= cancel(k)

{ By Proposition 4.2.4 }

= cancel(cancel(k))

{ By Definition 3.4.4 }

= cancel(cancel(k) i i)

{ By Proposition 4.2.2 }

= cancel(cancel(k i) i)

Proposition 4.2.6. If cancel(w) = w′ i then cancel(wi) = cancel(w′).

Proof. The result can be proved as follows:

{ By Proposition 4.2.5 }

=⇒ cancel(wi) = cancel(cancel(w) i)

{ By substitution }

=⇒ cancel(wi) = cancel(w′ i i)

{ By Definition 3.4.4 }

=⇒ cancel(wi) = cancel(w′)

Recall that the stack of a configuration stores a compensation for each activ-

ity which occurred. When a compensation is activated, it is removed from the

stack and executed. Note that for each activity or compensating action, a cor-

responding modification occurs on the stack. Thus, we can define the resulting

stack of a configuration step in terms of the original stack and the activity/action

which occurred. Consider a stack S containing three compensations, c, b, and

a: S = c # b # a # [] corresponding to three consecutive activities abc. Note that

109

Chapter 4. Compensating Automata

S# = cba = abc = abc. Thus the compensation stack acts as a record of past

activities. If another activity d occurs, its compensation would be pushed onto

the stack resulting in a stack S ′ = d #S. As shown before S ′# = abcd = S#d. If the

compensation d is executed, then the resulting stack S ′′ would satisfy S ′′# = abc.

Furthermore, note that this is also equal to cancel(S ′#d) since nothing would can-

cel out in a stack consisting solely of compensations. This is expressed in the

following lemma.

Lemma 4.2.1. Generalising these observations, given a configuration (q,S)r which

reaches (q′,S ′)r on string w, the resulting stack S ′ can be expressed as a function

of the original stack and the generated string such that if

(q,S)r
w
=⇒ (q′,S ′)r, then S ′# = cancel(S#w

x
A)11. The same can be said if the initial or

end configuration (or both) is a nested configuration.

Proof. The proof proceeds by string induction on w.

Base case: w = ε and thus S = S ′.

{ By application of Definition 4.2.16 }

=⇒ S# = S ′#

{ By Definition 4.2.16 and by Proposition 3.4.1 }

=⇒ S# = cancel(S ′#)

{ By Definition 3.4.2 and wxA = ε }

=⇒ S# = cancel(S ′#w
x
A)

Inductive case: w = k x — The proof proceeds by a rule-by-rule analysis starting

by the rules which trigger on forward configurations, (q,S)S or (q,S)Scf .

11Recall Definition 3.4.1 where wx returns w without the non-externally visible activities

110

Chapter 4. Compensating Automata

Case 1: Rule Suc, w = k (ii)A

{ By application of Suc }

=⇒ S ′′ = ((i′, i), Â) # S ′

{ By Definition 4.2.16 }

=⇒ S ′′# = iS ′#

{ By inductive hypothesis }

=⇒ S ′′# = icancel(S# k
x
A)

{ By Definition 3.4.2 }

=⇒ S ′′# = cancel(S# k
x
A) i

{ By Proposition 4.2.2 and Definition 4.2.14 }

=⇒ S ′′# = cancel(S# (k i)xA)

Case 2: Rule Fail, w = k �, and S ′′ = S ′

{ By application of Fail and Definition 4.2.16 }

=⇒ S ′′# = S ′#

{ By inductive hypothesis }

=⇒ S ′′# = cancel(S# k
x
A)

{ By Definition 4.2.14 }

=⇒ S ′′# = cancel(S# (k �)xA)

Case 3: Rule NestSuc, w = k τ

{ By application of NestSuc and Definition 4.2.16 }

=⇒ S ′′# = S ′#

{ By inductive hypothesis }

=⇒ S ′′# = cancel(S# k
x
A)

{ By Definition 4.2.14 }

=⇒ S ′′# = cancel(S# (k τ)xA)

111

Chapter 4. Compensating Automata

Case 4: Rule NestFail, w = k �

{ By application of NestFail and Definition 4.2.16 }

=⇒ S ′′# = S ′#

{ By inductive hypothesis }

=⇒ S ′′# = cancel(S# k
x
A)

{ By Definition 4.2.14 }

=⇒ S ′′# = cancel(S# (k �)xA)

Case 5: Rule Nest, w = k x

where x ∈ {(iO)A′ , (iO)A′ | i ∈ Σ∧O ∈ 2Σ ∧A′ , A} ∪ {τ,�}

(due to rules Suc, Fail, Comp, and Dev which can cause rule

Nest to trigger)

{ By application of Nest and Definition 4.2.16 }

=⇒ S ′′# = S ′#

{ By inductive hypothesis }

=⇒ S ′′# = cancel(S# k
x
A)

{ By Definition 4.2.14 }

=⇒ S ′′# = cancel(S# (k x)xA)

Next, the rules which trigger on backward configurations, (q,S)R or (q,S)Rcf are

considered.

112

Chapter 4. Compensating Automata

Case 1: Rule Comp, w = k (ii)A

{ By application of Comp }

=⇒ S ′ = ((i′, i), Â) # S ′′

{ By Definition 4.2.16 }

=⇒ S ′# = i S ′′#

{ By inductive hypothesis }

=⇒ cancel(S# k
x
A) = i S ′′#

{ By Definition 3.4.2 twice }

=⇒ cancel(S# k
x
A) = S ′′# i

{ By Proposition 4.2.6 and Definition 4.2.14 }

=⇒ cancel(S# (k i)xA) = cancel(S ′′#)

{ By Proposition 3.4.1 }

=⇒ cancel(S# (k i)xA) = S ′′#

{ By Definition 3.4.2 }

=⇒ cancel(S# (k i)xA) = S ′′#

Case 2: Rule Dev, w = k τ

{ By application of Dev }

=⇒ S ′ = d # S ′′

{ By Definition 4.2.16 }

=⇒ S ′# = S ′′#

{ By inductive hypothesis }

=⇒ cancel(S# k
x
A) = S ′′#

{ By Definition 4.2.14 }

=⇒ cancel(S# (k τ)xA) = S ′′#

113

Chapter 4. Compensating Automata

Case 3: Rule NestComp, w = k τ

{ By application of NestComp and Definition 4.2.16 }

=⇒ S ′# = S ′′#

{ By inductive hypothesis }

=⇒ cancel(S# k
x
A) = S ′′#

{ By Definition 4.2.14 }

=⇒ cancel(S# (k τ)xA) = S ′′#

Case 4: Rule Nest, w = k x

(x ∈ {(iO)A′ , (iO)A′ | i ∈ Σ∧O ∈ 2Σ ∧A′ , A} ∪ {τ,�})

{ By application of Nest and Definition 4.2.16 }

=⇒ S ′′# = S ′#

{ By inductive hypothesis }

=⇒ S ′′# = cancel(S# k
x
A)

{ By Definition 4.2.14 }

=⇒ S ′′# = cancel(S# (k x)xA)

Theorem 4.2.1. A compensating automaton is self-cancelling, i.e.

∀w : Trace∗ · in(q0)
w
=⇒ cf ∧�(cf) =⇒ w =c ε

Proof. By applying Definition 4.2.7 and Lemma 4.2.1 on the premise of the im-

plication, then it follows that []# = cancel([]#w
x
A). Since []# = ε, this gets simpli-

fied to ε = cancel(wxA). Finally, by applying the compensation function on both

sides and by Definition 3.4.2, we get ε =c w as required.

Note that the theorem above proves self-cancellation of a compensating au-

tomaton A based on the definition of cancel (Definition 3.4.4) which ignores

symbols from nested automata. In the next corollary we use the same approach

114

Chapter 4. Compensating Automata

to ignore events from sibling automata as well as from nested automata to ex-

tend the result to vectors of compensating automata.

Corollary 4.2.1. A vector of compensating automata is self-cancelling, i.e.,

∀w : Trace∗ · in(Â)
w
=⇒ cf ∧�(cf) =⇒ ∀A ∈ Â ·w =c ε

Proof. The proof follows by induction on the number of automata in the vector.

Self-cancellation straightforwardly holds on an empty vector. The inductive case

holds by considering rule Vect, Definition 4.2.14 — which drops all activities

relating to other automata — and Theorem 4.2.1 which states that each trace of

a compensating automaton is self-cancelling.

Corollary 4.2.2. Basic step and compound step behaviour is self-cancelling.

Proof. Since basic steps and compound steps simply constraint the ordering of

rule triggering, the resulting behaviour is a special case of the compensating aut-

omata semantic rules which have been proven to give self-cancelling behaviour

in Corollary 4.2.1.

4.2.4 Determinism of Compensating Automata

In the context of runtime verification, determinism of the specification language

is crucial as it ensures that given the same input, the monitor always returns

the same verdict. In this section we show that compensating automata behave

deterministically.

Definition 4.2.17. The semantics of a compensating automaton is said to be

confluent if and only if given a vector configuration cf and any two possible

steps cf
x1−−→ cf1 and cf

x2−−→ cf2, where cf1 , cf2, there exists a configuration cf ′ such

that cf1
x2−−→ cf ′ and cf2

x1−−→ cf ′. �

Lemma 4.2.2. The basic semantics of compensating automata (i.e., the rules

given in Figure 4.7) is confluent assuming that the automaton only receives a

single system event at a time.

115

Chapter 4. Compensating Automata

Proof. The proof follows by a rule-by-rule analysis on each case of configuration

type.

Case 1: cf is a basic forward configuration, cf = (q,S)S

By rule analysis, only Suc and Fail can trigger (but not both by the

single event assumption).

If Suc triggers, by Definition 4.2.8 and the single event assumption,

at most one element of δ can trigger Suc and thus cf1 = cf2.

On the other hand, if Fal triggers there is clearly one way the config-

uration can progress and hence cf1 = cf2.

Case 2: cf is a basic backward configuration, cf = (q,S)R

By rule analysis, only Comp and Dev can trigger depending on stack

S.

If S = c # S ′, by definition of Comp the configuration can progress in

one way and thus cf1 = cf2.

If S = d # S ′ and by definition of Dev the configuration can progress

in one way and thus cf1 = cf2.

Case 3: cf is a nested forward configuration, cf = (q,S)Scf ′

By rule analysis, rules NestSuc, NestFail and Nest can trigger de-

pending on the terminated/compensated status of the nested vector

configuration. By Proposition 4.2.1 and propositional logic, the side

conditions are mutually exclusive and thus there is only one way the

configuration can progress, leading to cf1 = cf2.

Case 4: cf is a nested backward configuration, cf = (q,S)Rcf ′

116

Chapter 4. Compensating Automata

By rule analysis, rules NestComp and Nest can trigger depending on

the terminated/compensated status of the nested vector configura-

tion. By propositional logic, the side conditions are mutually exclu-

sive and thus there is only one way the configuration can progress,

leading to cf1 = cf2.

Case 5: cf is a vector configuration, cf = α ++[cf1] ++β ++[cf2] ++γ where

α,β,γ are lists of configurations.

Since rule Vect allows individual configurations to progress inde-

pendently, the possibility of cf
x1−−→ cf1 and cf

x2−−→ cf2, where cf1 , cf2

arises.

Taking any two distinct applications of rule Vect,

α ++[cf1] ++β ++[cf2] ++γ
x1−−→ α ++[cf ′1] ++β ++[cf2] ++γ , and

α ++[cf1] ++β ++[cf2] ++γ
x2−−→ α ++[cf1] ++β ++[cf ′2] ++γ ,

the resulting configuration vectors do not contain any modifications

of cf2 and cf1 respectively. Thus in both cases cf ′ exists:

α ++[cf ′1] ++β ++[cf2] ++γ
x2−−→ α ++[cf ′1] ++β ++[cf ′2] ++γ , and

α ++[cf1] ++β ++[cf ′2] ++γ
x1−−→ α ++[cf ′1] ++β ++[cf ′2] ++γ .

Corollary 4.2.3. Assuming that the automaton only receives a single system

event at a time, basic steps are confluent.

Proof. Basic steps echo the semantic rules with the only constraint of checking

for local communication before progressing. Since no rule removes any local

channels from the configuration (but possibly adds), no membership check can

ever be violated after the triggering of a rule. Furthermore, set union is asso-

ciative and commutative so that (L1 ∪ L2) ∪ L3 = (L1 ∪ L3) ∪ L2. Hence by this

observation and Lemma 4.2.2 basic steps are confluent.

117

Chapter 4. Compensating Automata

Theorem 4.2.2. Compound steps are deterministic:

∀cf ,cf ′ · in(Â)
e:es
 ∗ cf ∧ in(Â)

e:es
 ∗ cf ′ =⇒ cf = cf ′

Proof. Each compound step, whether
τ
 or

e
 , exhausts all the available basic

steps such that before considering the next system event there are no possible

continuations of the configuration.

By Corollary 4.2.3 and since compound steps consider a system event at a

time, the basic steps constituting a compound step are confluent. Consequently

by the contrapositive of confluence, i.e., since there are no continuations at the

end of a compound step, the end configurations of any step sequence must be

equal.

4.2.5 Stability in Compensating Automata

Since the proposed architecture of employing compensating automata is to ex-

ecute the automata in synchrony with the system, monitors bring about insta-

bility to the system, i.e., the system has to wait for control to be returned before

continuing further. To ensure that the monitor eventually returns control to the

system, we reason about the stability of compensating automata. Intuitively, the

behaviour of a compensating automata vector is stable if the behaviour is finite.

Since compound steps are defined as a finite sequence of steps, then we define

stability of a compensating automata in terms of the existence of a compound

step under all possible scenarios: a compound step if a τ-step is performed, a

compound step if the system signals compensation, and a compound step if the

system signals a normal event.

Definition 4.2.18. A compensating automata vector Â is said to be stable if

and only if for any configuration cf [L] of Â, compound steps are defined, i.e.,

there exists cf1[L1], cf2[L2], cf3[L3] such that, cf [L]
ττ...τ
↪−−−−→•cf1[L1], cf [L]

��...�
↪−−−−−→•cf2[L2],

and cf [L]

eA1eA2 ...eAn
↪−−−−−−−−−−→•cf3[L3] (∀i, j : 1..n · i , j =⇒ Ai , Aj). �

118

Chapter 4. Compensating Automata

Proposition 4.2.7. Given a vector of compensating automata and a correspond-

ing configuration, there are only a finite number of τ steps (in cf [L]
ττ...τ
↪−−−−→•cf ′[L′])

which can occur.

The proof follows by induction on the structure of the automaton.

Proof. Base case: an automaton with no nesting LetQ# represent the non-visit-

ed states of an automaton, and S# represent the size of the stack of a con-

figuration. Following a transition, the resulting values of two variables are

denoted by their primed counterparts.

As an invariant, we show that the following holds over all possible transi-

tions:

(Q′# =Q# − 1∧ S ′# ≤ S# + 2)

∨ (Q′# ≤Q# ∧ S ′# = S# − 1)

By rule analysis, there are three rules which can trigger on a configuration

of a single automaton with no nesting:

Rule Suc By rule inspection, Suc contributes at most two elements to the

stack (one if there is no deviation) and reaches a fresh state, which

by Definition 4.2.9 (disallowing any loops over τ’s and local chan-

nels) cannot have been reached before. This clearly satisfies the first

disjunct of the invariant.

Rule Dev By rule inspection, Dev consumes an element from the stack

and reaches another state (potentially fresh). This satisfies the second

disjunct of the invariant.

Rule Comp By rule inspection, Comp consumes an element from the stack

but leaves the state unchanged, satisfying the second disjunct of the

invariant.

119

Chapter 4. Compensating Automata

Due to the fixed size of the automaton and a non infinite stack, the maxi-

mum number of steps is finite: given a total number of states Qm and an

initial stack size S0, the maximal number of transitions, denoted Am, is

Qm + 2Qm + S0.

Inductive case 1: an automaton with nesting Further to the previous case, D#

represents the depth of a nested configuration, andDm represents the max-

imum structural depth of the automaton.

As before the three rules Suc, Dev, and Comp can trigger through rule

Nest but this time they can transition to a nested configuration of arbitrary

depth with maximum Dm. By the inductive hypothesis, we are guaranteed

that nested configurations of nested automata can only transition a finite

number of times. Furthermore, due to the maximal depth of Dm we are

guaranteed that nesting is bounded. Note that if each transition reaches a

nested state where in turn each state is nested to the maximal depth and

so on, then the number of transitions can be calculated in terms of the

geometric series:
∑Dm
k=0DmAm(Qm

k).

By rule analysis, further to the three rules considered above, there are

three rules which can trigger on a nested automaton configuration: Nest-

Suc, NestFail, and NestComp. By rule inspection, the rules do not modify

the stack or the state except for rule NestSuc which contributes an ele-

ment to the stack. This means that at most, NestSuc can contribute Qm

elements if all states are nested and complete successfully.

Due to the fixed size of the automaton, including the bounded depth of

nesting, and a non infinite stack, the maximum number of transitions is fi-

nite. In terms of the variables being considered, the number of transitions

of a nested automaton, denoted Nm is Am +Qm +Qm
∑Dm
k=0DmAm(Qm

k).

Inductive case 2: a vector of automata A configuration vector can transition

over rule Vect, echoing other rules and contributing to the basic steps

120

Chapter 4. Compensating Automata

given in Figure 4.9. Due to the inductive hypothesis, each sub configura-

tion may take a finite number of transitions while the side conditions of

the basic steps possibly suppress transitions but cannot contribute further

transitions. Given the bounded size of the vector of automata, the number

of potential transitions is finite: taking the size of the vector to be V#, and

Nm to be the maximum number of transitions of all nested automata in the

vector, the maximal number of transitions of a vector of automata isNmV#.

Proposition 4.2.8. Given a configuration cf [L] there exists cf ′[L′] such that

cf [L]
��...�
↪−−−−−→•cf ′[L′].

Proof. By definition of rule Fail any configuration on which the rule triggers

turns from forward to backward, implying that the rule cannot trigger more

than once on a particular configuration. Since the vector of automata is finite,

then there exists a finite number of steps (possibly zero) which can lead to a

configuration.

Proposition 4.2.9. Given a configuration cf [L] there exists cf ′[L′] such that

cf [L]

eA1eA2 ...eAn
↪−−−−−−−−−−→•cf ′[L′] (∀i, j : 1..n · i , j =⇒ Ai , Aj).

Proof. By the constraint that ∀i, j : 1..n · i , j =⇒ Ai , Aj it is ensured that each

automaton can only trigger at most once. Since the vector of automata is finite,

then there exists a finite number of steps (possibly zero) which can lead to a

configuration.

Theorem 4.2.3. Compensating automata are stable.

Proof. By Definition 4.2.18 and Propositions 4.2.7 – 4.2.9 compensating aut-

omata are stable.

121

Chapter 4. Compensating Automata

4.3 Programming with Compensating Automata —

A Case Study

In the first section of this chapter we motivated the need of a monitor-oriented

compensation notation through the e-procurement case study from the litera-

ture. Now that we have presented compensating automata, we show how the

e-procurement system can be programmed as a vector of five automata shown

in Figure 4.1212. Figure 4.12(a)[top] listens for events of program R′ up to the

point where it is confirmed that at least some of the ordered goods are available.

Subsequently, Figure 4.12(a)[bottom] is triggered and installs the compensation

UnreserveGoods upon the event ReserveGoods. Next, payment and transport for

the goods available are triggered through startPayment and startTransport re-

spectively. If only some of the goods are initially available and a partial ship-

ment is going to take place, then the Figure 4.12(a)[top] iterates till all the goods

are available13. One might argue that Figure 4.12(a)[top] is useless since it is

not installing any compensations. However, note that all the compensations

which follow (in the rest of the automata) are only installed if the pattern of

its events is matched. Through such event patterns, one may distinguish the

kind of compensation required in different contexts. If the there is no need to

distinguish amongst patterns of system events, then the automaton depicted in

Figure 4.12(a)[top] is indeed useless.

Figure 4.12(b) depicts the automaton which compensates for payment. Ini-

tially a PayProc compensation is installed so that if the procurement fails before

payment is affected, any transport costs incurred (hence the local communica-

tion guards) can be collected. Note that PayProc has programmed compensation

so that if the payment for transport cancellation charges fails, an operator is no-

12The abbreviations are as follows: calc (calculate), av (available), rec (receive), canc (cancel),
req (request), purch (purchase), inv (invoice), proc (process), trans (transport), addr (address),
not (notification), ack (acknowledgement), del (delivery), gds (goods).

13To provide compensations for all iterations we use parametrised events and dynamically
trigger copies of the automata in the spirit of the Larva framework [40].

122

Chapter 4. Compensating Automata

tified. If normal payment succeeds then the PayProc compensation is replaced

by a Refund which also takes into consideration the progress of the transport

arrangement.

Figure 4.12(c) depicts the automaton which compensates for the transport ar-

rangement. In particular, if the process fails after the goods have been shipped,

then the goods are returned. If the return of the goods fails, then the return-

Failed signal communicates with Figure 4.12(a) and the UnreserveGoods comp-

ensation is discarded. Furthermore, Figure 4.12(c) also includes a deviation

which enables the procurement system to attempt to correct the address be-

fore cancelling the whole procurement — when possible cancelling the whole

transaction should be avoided as this is usually the most costly alternative both

for the e-procurement system (which effectively loses the proceeds) and for the

customer who incurs the cancellation costs.

Finally, Figure 4.12(d) is responsible for installing the transCancOk signal

and discarding it whenever it is no longer required, i.e., whenever a charge

compensation is installed. This ensures that actions listening on event tran-

sCancOk, charge get triggered and that only one of the elements is enabled.

The overall behaviour of programming the compensation manager with these

automata and applying it to system S ′′ (assuming S ′′ knows the logic corre-

sponding to UnreserveGoods, RecPay, Refund, etc.) would satisfy all the features

of the e-procurement system as presented in Section 4.1.1.

4.3.1 Other Solutions to the Case Study

We are aware of only one other approach (by Nepal et al. [87]) which offers a

solution to the e-procurement scenario. Interestingly, the approach is the com-

plete opposite of ours and proposes a model which does not differentiate be-

tween normal and exceptional behaviour, and abstracts away from the notion

of compensations. They claim that this approach, which is based on a guarded-

command language, simplifies the specification of the system. Admittedly, the

123

Chapter 4. Compensating Automata

examples given in [87] are very readable since the model is somewhat similar

to a textual specification with many statements of the form: “If this happens,

then this should happen”. The disadvantage of this approach is that the “comp-

ensation view” is lost, i.e., the relationship between an action and its comp-

ensation, the ordering of compensation execution, etc., is not visible from the

model. If such a view is not necessary for the programmer, then, indeed, this

model should be preferred. However, the compensation view has its advantages:

(i) the correspondence between actions and their compensations is useful since

one would usually require part of the system state at the time of executing the

action to be available during the execution of the compensation; (ii) compensa-

tion notations usually clearly encode sequential constraints amongst actions and

compensations — information which is useful for ensuring temporal properties.

If these advantages are important in a given context, then employing compensat-

ing automata might provide the right balance between the compensation view

and flexibility.

4.4 Related Work

There are numerous formalisations and notations [1, 9, 16, 21, 22, 24, 26, 28,

34, 49, 52, 58, 59, 62, 69, 70, 71, 72, 73, 74, 75, 78, 79, 82, 97] which support

compensations including some of which are pictorial (e.g., Petri net-based for-

malisms [62], communicating hierarchical transaction-based timed automata

(CHTTAs) [72], and BMPN [1]). There are three main features distinguishing

our work. Firstly, due to the proposed compensation design paradigm which

separates compensation concerns from other programming, compensating aut-

omata do not have operators which are not directly related to compensations

such as alternative forwarding and speculative choice (provided for example

in [21, 26]). Secondly, compensating automata provide a set of compensation-

dedicated operators which do not require the user to hand-code frequently oc-

124

C
hap

ter
4.

C
om

p
ensating

A
u

tom
ata

SendQuote?CustomerOk? CalcPrice?

SomeGoodsAv?

RecPurchOrder? AllGoodsAv?

RecQuoteReq?

RecQuoteReq?
processGoods!

processGoods!

UnreserveGoods!

ReserveGoods?
startTransport!

reserveCanc?

returnFailed?processGoods? startPayment!

reserveCanc?

(a)

Figure 4.12: The compensating automata vector for the e-procurement system (cont.)

125

C
hap

ter
4.

C
om

p
ensating

A
u

tom
ataPayProc!

PayFailed?

transCancOk?

charge? Refund!

transCancOk?

charge?

SendInv?τ

startPayment? SendReceipt?

Operator!

RecPay?

RecPay?SendInv?

PayFailed?

(b)

Figure 4.12: The compensating automata vector for the e-procurement system (cont.)

126

C
hap

ter
4.

C
om

p
ensating

A
u

tom
ata

charge! CancelA!

ArrangeTransB? RecGdsDelAck?

ArrangeTransA?

ReturnGoods!

CorrectedAddr?

UnavailableAddr?

SendGoodsNot?
startTransport?

charge! CancelB!

ShipGoods?

AddrOk?

returnFailed!

InspectionOk?GoodsReturned?

charge!

τ

(c)

Figure 4.12: The compensating automata vector for the e-procurement system (cont.)

127

C
hap

ter
4.

C
om

p
ensating

A
u

tom
ata

startTransport?

ArrangeTransB?
transCancOk!

ArrangeTransA?

GoodsReturned?

reserveCanc!

τ

(d)

Figure 4.12: The compensating automata vector for the e-procurement system

128

Chapter 4. Compensating Automata

curring patterns in compensation design (for example compensating automata

provide explicit compensation replacement as opposed to for example [24, 59]

which provide generic stack operations). Thirdly, compensating automata sup-

port the concept of a deviation which enables a business process to be partially

compensated. To the best of our knowledge this has not been proposed before

in the literature.

A formalism which is arguably similar to ours is that of CHTTAs. However,

in CHTTAs compensations are not first-class operators and are instead wired in

terms of communication channels. Furthermore, compensations in CHTTAs are

programmed in terms of patterns which do not have the unstructured nature of

automata.

In the previous chapter, we have presented a bookshop example and shown

how this can be encoded in a number of compensation formalisms. To further

illustrate how compensating automata relate to the other works, we encode the

example in terms of compensating automata and compare it to a number of

other of encodings which have been given in Section 3.3. In summary the book-

shop example consists of the following important elements:

1. The user first places an order and the compensation for the order place-

ment activity involves two parallel activities: reversing the stock decre-

ment which occurred during the order, and sending an email to the cus-

tomer with the reason for which the order has been cancelled.

2. A second element is a promotional offer which the customer can freely

refuse without affecting the outcome of the order. However, if the offer is

refused, a second offer is made. If either of the offers is taken up and the

transaction fails to go through, the offer is withdrawn.

3. Following the offer, the bookshop attempts to concurrently pack the order

and charge the customer’s credit card. If any of these activities fails, the

whole order is considered a failure and compensation starts.

129

Chapter 4. Compensating Automata

4. If both packing and payment are successful, the bookshop concurrently

initiates a booking procedure with two couriers; whichever succeeds first

is taken up while the other is terminated/cancelled.

5. Compensations are executed in reverse order of their original execution

with the concurrent compensation for concurrent execution.

Encoding this arrangement in compensating automata (shown in Figure 4.13)

is quite straight forward except for the speculative choice. Programming the

speculative choice requires a number of synchronisations which significantly

hamper the clarity of the specification. A solution to such synchronisation would

be to add syntactic sugar in the form of specialised constructs which hide the

channel communication. Another interesting detail is that to easily fit the pack-

ing and credit in the sequence, we have used a compensation scope. However,

this is not the purpose of the scoping construct. In particular note that the

the installed compensation (Unpack || Refund) is the same as the one being dis-

carded. To encode the same logic without using compensation scoping requires

a number of additional synchronisation (shown in Figure 4.14) which clutter the

specification. Again, a specialised construct through syntactic sugaring would

be useful for such patterns.

A significant difference between specifying compensations in compensating

automata as opposed to other notations is that compensating automata do not

attempt to program the forward execution of the system, but rather simply listen

to the events as the system proceeds. This separation of concerns has implica-

tions on the specifications since irrelevant system events or irrelevant event or-

derings can be ignored. For example in the specifications given in Figure 4.14,

the specified compensations would match even if courier booking occurred prior

to packing or payment. While this might not always be an acceptable compensa-

tion program — e.g., if different orderings commend different compensations

— it would avoid making the specifications unnecessarily specific. If one would

want the compensation program to match only if the expected forward order-

130

Chapter 4. Compensating Automata

ing of events is adhered to, then further synchronisation would be required as

depicted in Figure 4.15.

In what follows we compare the example encoding in compensating aut-

omata to the encodings presented in Section 3.3:

cCSP What is striking in cCSP encoding is its succinctness — a few lines long

as opposed to a significant compensating automaton. This is mostly due

to the number of specialised operators which provide a direct solution to

the standard patterns in the example. The downside of cCSP is its rigidity

in programming compensations. For instance there is no way the compen-

sations of sequential operations can be executed in parallel. Thus cCSP

is highly compact for typical compensation scenarios but very limited as

soon as the problem becomes particular such as the e-procurement sce-

nario.

StACi StACi is particularly interesting as a notation since like compensating

automata it gives scope for a lot of flexibility for handling out of the norm

scenarios. The disadvantage of programming with StACi is that it feels

more like stack programming rather than compensation programming due

to the direct stack manipulation it allows. This issue is addressed in com-

pensating automata by providing a number of high level constructs which

alleviate the user from programming low level operations.

SOCK Since SOCK is aimed at modelling choreographies, it is considerably dif-

ferent from the rest of the notations being compared. Due to this, the

encoding in SOCK highlights the interaction across the parties involved

— something which is not visible from the orchestration point of view.

The downside of this is that the visibility of communication comes at the

cost of obscuring the flow view due to the extra wiring across processes.

On a positive note, SOCK, like StACi , enables a high degree of flexibility

in compensation programming including fully customised compensation

131

C
hap

ter
4.

C
om

p
ensating

A
u

tom
ata

Unpack! Cancel1!

Courier1?

Cancel2!

Courier2? doneC!

doneC!

ok?

τ

Offer2?τ

ok?

Order?

Restock! || Email!

Withdraw!

Credit?

Refund!

Unpack! ||Refund! ok!

Cancel!

Offer1?

doneC?

Pack?

Figure 4.13: The compensating automata vector for the comparison example with synchronised compensations

132

C
hap

ter
4.

C
om

p
ensating

A
u

tom
ata

Withdraw!
compA?

Offer1?

Order?

Restock! | Email!

Offer2?τ

τ

τ Pack?

compB? Unpack!syncA? compA!

τ

syncA! CompB? Refund!

Credit?

Figure 4.14: The compensating automata vector for the comparison example with synchronised compensations (cont.)

133

C
hap

ter
4.

C
om

p
ensating

A
u

tom
ata

Cancel1!

doneC! ok?

ok?

Courier2?

Cancel!

ok!

Cancel2!

doneC?

Courier1?τ

compB!

doneC!

Figure 4.14: The compensating automata vector for the comparison example with synchronised compensations

134

C
hap

ter
4.

C
om

p
ensating

A
u

tom
ata

doneA!

compA?

τ

Withdraw!

Offer1?

Order?

Restock! | Email!

τ

Offer2?

doneB1!

Unpack! compB?

doneA?

syncA? compA!

Pack?

doneB2!

CompB? Refund! compB?

doneA? Credit?

syncA!

Figure 4.15: The compensating automata vector for the comparison example with full synchronisation (cont.)

135

C
hap

ter
4.

C
om

p
ensating

A
u

tom
ata

Courier2?

Cancel2!

Courier1?

Cancel1!

doneC?

Cancel!

ok!

compB!

ok?

compB!

doneB1?

doneB2?

doneB2?

doneB1?

ok?

doneC!

doneC!

Figure 4.15: The compensating automata vector for the comparison example with full synchronisation

136

Chapter 4. Compensating Automata

handling. Although this enables one to program highly irregular patterns,

we consider SOCK to be an extreme in this regard and offers no “default”

means of compensation which can be used in standard cases such as the ex-

ample above. The consequence is that the programmer is burdened with

the extra work and the resulting process definitions are not straightfor-

ward to understand.

CHTTAs At face value the example encoded in CHTTAs is very simple and

straightforward. However, the problem with CHTTAs is that one can-

not model all the aspects of the example and central elements such as

the speculative choice had to be completely left out. Although CHTTAs

are automata-based, they are actually programmed in a logic-like fashion

through LRT patterns meaning that the advantages attributed to automata

are lost. On the other hand, if one had to attempt programming directly

through CHTTAs, the relationship between actions and their compensa-

tions is not at all clear as explained in the review of CHTTAs given in

Section 3.3.

Distilling the above discussion and including other general observations, we

note the following advantages and disadvantages:

+ The main appeal of compensating automata is that they enable the user to

program only compensations. Indeed, while the example encoding refers

to system events, it does not affect these events, but simply listens out for

them.

+ Another significant advantage linked to the previous is that compensation

programming is free from any structure restrictions from the system pro-

gram structure. On the other hand, in the other notations, compensation

scoping is generally dictated by transaction scoping while in the case of

compensating automata this is managed by a dedicated construct.

137

Chapter 4. Compensating Automata

+ Most notations either support a fully sequential compensation strategy, a

fully parallel one, or a fixed compromise of the two. In the case of com-

pensating automata it is up to the user to decide the level of synchroni-

sation required across compensations, restricting the ordering only when

required.

+ A high degree of flexibility is also provided through the unstructured na-

ture synonymous with automata, enabling the programmer to encode choice

and repetition in a natural way.

+ Compensating automata are diagrammatic, meaning that some aspects of

the specification such as sequentiality would be more immediately visible

to the programmer.

− The flip side of the advantage of greater flexibility is that the user has to

manually program the synchronisations across compensations to enforce

an ordering.

− While a number of notations (e.g., [25, 80]) have formally defined transla-

tions to and from an industrial standard (usually BPEL [9]) this is not the

case (yet) for compensating automata.

− Another downside of compensating automata is that no model checking

techniques have been devised for them (as yet). Note that model checking

compensating automata is non-trivial since their state space is potentially

infinite due to the unbounded size of the stack.

4.5 Conclusions

Compensation concerns often crosscut other programming concerns and thus

attempting to program compensations within the main flow of a program would

138

Chapter 4. Compensating Automata

clutter the program and also limit the expressivity of compensation program-

ming. In this chapter, we have presented an alternative approach to compensa-

tion programming through a monitoring-oriented approach. In summary we

have proposed: (i) a novel compensation programming paradigm which advo-

cates complete separation of compensation concerns; (ii) a compensation pro-

gramming notation — compensating automata — which includes a new comp-

ensation construct, the deviation, used to redirect compensation; (iii) formali-

sation of the syntax and semantics of these automata; (iv) proof that compensat-

ing automata are self-cancelling, deterministic and stable when used for mon-

itoring; and (v) programming compensations for an e-procurement system —

showing compensating automata to be useful for handling non-trivial comp-

ensation logic.

A limitation of the approach presented in this chapter is that the system

has a single feedback line through which it can signal compensations. This is a

limitation when there are several different potential compensations from which

the system can choose (for example see [24]). In the next chapter we aim to lift

this limitation by using monitoring techniques to decide which compensation

should be run in the given runtime context.

139

5. Monitor-Oriented Compensation

Programming

In the previous chapter we have proposed a notation for programming two as-

pects of compensations: what — what actions need to be compensated, and how

— how the actions are to be compensated. Indeed, the vast literature of comp-

ensation programming [38] focuses on these two aspects. With this approach

we have successfully shown how a system can be alleviated from being clut-

tered with compensation logic. However, with our proposal the system is still

“compensation-aware” since it is the system which has to signal the monitor

to execute compensations. Indeed, compensation execution does not occur in a

vacuum and compensation programming must also answer the question of when

to execute compensations.

While many approaches in the literature assume that compensation execu-

tion is to be triggered upon a failure [16, 21, 22, 24, 26, 69, 70, 72, 74, 79, 97]

or through the exception handler as in the case of BPEL [9], compensation ex-

ecution might not be directly linked to system failure. For example if a user

is detected to be fraudulent, his or her actions might need to be compensated

even if the system has not failed. Similarly, in case of an order cancellation, the

system has not failed but actions might need to be compensated. Another case

in point is the automation of web services adaptation [8, 11, 30, 95, 96] which

140

Chapter 5. Monitor-Oriented Compensation Programming

might trigger compensations in response to deteriorating quality of service (not

necessarily failure).

Furthermore, the when question is further compounded if an action has more

than one possible way of being compensated. For example if a purchase or-

der is being compensated for because of a failure in the payment gateway, the

compensation might be different from the case where the user has deliberately

cancelled the purchase — the cancellation charges would need to be bore by dif-

ferent parties accordingly. Thus, a question which goes hand in hand with when

is which compensation strategy is to be executed. To the best of our knowledge

only StACi [24] explicitly supports the specification of multiple compensation

strategies. However, in StACi all four aspects of what, how, when, and which are

programmed together and moreover, the programmer also programs the sys-

tem’s (non-compensation) logic within StACi . On the other hand, in the pre-

vious chapter we have proposed a monitor-oriented language which separates

compensation programming concerns from other concerns. The same separa-

tion approach may be useful for programming the questions of when and which.

Thus contrary to StACi , we split the programming of a system with compensa-

tions into three: (i) system programming; (ii) the what and how of compensa-

tions; and (iii) the when and which of compensations. For example, consider the

case of a financial transaction system where users are carrying out transactions

while being monitored for fraud. All users’ actions may require to be compen-

sated but the timing and kind of compensation depends amongst other things

on whether the user is deemed to be fraudulent or not at the time of compen-

sating. Note that the decision of marking a user as non/fraudulent is a complex

one and orthogonal to the management of compensations.

In this chapter, we propose a complete compensation management architec-

ture (Section 5.1) which enables a user to program the compensations separately

from the rest of the system and furthermore the what and how of compensations

are programmed separately from the when and which by exploiting monitoring

141

Chapter 5. Monitor-Oriented Compensation Programming

techniques. Subsequently, in the rest of the chapter we show how our approach

has been applied to a realistic case study (Section 5.2), and how it relates to

other works in the area (Section 5.3).

5.1 Monitor-Oriented Compensation Programming

In this section we present an architecture which provides a comprehensive comp-

ensation programming architecture — alleviating a system from compensation

programming up to the point where the system need not be aware of compen-

sations. To this end, the architecture is entirely based on monitoring — hence

the term monitor-oriented compensation programming (MOCP) — and is com-

posed of two parts: (i) one which deals directly with compensation aspects such

as compensation ordering and discarding, addressing the questions of what and

how to compensate, and (ii) another which deals with triggering compensations

at particular points in time, addressing when and which compensation strategy

to execute. Note that the former is involved directly with compensation pro-

gramming while the latter simply triggers compensation strategies at particu-

lar points in time. The first component of such an architecture can be pro-

grammed using compensating automata which have been specifically devised

for such programming. On the other hand, encoding the when and which logic

of compensations can be done by any specification which can be used for run-

time verification and enables the triggering of reparatory actions. For this job

we choose DATEs [40] because they are somewhat natural to integrate with com-

pensating automata — they are also automata-based and support channel com-

munication. The two components are integrated as depicted in Figure 5.1. Note

that the proposed architecture can also be instantiated using any other suitable

specification languages.

The proposed architecture allows the monitoring components to interact

with the system through three connections: one which enables the system to

142

Chapter 5. Monitor-Oriented Compensation Programming

System

events Monitor

what and how

when and which

continue

compensations

DATEs

Comp Manager

compensate

automata
Compensating

Figure 5.1: The monitor-oriented compensation programming architecture

communicate events, another enabling the monitors to signal the system to con-

tinue, and a third one on which the compensation management component in-

structs the system regarding what compensations to execute. Furthermore, the

architecture is event-driven and each event the system emits triggers a series of

steps as follows:

1. The system emits an event and waits for the continue signal from the

compensation framework.

2. The monitor receives the system event and processes it, emitting a compen-

sate signal or a continue signal.

3. The compensation manager also receives the system event and processes

it.

4. Upon completion, the compensation manager checks whether a compensate

signal has been received from the monitor.

5. If a compensate signal has been received:

(a) The compensation manager starts emitting compensations to the sys-

tem.

(b) While the system is executing compensation instructions, the moni-

tor and compensation manager are still potentially receiving and pro-

cessing system events.

143

Chapter 5. Monitor-Oriented Compensation Programming

(c) When the compensation manager has sent all compensation instruc-

tions to the system (either the stack is exhausted or a deviation is

encountered), it checks once more for the compensate signal and if

present repeats from Point 5a. Otherwise, execution continues as be-

low.

6. The compensation manager issues a continue signal.

7. Once the system detects an active continue signal from both the monitor

and the compensation manager, the system continues normally.

While the architecture seems to show a single compensate line (Figure 5.1), in

fact this line is parametrised to enable the monitor to choose whichever comp-

ensation strategy is applicable. Similarly, although we show a single monitor,

in effect there would typically be several monitors and several compensation

managers as shown in Figure 5.2. This arrangement allows a high degree of

modularity as we aim to highlight in the next section through a case study.

cont.

Monitor

Monitor

System

events

compensations

what and how

when and which
compensate

Comp Manager

Comp Manager

Comp Manager

Figure 5.2: The parametrised monitor-oriented compensation programming ar-
chitecture

5.2 Case Study

The use of monitor-oriented compensation programming is particularly useful

when the decision to activate a compensation strategy is not straightforward.

144

Chapter 5. Monitor-Oriented Compensation Programming

One example where this is the case is a hypothetical e-procurement system1

which handles payments and shipments of goods. The e-procurement system

allows users to create virtual credit cards, load money onto the virtual credit

cards from their personal bank accounts, and transfer money across virtual

credit cards. Once the user uses money in his or her virtual credit cards to affect

a purchase from a third party, the next step would involve the e-procurement

attempting to concurrently pay the third party and book a courier on behalf of

a user.

A number of possible failures might occur causing the transaction to fail.

Cancelling a courier or reversing bank transactions usually incurs a charge and

under certain circumstances it might not be possible to cancel such operations

(e.g., when the shipment has already left). Furthermore, assuming the comp-

ensation is possible, there are at least three parties who might incur the charge:

the user, the third party involved (e.g., the courier or the bank), or the e-procure-

ment system. This means that for one courier booking transaction, there are at

least three possible compensations (corresponding to C1, C2, and C3 in Fig-

ure 5.3). Note that compensations are discarded with no replacement once the

shipment of goods occurs, i.e., the booking cannot be cancelled. Similarly, for

the banking transactions there are at least three possible compensations plus a

forth one which keeps track of the credit cards used so that these can be blocked

in case of suspicious user behaviour (corresponding to B1, B2, B3, and B4 in

Figure 5.3). Note that in this case once payment succeeds, we assume that the

money loads and transfers are not to be undone so that the user only gets the

money back after investigation.

To decide the compensation strategy, the e-procurement system classifies

users and errors so that the charge is incurred by different parties under dif-

ferent circumstances:
1Inspired from the e-procurement system presented in Section 4.1.1 and the Entropay system

presented in Section 6.6.

145

Chapter 5. Monitor-Oriented Compensation Programming

where user pays charges
(C1) Courier Compensation Manager

cancelBookingB!

chargeUser!

bookCourierA?

chargeUser!

bookCourierB?

cancelBookingA! shipGoods?

(C2) Courier Compensation Manager
where courier pays charges

cancelBookingA!
chargeCourierA!

chargeCourierB!

bookCourierA?

bookCourierB?

cancelBookingB!

shipGoods?

(C3) Courier Compensation Manager
where company pays charges

chargeCompany!

bookCourierA?

bookCourierB?

cancelBookingA!

cancelBookingB!

chargeCompany!
shipGoods?

Figure 5.3: The compensating automata vector for the e-procurement system
(cont.)

146

Chapter 5. Monitor-Oriented Compensation Programming

where user pays charges
(B1) Bank Compensation Manager

payment?

chargeUser!
undoTransfer!

transfer?

load?

undoLoad!
chargeUser!

where bank pays charges
(B2) Bank Compensation Manager

chargeBank!

transfer?

chargeBank!

load?

undoLoad!

payment?

undoTransfer!

Figure 5.3: Managing compensations for an e-procurement system (cont.)

147

Chapter 5. Monitor-Oriented Compensation Programming

(B3) Bank Compensation Manager
where company pays charges

chargeCompany!

load?

undoLoad!

payment?

transfer?

undoTransfer!

chargeCompany!

where user credit cards get blocked
(B4) Bank Compensation Manager

load?

blockCreditCard!

blockCreditCard!

transfer?

blockCreditCard!

payment?

Figure 5.3: Managing compensations for an e-procurement system

148

Chapter 5. Monitor-Oriented Compensation Programming

Classification of errors The e-procurement system policy broadly considers

three kinds of errors: a bank error, a courier error, or a user cancellation.

In the case of a user cancellation it is always the user who should pay for

cancellation charges. However, in case of a banking error, the cancellation

charges for the banking transactions are incurred by the bank while the

cancellation charges for the courier transaction are incurred by the user

or the e-procurement system depending on the type of user. A similar

approach is taken in case of a courier error. Failure detection is handled

by the two simplistic monitors depicted in Figure 5.4(a) and (b).

Classification of users Users are classified as whitelisted, greylisted, or black-

listed. Blacklisted users are suspicious users who cannot be trusted. For

this reason these users are not automatically given back their money in

case of a failure. Instead, their credit cards are blocked till after human

investigation. On the other hand, whitelisted users are trusted customers

for whom certain allowances are made such as paying cancellation charges

on their behalf. Greylisted users are users who are neither blacklisted nor

whitelisted. Each user starts off as greylisted and at a particular point in

time a designated monitor (partly shown in Figure 5.4(c)) might classify

the user as blacklisted or whitelisted.

Note that such an e-procurement strategy for handling cancellation includes

nine different compensation strategies depending on three user types and three

kinds of failure. Clearly, deciding the compensation strategy for such a scenario

is not straightforward. By separating the different aspects of compensation pro-

gramming, the decision can be taken using monitors as depicted in Figure 5.4(d)

where compensation strategies (shown in square brackets) can be composed in

parallel or sequentially depending on the case. For example in case a blacklisted

user cancels the transaction, the payment of the relevant charges should strictly

occur before the credit cards are blocked.

149

Chapter 5. Monitor-Oriented Compensation Programming

payment
fail

fail

start

failureretry

bankError!

success
payment

(a) Monitoring for bank errors.

bookCourierA/B
fail

fail

start

failureretry

courierError!

success
bookCourierA/B

(b) Monitoring for courier errors.

greylisted

whitelisted

blacklisted

white!

actions

black!

(c) Monitor for whitelisting and
blacklisting users.

UC/BL

greylisted

whitelisted
bankError?

black?

white?

blacklisted

courierError?

bankError?

courierError?

bankError?

userCanc

userCanc

courierError?

userCanc

[B3|C2]

BE/GL

CE/GL

UC/GL

CE/WL

BE/WL

UC/WL

CE/BL

[B2|C3]

[B2|C2]

[B3|C1]

[B1|C3]

[B1|C1]

[(C2|B2);B4]
BE/BL

[B3|B4|C3]

[(C2|B1);B4]

(d) Receiving signals for other monitors and triggering
compensation strategies.

Figure 5.4: Monitoring for triggering compensations for an e-procurement sys-
tem

150

Chapter 5. Monitor-Oriented Compensation Programming

5.3 Related Work

Monitor-oriented programming (MOP) [84] has been proposed as a program-

ming paradigm advocating separation of concerns through monitoring. Some-

what analogous to aspect-oriented programming in principle, it differs in that

matching occurs through the satisfaction of a formal logic formula rather than

over source code pattern matching. Inspired by MOP, we propose monitor-

oriented compensation programming (MOCP) where monitors are used for a

specific kind of programming, i.e., compensation programming. Compensation

programming can be split in the programming of four elements: (i) what — what

system actions to compensate for; (ii) how — how to compensate for the desig-

nated system actions; (iii) when — when to start compensating; and (iv) which

— which compensation strategy is chosen if there are more than one way of com-

pensating an action. A fundamental difference between MOP and MOCP is that

while MOP matches a pattern to decide when to execute a particular logic, in our

case MOCP is concerned not only with the when but also with the how since com-

pensations are programmed on-the-fly while monitoring. MOCP achieves this

added expressivity by combining two automata specifications: compensating

automata providing the what and how aspects and DATEs providing the when

and which elements.

In the areas of autonomous adaptation and self-healing a lot of related work

[8, 11, 30, 42, 50, 60, 85, 95, 96, 100] has been done in the context of the service-

oriented architecture. Of these approaches only [8, 11, 30, 95, 96, 100] support

the possibility of executing compensations. These works (with the exception of

AO4BPEL [30]) provide a policy language which is able to separate exception

handling (and compensation) concerns from the normal business logic but the

policy language itself does not go into the details of compensation program-

ming. In other words, the policy language enables a user to specify what and

when to compensate but they do not provide explicit support of specifying how

to compensate. These approaches are referred to as ‘policy languages’ in Ta-

151

Chapter 5. Monitor-Oriented Compensation Programming

ble 5.1. On the other hand, AO4BPEL provides an aspect-oriented framework

which enables the programming of crosscutting concerns such as compensation

programming. However, the language does not provide explicit support for pro-

gramming compensations and is thus left out of Table 5.1.

Most theoretical frameworks which support the specification of compensa-

tions [1, 16, 21, 22, 34, 49, 52, 58, 59, 62, 69, 70, 71, 72, 73, 74, 75, 78, 79, 82, 97]

(referred to as ‘theoretical frameworks’ in Table 5.1), enable the user to specify

what and how to compensate but the compensation is activated automatically

upon an external failure/signal. On the contrary, other approaches including

BPEL and cCSP [9, 26, 28] go further to also enable the user to programmatically

invoke the compensation activation, i.e., deciding when to execute the installed

compensations. For example in the case of BPEL, compensation is optionally

invoked from the exception handler enabling full user control of whether or not

to execute compensations.

StACi [24] gives full control to the user and several compensation strategies

can be programmed concurrently (each with an individual compensation stack)

and subsequently the user is allowed to program when to run which compensa-

tion stack. This means that StACi supports all four aspects of compensation pro-

gramming which are supported by MOCP. However, MOCP differs from StACi

in two fundamental ways: (i) MOCP clearly separates compensation specifica-

tion from compensation activation concerns: with compensating automata able

to specify what and how while DATEs can be used for specifying when and which.

We believe that this separation makes compensation programming more man-

ageable. (ii) Furthermore, MOCP is a monitor-based approach and thus sepa-

rates compensation concerns from the other concerns. On the other hand, StACi

requires the programmer to not only program all four aspects of compensation

programming but also program the rest of the system concerns including excep-

tion handling. Table 5.1 summarises the capabilities of the reviewed compensa-

tion programming approaches.

152

Chapter 5. Monitor-Oriented Compensation Programming

System
Compensation

what how when which

Compensating
Automata

3 3

DATEs 3 3

MOCP 3 3 3 3

Policy Languages 3 3

Theoretical
Frameworks

3 3 3

BPEL, cCSP 3 3 3 3

StACi 3 3 3 3 3

Table 5.1: Compensation specification approaches vs. expressivity

5.4 Conclusion

While compensation programming is frequently understood to answer the ques-

tions of what and how to compensate, in more complex scenarios, it is also not

straightforward to decide when to trigger compensation strategies, and if there

are more than one strategy, which strategy to execute. Thus the problem of pro-

gramming complex compensations can be split up into two main aspects: the

what and how of compensations, dealing directly with programming what ac-

tions to use as compensations, and the when and which of compensations which

manages the interplay of normal execution and compensation execution.

In the future we aim to implement our approach and apply it to the case

study discussed in this chapter where a number of different compensation strate-

gies would need to be maintained concurrently and executed under different

contexts. A possible optimisation is to discard compensation strategies which

will surely not be used. Taking the example of the case study, as soon as a user

is classified as whitelisted, compensation strategies B2, B4, and C2 can be dis-

carded, saving the memory and the time to maintain them.

153

Part III

Compensations for Runtime
Verification

This part gives an account of how compensa-

tions can be useful in the context of monitoring,

providing the foundational theory, an architec-

ture embodying it, and its application to a real-

life industrial case study.

154

6. Compensation-Based

System-to-Monitor Synchronisation

A major concern for the adoption of runtime verification is the inherent over-

head that this introduces to the system, with numerous works of research at-

tempting to alleviate this problem particularly through optimisations [10, 17,

19, 48]. While these have been generally successful in reducing the overheads,

the problem still hinders adoption by industry as has been confirmed by our

experience with the financial transactions industry. The issue is further com-

pounded by the fact that, with possibly few exceptions, existing industrial sys-

tems have not been designed with runtime verification in mind and thus no

allowance is made for the associated overheads.

One extreme option to address the industry’s concern is to adopt asynchro-

nous runtime verification which is virtually non-intrusive given that all system

events are usually logged in a database anyway. Subsequently, monitoring can

take place on a separate address space without consuming precious system re-

sources. Pure asynchronous monitoring can be depicted as in Figure 6.1, consist-

ing of a system recording events (represented by a circle as in a cassette deck) in

a database and subsequently, the monitor plays back (represented by a triangle)

the events to check correctness. Note that the system head can move forward

without waiting for the monitor head to keep up.

155

Chapter 6. Compensation-Based System-to-Monitor Synchronisation

Trace

System

Monitor

a ex n s o vc z r a v

Figure 6.1: Asynchronous monitoring

The main disadvantage of asynchronous monitoring, is that by the time the

monitor detects a violation, the system would have probably already progressed,

making it hard for the monitor to take effective reparatory actions. This limita-

tion can be alleviated, however, if one can synchronise the system to the monitor.

Since the monitor cannot consume further events upon detecting a violation,

synchronisation can be achieved by “reversing” the system state till the point

where the violation occurred. For this reason we propose to use compensations

as a means of synchronisation since these are effectively logical reverses of sys-

tem actions.

In this context, we present an architecture which enables an asynchronous

monitor to achieve synchrony through compensations, thus allowing the moni-

tor to take corrective actions. This approach is particularly suitable for systems

such as online transaction systems which usually have inbuilt compensation

frameworks which can be exploited for monitor synchronisation. Interestingly,

in such systems, fine-grained compensations, in particular circumstances, have

to be discarded and replaced by coarser-grained ones. For example, if a fraud

has been detected when it is too late to reverse the related purchases, it might be

enough to block the offending user’s account. Using a box to represent stopping

the system, a backward triangle to represent compensations, and double back-

ward triangle to represent coarse-grained compensations, Figure 6.2 depicts the

proposed monitoring architecture.

Due to the runtime nature of runtime verification, the choice between syn-

156

Chapter 6. Compensation-Based System-to-Monitor Synchronisation

Trace

System

Monitor

a ex n s o vc z r a v

Figure 6.2: The proposed architecture

chronous and asynchronous monitoring might vary depending on the runtime

context at hand. For example one might want to generally use synchronous

monitoring but switch to asynchrony when the system load is high. Similarly,

but more fine-grained, one might prefer untrusted users to be monitored syn-

chronously while trusted users are monitored asynchronously without experi-

encing any service deterioration due to monitoring. To this end, it is desirable

that the system can synchronise and desynchronise on-the-fly by “pausing” to

wait for the monitor to keep up and “unpausing” to continue executing, shown

in Figure 6.2 as the rightmost button with a diagonal signifying the two actions.

In order to be able to reason about compensation-aware monitoring, and its

correctness relative to regular monitoring strategies, we start by characterising

synchronous and asynchronous monitoring. In the synchronous version, it is

assumed that the system and monitor perform a handshake to synchronise upon

each event. In contrast, in the asynchronous approach, the events the system

produces are stored in a buffer, and consumed independently by the monitor,

which may thus lag behind the system. We then define a compensation-aware

monitoring strategy, which monitors asynchronously, but makes sure to undo

any system behaviour which has taken place after the event which led to failure.

157

Chapter 6. Compensation-Based System-to-Monitor Synchronisation

6.1 Synchronous and Asynchronous Monitoring

To enable reasoning about system behaviour and compensations, we will be talk-

ing about finite strings of events. Given an alphabet Σ, we will write Σ∗ to rep-

resent the set of all finite strings over Σ, with ε denoting the empty string. We

will use variables a, b to range over Σ, and v, w to range over Σ∗. We will also as-

sume action τ indicating internal system behaviour, which will be ignored when

investigating the externally visible behaviour with Γ = {τ} (cf. Definition 3.4.1).

We will write Στ to refer to the alphabet consisting of Σ∪ {τ} and since we will

not distinguish amongst strings with τ we overload w to also range over Σ∗τ .

We will assume a labelled transition system semantics over alphabet Σ for

both system and monitor. Given a class of system states S, we will assume the

semantics −→sys ⊆ S ×Σ×S, and similarly a relation −→mon over the set of monitor

states M. We also assume a distinct system state, � ∈ S, identifying a stopped

system, and a monitor state, ⊗ ∈ M, denoting a monitor which has detected

failure. Both � and ⊗ are assumed to have no outgoing transitions.

Using standard notation, we will write σ
a−→sysσ

′ (resp. m
a−→monm

′) as short-

hand for (σ,a,σ ′) ∈ −→sys (resp. (m,a,m′) ∈ −→mon). We write
w
=⇒sys and

w
=⇒mon to

denote the reflexive transitive closure of −→sys and −→mon respectively.

Definition 6.1.1. The transition system semantics of the synchronous compo-

sition of a system and monitor is defined over S ×M using the rules given in

Figure 6.3. The rule Sync defines how the system and monitor can take a step to-

gether, while SyncErr handles the case when the monitor discovers an anomaly.

A state (σ,m) is said to be (i) suspended if σ = �; (ii) faulty if m = ⊗; and (iii) sane

if it is not suspended unless faulty (σ = � =⇒ m = ⊗).

The set of traces generated through the synchronous composition of system

σ and monitor m, written traces‖(σ,m) is defined as follows:

traces‖(σ,m) = {w | ∃(σ ′,m′) · (σ,m)
w
=⇒‖(σ ′,m′)}

�

158

Chapter 6. Compensation-Based System-to-Monitor Synchronisation

Synchronous Monitoring

Sync

σ
a−→sysσ

′, m
a−→monm

′

(σ,m)
a−→‖(σ ′,m′)

m′ , ⊗ SyncErr

σ
a−→sysσ

′, m
a−→mon⊗

(σ,m)
a−→‖(�,⊗)

Asynchronous Monitoring

AsyncS

σ
a−→sysσ

′

(σ,w,m)
a−→9(σ ′,wa,m)

AsyncM

m
a−→monm

′

(σ,aw,m)
τ−−→9(σ,w,m′)

AsyncErr

(σ,w,⊗)
τ−−→9(�,w,⊗)

σ , �

Figure 6.3: Semantics of synchronous and asynchronous monitoring

Example 6.1.1. Consider a system σ over alphabet {a,b} and a monitor m which

consumes an alternation of a and b events starting with a i.e., abab . . . but breaks

upon receiving any other pattern. The synchronous composition of the system

and monitor takes a step if and only if both the system and the monitor can take

a step on the given input. Therefore, if the system performs event a, the system

and the monitor can both perform a step: (σ,m)
a−→‖(σ ′,m′). If system σ performs

b instead, the system would break: (σ,m)
b−→‖(�,⊗).

Proposition 6.1.1. A sequence of actions is accepted by the synchronous compo-

sition of a system and a monitor, if and only if it is accepted by both the monitor

and the system acting independently. Provided that m′ , ⊗, then

(σ,m)
w
=⇒‖(σ ′,m′), if and only if σ

w
=⇒sysσ

′ and m
w
=⇒monm

′.

Proof. The proof follows by string induction on w and by application of rule

Sync.

In contrast to synchronous monitoring, asynchronous monitoring enables the

system and the monitor to take steps independently of each other. The state

of asynchronous monitoring also includes an intermediate buffer between the

159

Chapter 6. Compensation-Based System-to-Monitor Synchronisation

system and the monitor so as not to lose events emitted by the system which are

not yet consumed by the monitor.

Definition 6.1.2. The asynchronous composition of a system and a monitor,

is defined over S × (Στ)∗ ×M, in terms of the three rules given in Figure 6.3.

Rule AsyncS allows progress of the system adding the events to the intermedi-

ate buffer, while rule AsyncM allows the monitor to consume events from the

buffer. Finally rule AsyncErr suspends the system once the monitor detects an

anomaly. Suspended, faulty and sane states are defined as in the case of syn-

chronous monitoring by ignoring the buffer.

The set of traces accepted by the asynchronous composition of system σ and

monitor m, written traces9(σ,m) is defined as follows:

traces9(σ,m) = {w | ∃(σ ′,w′,m′) · (σ,ε,m)
w
=⇒9(σ ′,w′,m′)}

�

Example 6.1.2. Taking the same example as before, upon each step of the sys-

tem an event is added to the buffer; e.g., if the system starts with an event b,

the resulting configuration would have b in the buffer with no change to m:

(σ,ε,m)
b−→9(σ ′,b,m). Subsequently, the system may either continue further, or

the monitor can consume the event from the buffer and fail:

(σ ′,b,m)
τ−−→9(σ ′, ε,⊗). At this stage the system can still progress further until it

is stopped by the rule AsyncErr:

(σ,ε,m)
b−→9(σ ′,b,m)

τ−−→9(σ ′, ε,⊗)
b−→C(σ ′′,b,⊗)

τ−−→9(�,b,⊗)

6.2 Compensation-Aware Monitoring

When monitoring is used to execute steering (reparation) code upon an anomaly

detection, such code would typically be assumed to be executed on the system at

the point of violation. In the case of synchronous monitoring the violation time

and the detection time are always equal. However, as depicted in Figure 6.4,

this is not necessarily the case for asynchronous monitoring — the system can

160

Chapter 6. Compensation-Based System-to-Monitor Synchronisation

proceed beyond an anomaly before the monitor detects the problem and stops

the system. Unfortunately, reparations intended for being executed at violation-

time might not necessarily be applicable at detection time e.g., due to the error,

some files which the reparation attempts to fix have been deleted. Thus, we

enrich asynchronous monitoring with compensation handling so as to ‘undo’

actions which the system has performed after an error is detected. Through this

technique, the detection-time system state is virtually reverted to the violation-

time system state — implying that the steering code which was meant for execu-

tion at the time of the violation would still be applicable to the time of detection.

System

sc z r v r x

Monitor Monitor

o vaTrace

Violation Time

a ex n s o vc z r a v

System

Detection Time

a ex n

Figure 6.4: Violation time vs. detection time

Compensation-Aware Monitoring

Comp

(�,wa,⊗)
a−→C(�,w,⊗)

Figure 6.5: Semantics of compensation-aware monitoring

Definition 6.2.1. Compensation-aware monitoring semantics −→C are identical

to asynchronous monitoring rules, but include an additional rule, Comp, which

performs a compensating action for each action still lying in the buffer once the

monitor detects an anomaly (Figure 6.5).

The set of traces generated through the compensation-aware composition of

system σ and monitor m, written tracesC(σ,m), is defined as follows:

tracesC(σ,m) = {w | ∃(σ ′,m′) · (σ,ε,m)
w
=⇒C(σ ′, ε,m′)}

161

Chapter 6. Compensation-Based System-to-Monitor Synchronisation

Sane, suspended and faulty states are defined as in synchronous and asynchro-

nous monitoring. �

Example 6.2.1. Consider another instance of the system and monitor from the

previous example where the monitor has detected a violation and the system

has stopped but two actions are still in the buffer:

(σ,ε,m)
b−→C(σ ′,b,m)

b−→C(σ ′′,bb,m)
τ−−→C(σ ′′,b,⊗)

a−→C(σ ′′′,ba,⊗)
τ−−→C(�,ba,⊗)

In order to synchronise the system with the monitor, compensation actions are

executed for the actions remaining in the buffer in reverse order:

(�,ba,⊗)
a−→C(�,b,⊗)

b−→C(�, ε,⊗)

Proposition 6.2.1. States reachable (under synchronous, asynchronous and com-

pensation-aware monitoring) from a sane state are themselves sane. Similarly,

for suspended and faulty states.

Proof. The proof follows by string induction and rule-by-rule analysis.

Strings accepted by compensation-aware monitoring can be shown to follow

a regular pattern. Note that the pattern varies depending on whether the system

has been suspended or not. Thus, the following lemma considers two patterns

and shows that the monitoring outcome follows each patterns depending on the

state of the monitor.

Lemma 6.2.1. For an unsuspended state (σ,ε,m), if (σ,ε,m)
w
=⇒C(�,v,⊗), then

there exist some w1,w2 ∈ Σ∗ such that the following three properties hold:

(i) w =x w1w2w2; (ii) m
w1
==⇒mon⊗; (iii) ∃σ ′′ · σ

w1vw2
=====⇒sysσ

′′.

Similarly, for an unsuspended state (σ,ε,m), if (σ,ε,m)
w
=⇒C(σ ′,v,m′) (with

σ ′ , �), then there exists w1 ∈ Σ∗ such that the following three properties hold:

(i) w =x w1; (ii) m
w1
==⇒monm

′; (iii) σ
w1v
===⇒sysσ

′.

162

Chapter 6. Compensation-Based System-to-Monitor Synchronisation

Proof. The proof of the lemma is by induction on string w.

For the base case, with w = ε, we consider the two possible cases separately:

• Given that (σ,ε,m)
ε
=⇒C(�,v,⊗), it follows immediately that σ = �, v = ε and

m = ⊗, and all three statements follow immediately.

• Alternatively, if (σ,ε,m)
ε
=⇒C(σ ′,v,m′), it follows immediately that σ = σ ′,

v = ε and m = m′. By taking w1 = ε, all three statements follow immedi-

ately.

Assuming the property holds for a string w, we proceed to prove that it holds

for a string wa.

By analysis of the transition rules, there are four possible ways in which the final

transition can be produced:

(a) Using the rule AsyncErr: (σ,ε,m)
w
=⇒C(σ ′,v,⊗)

τ−−→C(�,v,⊗).

(b) Using the rule CompB: (σ,ε,m)
w
=⇒C(�,va,⊗)

a−→C(�,v,⊗).

(c) Using the rule AsyncS : (σ,ε,m)
w
=⇒C(σ ′′,v,m′)

a−→C(σ ′,va,m′).

(d) Using the rule AsyncM : (σ,ε,m)
w
=⇒C(σ ′, av,m′′)

τ−−→C(σ ′,v,m′).

The proofs of the four possibilities proceed similarly:

Case (a):

(σ,ε,m)
w
=⇒C(σ ′,v,⊗)

τ−−→C(�,v,⊗)

By the inductive hypothesis, it follows that there exists w′1 such that:

(i) w =x w′1v; (ii) m
w′1
==⇒mon⊗; (iii) σ

w′1v
===⇒sysσ

′.

We require to prove that there exist w1 and w2 such that:

(i) wτ =x w1vw2w
′
2; (ii) m

w1
==⇒mon⊗; (iii) ∃σ ′′ · σ

w1vw2
=====⇒sysσ

′′.

Taking w1 = w′1 and w2 = ε, statement (i) can be proved as follows:

163

Chapter 6. Compensation-Based System-to-Monitor Synchronisation

wτ

{ By statement (i) of the inductive hypothesis and =x }

=x w′1v

{ By definition of composition of strings and cancellation }

= w′1vεε

{ By choice of w1 and w2 }

= w1vw2w2

Statement (ii) follows immediately from statements (ii) of the inductive

hypothesis and the fact that w1 = w′1. Similarly, from statement (iii) of the

inductive hypothesis, σ
w′1v
===⇒sysσ

′, it follows by definition ofw1 andw2, that

σ
w1vw2
=====⇒sysσ

′′.

Case (b):

(σ,ε,m)
w
=⇒C(�,va,⊗)

a−→C(�,v,⊗)

By the inductive hypothesis, it follows that there existw′1 andw′2 such that:

(i) w =x w′1vaw
′
2w
′
2; (ii) m

w′1
==⇒mon⊗; (iii) ∃σ ′′ · σ

w′1vaw
′
2

======⇒sysσ
′′.

We require to prove that there exist w1 and w2 such that:

(i) wa =x w1vaw2w2; (ii) m
w1
==⇒mon⊗; (iii) ∃σ ′′ · σ

w1vw2
=====⇒sysσ

′′.

Taking w1 = w′1 and w2 = aw′2, statement (i) can be proved as follows:

164

Chapter 6. Compensation-Based System-to-Monitor Synchronisation

wa

{ By statement (i) of the inductive hypothesis }

=x w′1vaw
′
2w
′
2a

{ By definition of compensation of strings }

= w′1vaw
′
2aw

′
2

{ By choice of w1 and w2 }

= w1vw2w2

Statement (ii) follows immediately from statements (ii) of the inductive

hypothesis and the fact that w1 = w′1. Similarly, from statement (iii) of the

inductive hypothesis, σ
w′1vaw

′
2

======⇒sysσ
′, it follows by definition of w1 and w2,

that σ
w1vw2
=====⇒sysσ

′.

Case (c):

(σ,ε,m)
w
=⇒C(σ ′′,v,m′)

τ−−→C(σ ′,va,m′)

By the inductive hypothesis, it follows that there exist w′1 such that:

(i) w =x w′1v; (ii) m
w′1
==⇒monm

′; (iii) σ
w′1v
===⇒sysσ

′′.

We require to prove that there exist w1 such that:

(i) wa =x w1va; (ii) m
w1
==⇒monm

′; (iii) σ
w1va
====⇒sysσ

′.

Taking w1 = w′1, statement (i) can be proved as follows:

wa

{ By statement (i) of the inductive hypothesis }

=x w′1va

{ By choice of w1 }

= w1va

165

Chapter 6. Compensation-Based System-to-Monitor Synchronisation

Statement (ii) follows immediately from statements (ii) of the inductive

hypothesis and the fact that w1 = w′1. Similarly, from statement (iii) of

the inductive hypothesis, σ
w′1v
===⇒sysσ

′′, it follows by definition of w1 and the

application of rule AsyncS , that σ
w1va
====⇒sysσ

′.

Case (d):

(σ,ε,m)
w
=⇒C(σ ′, av,m′′)

a−→C(σ ′,v,m′)

By the inductive hypothesis, it follows that there exists w′1 such that:

(i) w =x w′1av; (ii) m
w′1
==⇒monm

′′; (iii) σ
w′1av
====⇒sysσ

′.

We require to prove that there exists w1 such that:

(i) wτ =x w1v; (ii) m
w1
==⇒monm

′; (iii) σ
w1v
===⇒sysσ

′.

Taking w1 = w′1a, statement (i) can be proved as follows:

wτ

{ By statement (i) of the inductive hypothesis }

=x w′1av

{ By choice of w1 }

= w1v

Statement (ii) follows from statement (ii) of the inductive hypothesis, the

application of rule AsyncM , and the fact that w1 = w′1a.

Statement (iii) follows immediately from statement (iii) of the inductive

hypothesis, σ
w′1
==⇒sysσ

′, and the fact that w1 = w′1a.

We can now prove that under perfect compensations, synchronous monitoring

is equivalent to compensation-aware monitoring. Informally, given that com-

166

Chapter 6. Compensation-Based System-to-Monitor Synchronisation

pensations cancel out with their corresponding actions, the allowed system be-

haviour under synchronous monitoring is equivalent to that under asynchro-

nous monitoring with compensation execution. This result ensures that comp-

ensation triggering as defined in the semantics is sane i.e., the triggered compen-

sations precisely cancel out the system actions carried out beyond the violation

— no more and no less.

Theorem 6.2.1. Given a sane system and monitor pair (σ,m), the set of traces

produced by synchronous monitoring is cancellation-equivalent to the set of

traces produced through compensation-aware monitoring:

traces‖(σ,m) =c tracesC(σ,m).

Proof. To prove that traces‖(σ,m) ⊆c tracesC(σ,m), we note that every synchro-

nous transition (σ ′,m′)
a−→‖(σ ′′,m′′), can be emulated in two or three steps by

the compensation-aware transitions (three are required when the monitor fails),

(σ ′,v,m′)
aτ∗
==⇒C(σ ′′,v,m′′), leaving the buffer intact:

Case (m′′ , ⊗): (σ ′,m′)
a−→‖(σ ′′,m′′) can be emulated by (σ ′, ε,m′)

a−→C(σ ′′, a,m′),

followed by (σ ′′, a,m′)
τ−−→C(σ ′′, ε,m′′).

Otherwise: (σ ′,m′)
a−→‖(σ ′′,⊗) can be emulated by (σ ′, ε,m′)

a−→C(σ ′′, a,m′), followed

by (σ ′′, a,m′)
τ−−→C(σ ′′, ε,⊗), followed by (σ ′′, ε,⊗)

τ−−→C(�, ε,⊗).

Using this fact, and induction on string w, one can show that if

(σ,m)
w
=⇒‖(σ ′,m′), then (σ,ε,m)

v
=⇒C(σ ′, ε,m′), withw =x v. Hence, traces‖(σ,m) ⊆c

tracesC(σ,m).

Proving it in the opposite direction (tracesC(σ,m) ⊆c traces‖(σ,m)) is more in-

tricate.

By definition, if w ∈ tracesC(σ,m), then (σ,ε,m)
w
=⇒C(σ ′, ε,m′). We separately

consider the two cases of (i) σ ′ = �, and (ii) σ ′ , �.

167

Chapter 6. Compensation-Based System-to-Monitor Synchronisation

• When the final state is suspended (σ ′ = �):

(σ,ε,m)
w
=⇒C(�, ε,m′)

{ By sanity of initial state and Proposition 6.2.1 }

=⇒ (σ,ε,m)
w
=⇒C(�, ε,⊗)

{ By Lemma 6.2.1 }

=⇒ ∃w1,w2 ·w =x w1w2w2 ∧m
w1
==⇒mon ⊗∧∃σ ′′ · σ

w1w2
====⇒sysσ

′′

{ By Proposition 6.1.1 }

=⇒ ∃w1,w2 ·w =x w1w2w2 ∧∃σ ′′′ · (σ,m)
w1
==⇒‖(σ ′′′,⊗)

{ By definition of traces‖ }

=⇒ ∃w1,w2 ·w =x w1w2w2 ∧w1 ∈ traces‖(σ,m)

{ By Proposition 3.4.2 }

=⇒ ∃w1 ·w =c w1 ∧w1 ∈ traces‖(σ,m)

• When the final state is not suspended (σ ′ , �):

(σ,ε,m)
w
=⇒C(σ ′, ε,m′)

{ By Lemma 6.2.1 }

=⇒ ∃w1 ·w =x w1 ∧m
w1
==⇒monm

′ ∧ σ
w1
==⇒sysσ

′

{ By Proposition 6.1.1 }

=⇒ ∃w1 ·w =x w1 ∧ (σ,m)
w1
==⇒‖(σ ′,m′)

{ By Definition of traces‖ }

=⇒ ∃w1 ·w =x w1 ∧w1 ∈ traces‖(σ,m)

{ By the alphabet of synchronous monitoring }

=⇒ ∃w1 ·w =c w1 ∧w1 ∈ traces‖(σ,m)

168

Chapter 6. Compensation-Based System-to-Monitor Synchronisation

Hence, in both cases it follows that:

w ∈ tracesC(σ,m) =⇒ ∃w1 ·w =c w1 ∧w1 ∈ traces‖(σ,m)

From which we can conclude that:

tracesC(σ,m) ⊆c traces‖(σ,m)

6.3 Compensation Scopes

The compensations we have used in the previous section undo all extra actions

taken after an error has occurred. To avoid additional complexity arising from

compensation programming, we assumed that each action has a unique comp-

ensation, independent of its context. Unfortunately, this approach is simplistic

and in real-life situations an action may have different compensations depend-

ing on what occurred before or after the action e.g., if an account has been closed

after a transfer, then its compensation should not attempt to transfer back the

funds. Enhancing the architecture to handle such scenarios is not straightfor-

ward. However, one scenario frequently occurring in compensations is that ac-

tions which form part of a transaction become locked and impossible to com-

pensate for once the transaction is closed. For example, an online order may be

split into a series of transfers of funds between accounts involving the buyer,

the seller, the courier company, and possibly different banks. Failure during the

transaction should lead to the previous actions to be undone. However, once

the full order is processed, none of the subparts of the transaction should be

undone. To address this issue, we develop an extension of compensation-aware

monitoring to handle compensation-scoping.

To handle compensation scopes, we will allow the system to perform two

special actions: $ to open a scope, and % to close the most recently opened

scope. These two symbols will be considered as part of the alphabet Σ and we

will assume that the system will always produce proper scope markers — at

169

Chapter 6. Compensation-Based System-to-Monitor Synchronisation

no point will it have produced more% than $. To handle scope opening and

closing, the cancel(·) function definition is extended to drop all $,% symbols.

Definition 6.3.1. We say that a string over such an alphabet (including scope

markers) is well-scoped if every prefix has no more close scope markers than

open scope ones. A string w is said to be balanced, written balanced(w), if it

contains an equal number of open and close scope markers, and all prefixes are

well-scoped. �

Example 6.3.1. To illustrate the use of scopes with compensation-aware moni-

toring, we look at different system traces with errors captured on prefixes by the

monitor, indicating the expected behaviour of the recovery mechanism upon

error discovery:

1. If the system performed ab$cd%e (with each single letter indicating an ac-

tion) by the time the monitor discovered a problem after executing action

a, the compensation mechanism must compensate for b$cd%e. However,

the scope $cd% cannot be undone, meaning that we will compensate by

performing eb.

2. If the system has, however, performed ab$cd by the time the monitor dis-

covered a problem after executing action a, the compensation mechanism

will compensate for b$cd by performing dcb.

3. To look at the use of subscopes, if the system’s behaviour at the point in

time when the monitor discovers an error is abcdef%g, the behaviour

within the subscope $ef% will not be compensated for since the context

is closed. However, the outer scope, which is not yet closed, will allow for

compensation of actions a, b, c, d and g, depending on the point of the

trace where the error is discovered.

4. Now consider a prefix trace ab$cd%ef $g of the system’s behaviour the

moment an error is discovered by the monitor after consuming ab$c. The

170

Chapter 6. Compensation-Based System-to-Monitor Synchronisation

actions left in the buffer which have to be compensated for are d%ef $g.

Since the second scope has not been closed, we will compensate for ef g by

performing gf e. Should action d be compensated for? If d is compensated,

we may run into problems since the scope closure indicates that resources

may no longer be available. The compensation for d, should thus not be

triggered, since it appears within a closed scope.

Definition 6.3.2. Given a trace of actions t, we define strip(t) to be the same trace

but removing away all actions occurring within closed scopes and any remaining

open scope markers. We define strip(w) to be the shortest string for which there

are no further reductions of the form:

strip(w1$w%w2) = strip(w1w2) where balanced(w)

strip(w1$w2) = strip(w1w2) where% does not appear in w2

strip(w1%w2) = strip(w2) where $does not appear in w1

Strings w and w′ are said to be scope-cancellation-equivalent, written w =sc w
′,

if they reduce via compensation cancellation and scope stripping to the same

string: strip(w) =c strip(w′). As before, we define what it means for a set of

strings to be included in set W ′ up-to-scope-cancellation, written W ⊆sc W
′, and

set equality up-to-scope-cancellation, written W =sc W
′. �

Scope stripping is well-defined and cancels with compensation:

Proposition 6.3.1. Scope stripping strip is a well-defined function over the do-

main of well-scoped strings. Furthermore, w strip(w) =sc ε.

Proof. The proof follows by string induction on w.

To handle scopes in compensations, we adopt the addition of three rules (given

in Figure 6.6) to the compensation-aware monitoring semantics. In the first

two cases, whenever a scope closure% is found in the buffer, the whole scope

171

Chapter 6. Compensation-Based System-to-Monitor Synchronisation

is removed before proceeding (considering separately whether or not the scope

was opened before the error was discovered). In the third case, whenever a scope

open symbol $ is found, it is simply discarded, since it represents a scope which

was opened but not closed by the time the error was identified.

CloseScopeM
(�,w% ,⊗)

τ−→SC (�,w′,⊗)
w% = w′$w′′% with balanced(w′′)

CloseScope

(�,w% ,⊗)
τ−→SC (�, ε,⊗)

$does not appear in w

OpenScope

(�,w$,⊗)
τ−→SC (�,w,⊗)

Figure 6.6: Semantics of scoped monitoring

The state sanity-preservation result of Proposition 6.2.1, also holds for scope

compensation-aware monitoring.

Proposition 6.3.2. States reachable through scope compensation-aware moni-

toring from a sane state are themselves sane. Similarly, for suspended and faulty

states.

To prove that the modified system is still correct, we need a stronger version of

Lemma 6.2.1, which caters for complete contexts which will be discarded when

compensations are triggered:

Lemma 6.3.1. For an unsuspended state (σ,ε,m), if (σ,ε,m)
w

=⇒SC (�,v,⊗), then

there exist some w1,w2 ∈ Σ∗ such that the following three properties hold:

(i) w =x w1vw2strip(w2) with balanced(()w2); (ii) m
w1
==⇒mon⊗;

(iii) ∃σ ′′,v′ · σ
w1v

′w2
======⇒sysσ

′′ ∧ v = strip+(v′) (strip+ signifies one or more applica-

tions of strip).

Similarly, for an unsuspended state (σ,ε,m), if (σ,ε,m)
w
=⇒C(σ ′,v,m′) (with

σ ′ , �), then there exists w1 ∈ Σ∗ such that the following three properties hold:

(i) w =x w1v; (ii) m
w1
==⇒monm

′; (iii) σ
w1v
===⇒sysσ

′.

172

Chapter 6. Compensation-Based System-to-Monitor Synchronisation

Proof. The proof of Lemma 6.3.1 is almost identical to that of Lemma 6.2.1, but

taking into account the rules CloseScopeM , CloseScope, and OpenScope.

Case rule CloseScopeM : (σ,ε,m)
w
=⇒C(�,v′% ,⊗)

τ−−→C(�,v,⊗)

where v′% = v$v′′% with balanced(v′′)

By the inductive hypothesis, it follows that there existw′1 andw′2 such that:

(i) ∃v1 · v′% = strip+(v1). (ii) w =x w′1v1%w
′
2strip(w′2);

(iii) m
w′1
==⇒mon⊗; (iv) ∃σ ′′ · σ

w′1v1w
′
2

======⇒sysσ
′′.

We require to prove that there exist w1 and w2 such that:

(i) ∃v2 · v = strip+(v2). (ii) wa =x w1v2w2strip(w2);

(iii) m
w1
==⇒mon⊗; (iv) ∃σ ′′ · σ

w1v2w2
======⇒sysσ

′′.

Taking v2 = v1, statement (i) can be proved as follows:

{ By rule CloseScopeM and first line in the definition of strip }

v = strip+(v′%)

{ By inductive hypothesis }

= strip+(strip+(v1))

{ By definition of strip+ and choice of v2 }

= strip+(v2)

Taking w1 = w′1 and w2 = w′2, statement (ii) can be proved as follows:

wτ

{ By statement (ii) of the inductive hypothesis }

=x w′1v1w
′
2strip(w′2)

{ By choice of w1, v2, and w2 }

= w1v2w2strip(w2)

173

Chapter 6. Compensation-Based System-to-Monitor Synchronisation

Statement (iii) follows immediately from statements (iii) of the inductive

hypothesis and the fact that w1 = w′1. Statement (iv) follows from state-

ments (iv) of the inductive hypothesis and choice of w1, w2, and v2.

Case rule CloseScope: Same as previous case but using the second line in the

definition of strip.

Case rule OpenScope: Same as first case but using the third line in the definition

of strip.

This allows us to prove the stronger theorem stating the correctness of scoped

compensation-aware monitoring, i.e., assuming scoped actions do not need to be

compensated and can be ignored, all non-scoped actions are correctly compen-

sated:

Theorem 6.3.1. Synchronous and compensation-aware monitoring with scopes

behave in an equivalent manner, traces‖(σ,m) =sc traces SC(σ,m). Given a sane

system and monitor pair (σ,m):

(i) A trace accepted by synchronous monitoring is also accepted by compensa-

tion-aware monitoring with scopes: traces‖(σ,m) ⊆sc traces SC(σ,m).

(ii) A trace accepted by compensation-aware monitoring with scopes can be

split into two parts, the first of which is accepted by synchronous moni-

toring, and the second of which is scope cancellation-equivalent to doing

nothing:

w ∈ traces SC(σ,m) =⇒ ∃w1,w2 ·w = w1w2 ∧w1 ∈ traces‖(σ,m)∧w2 =sc ε

Proof. The correctness of the first part (i) follows from the fact that every syn-

chronous transition can be emulated by two or three scoped compensation-

aware rules (as shown in Theorem 6.2.1). This ensures forward language in-

clusion.

174

Chapter 6. Compensation-Based System-to-Monitor Synchronisation

As in the proof of Theorem 6.2.1, the proof of (ii) for (σ,ε,m)
w

=⇒SC (σ,ε,m′)

takes into consideration two cases: (a) σ ′ = �; and (b) σ ′ , �. Case (b) is identical

to the proof of the equivalent case in Theorem 6.2.1. Case (a) can be proved as

follows:

(σ,ε,m)
w

=⇒SC (�, ε,m′)

{ By sanity of initial state and Proposition 6.3.2 }

=⇒ (σ,ε,m)
w

=⇒SC (�, ε,⊗)

{ By Lemma 6.3.1 }

=⇒ ∃w1,w
′
1 ·w =x w1w

′
1strip(w′1)∧m

w1
==⇒mon ⊗∧∃σ ′′ · σ

w1w
′
1

====⇒sysσ
′′

{ By Proposition 6.1.1 }

=⇒ ∃w1,w
′
1 ·w =x w1w

′
1strip(w′1)∧∃σ ′′′ · (σ,m)

w1
==⇒‖(σ ′′′,⊗)

{ By definition of traces‖ }

=⇒ ∃w1,w
′
1 ·w =x w1w

′
1strip(w′1)∧w1 ∈ traces‖(σ,m)

{ Adding variable w2 = w′1strip(w1) }

=⇒ ∃w1,w
′
1,w2 ·w =x w1w2 ∧w2 = w′1strip(w′1)∧w1 ∈ traces‖(σ,m)

{ By Proposition 6.3.1 }

=⇒ ∃w1,w2 ·w =x w1w2 ∧w2 =sc ε∧w1 ∈ traces‖(σ,m)

This completes the proof.

Using this result, we can show that scoping still keeps monitoring correct up

to ignoring scope content and compensations. The semantics given to scope

compensation monitoring gather the scopes in the buffer and only discards them

while emptying the buffer. The advantage of this approach, is that the decision

of how to handle scopes is left until the compensation triggering phase. Alterna-

tively, one could have discarded actions in the buffer as soon as the system closes

a scope, which is less flexible, but may result in smaller buffers being used.

175

Chapter 6. Compensation-Based System-to-Monitor Synchronisation

6.4 Desynchronisation and Resynchronisation

Despite compensation-awareness, in some systems it may be desirable to run

monitoring synchronously with the system for operations considered risky, only

to desynchronise the system from the monitor again once control leaves the risky

operation. Intuitively similar to pausing and unpausing the system (as alluded

in the introduction of the chapter through the cassette deck metaphor), syn-

chronisation and desynchronisation enable the system-monitor relationship to

be more finely controlled. In this section, we investigate a monitoring strategy

which can run both synchronously or asynchronously in a non-deterministic

manner. Any heuristic used to decide when to switch between modes corre-

sponds to a refinement of this approach.

Adaptive Monitoring

ReSync

(σ,ε,m)
τ−−→A(σ,m)

DeSync

(σ,m)
τ−−→A(σ,ε,m)

Figure 6.7: Semantics of adaptive monitoring

Definition 6.4.1. The adaptive monitoring of a system, is defined in terms of the

synchronous and asynchronous monitoring rules and two additional ones (given

in Figure 6.7). Rule ReSync allows the system to synchronise once the buffer is

empty, while rule DeSync allows the monitor to be released asynchronously. By

also including the compensation rule Comp, we obtain adaptive compensation-

aware monitoring (−→AC) and by further including scoping rules (Figure 6.6), we

obtain adaptive compensation-aware scoped monitoring (−→ASC).

The set of traces generated through the adaptive composition of system σ

and monitor m, written tracesA(σ,m), is defined as follows:

tracesA(σ,m) def= {w | ∃σ ′,w′,m′ · (σ,m)
w
=⇒A(σ ′,w′,m′)∨ (σ,m)

w
=⇒A(σ ′,m′)}

The traces for compensation-aware adaptive composition, denoted

176

Chapter 6. Compensation-Based System-to-Monitor Synchronisation

tracesAC(σ,m), can be similarly defined. �

Since adaptive monitoring can be considered as a special case of asynchro-

nous monitoring (having a zero-sized buffer at particular times), then we can

show that asynchronous monitoring is equivalent to adaptive monitoring in the

traces which can be generated.

Theorem 6.4.1. Asynchronous and adaptive monitoring are observationally in-

distinguishable: tracesA(σ,m) =x traces9(σ,m).

Proof. Proving that traces9(σ,m) ⊆x tracesA(σ,m) is trivial since all the rules

which can be used to generate traces in traces9(σ,m) are also available for traces

in tracesA(σ,m).

Proving that tracesA(σ,m) ⊆x traces9(σ,m) is also easy and can be done by

showing that both ReSync and DeSync do not affect traces. In fact both rules

either introduce or consume an empty buffer while adding a τ to the trace — all

actions which clearly leave no effect on traces.

Similar to the reasoning behind the previous theorem, compensation-aware

monitoring exhibits the same event sequence whether it is adaptive or not.

Theorem 6.4.2. Compensation-aware adaptive monitoring is also indistinguish-

able from compensation-aware monitoring up to traces:

tracesAC(σ,m) =x tracesC(σ,m).

Proof. The proof is similar to that of the previous theorem.

An immediate corollary of these results is that compensation-aware adaptive

monitoring is cancellation-equivalent to synchronous monitoring.

Corollary 6.4.1. Compensation-aware adaptive monitoring is indistinguishable

from synchronous monitoring up to traces: tracesAC(σ,m) =x traces‖(σ,m).

177

Chapter 6. Compensation-Based System-to-Monitor Synchronisation

Proof. The proof follows immediately from Theorem 6.4.2 and Theorem 6.2.1.

While we do not give the counterpart theorems about scoped monitoring,

these can be similarly defined as above concluding that adaptive compensation-

aware scoped monitoring is equal up-to-scope-cancellation to synchronous mon-

itoring: tracesASC(σ,m) =sc traces‖(σ,m).

It is important to note that the results hold about trace equivalence, i.e., ob-

servational equivalence. In the case of adaptive monitoring, we are increasing

the set of diverging configurations since every state can diverge through repeat-

edly desynchronising and resynchronising. One would be required to enforce

fairness constraints on desynchronising and resynchronising rules to ensure

achieving progress in the monitored systems.

6.5 A Compensation-Aware Monitoring

Architecture

Based on the theory given in the previous sections, we propose an asynchronous

compensation-aware monitoring architecture and implementation, cLarva, with

a controlled synchronous element. The system exposes two interfaces to the

monitor: (i) an interface for the monitor to communicate the fact that a prob-

lem has been detected and the system should stop; and (ii) an interface for the

monitor to indicate which actions should be compensated for. Note that these

correspond precisely to rules AsyncErr and Comp respectively. Furthermore,

the actual time of stopping and how the indicated actions are compensated for

are decisions left up to the system.

Figure 6.8 shows the four components of cLarva and the communication

links between them. The monitor receives system events through the events

player from the log, while the system can continue unhindered. If the monitor

178

Chapter 6. Compensation-Based System-to-Monitor Synchronisation

detects a fault, it communicates with the system so that the latter stops. De-

pending on the actions the system carried out since the actual occurrence of the

fault, the monitor indicates the actions to be compensated for.

 Monitor System

 Events Player
 Log

Log data

 Compensate

 Stop

Events

Log data

Figure 6.8: The asynchronous architecture with compensations cLarva

To support switching between synchronous and asynchronous monitoring, a

synchronisation manager component is added as shown in Figure 6.10. All con-

nectors in the diagram are synchronous with the system not proceeding after

relaying an event until it receives control from the manager. Figure 6.9 shows

the logic of the synchronisation manager which supports two modes of opera-

tion encoded in the if statement: (i) the first clause deals with the synchronous

mode and returns control to the system only after the monitor has processed

the event; (ii) the asynchronous mode is programmed in two parallel parts: one

which returns control immediately back to the system upon receiving an event

(storing it in the buffer), and the other which enables the monitor to consume

events from the buffer.

A challenging aspect of the architecture is the stopping of the system when

the monitor detects a violation. In real-life scenarios it is usually undesirable to

stop a whole system if an error is found as this is considered highly intrusive.

However, in many cases it is not difficult to delineate components of the system

to ensure that only the relevant parts of the system are stopped. For example,

when a transaction is carried out without necessary rights, only it should be

stopped and compensated for. Similarly, if a user has managed to illegally login

179

Chapter 6. Compensation-Based System-to-Monitor Synchronisation

c = PROCEED ; set default control to proceed

while (c != STOP)

if (monitoring_mode == SYNC)

e = in_event() ; read event from system

c = out_event(e) ; forward to monitor and get its resulting state

out_control(c) ; relay control to system

else

par ; parallel execution

e1 = in_event() ; read from system

addToBuffer(e1) ; store in buffer

out_control(c) ; return control to system

with

e2 = readFromBuffer() ; read from buffer

c = out_event(e2) ; forward to monitor and get its resulting state

end

Figure 6.9: The pseudo code representing the monitoring manager

 MonitorSystem

 Manager

Events

Stop/Cont

Compensate

Events

Stop/Cont

Des Syn

Figure 6.10: The asynchronous architecture with synchronisation and desyn-
chronisation controls

and start a session, then only that user’s operations during that session should

be stopped and compensated for.

This approach of system decomposition into relatively independent parts

can be extended further to simultaneously allow synchronous and asynchronous

monitoring. This is further discussed in the next subsections.

6.5.1 Automating the Decision of Monitor Mode Switching

Synchronisation guarantees immediate identification and possible reparation of

problems, making it desirable for parts of the system where higher dependabil-

ity is required. For instance, if a particular transaction is considered high-risk,

180

Chapter 6. Compensation-Based System-to-Monitor Synchronisation

it would be desirable to synchronise monitoring during the transaction, only

to desynchronise once again when a less risky part of the system is reached.

Having an architecture which allows switching between synchronous and asyn-

chronous modes of monitoring requires a mechanism to appropriately select the

active mode. Although the switching between synchronous and asynchronous

monitoring can be done manually, it is much more useful to have an automatic

mechanism which handles this feature.

The first issue is how to assess risk associated with particular states and ac-

tions, thus ensuring that high risk actions are always monitored synchronously.

There are two main ways in which this can be achieved: statically or dynami-

cally. For example, transactions can be statically classified according to the risk

they involve, e.g., a transfer between a user’s own accounts might be consid-

ered as safe but spending a large sum of money might not. On the other hand,

one can dynamically keep track of the activities of each user and use pattern

matching and statistics to deduce the risks associated with individual users. If

a transaction has an associated high risk factor and/or is being carried out by a

user with high associated risk, then one might decide that during this action the

monitor should switch to synchronous mode.

Another important design issue is where to decide de/synchronisation: either

within the system itself, or as part of the monitor. Leaving the decision up to

the system has the advantage that the system would always be in control of the

monitoring mode and the decision can be taken synchronously. On the other

hand, this would add an overhead to the system; something which the whole

architecture is meant to avoid.

In our case study we opt for a dynamic, monitor-side, asynchronous de/synch-

ronisation decision where the heuristics are themselves implemented as mon-

itors. This strategy avoids any duplication between monitors and heuristics

while also avoiding the introduction of additional overheads to the system. Al-

though this might lead to a de/synchronisation decision to be taken late, the

181

Chapter 6. Compensation-Based System-to-Monitor Synchronisation

problem is minimised by the scheduling strategy discussed in Section 6.5.2.

Therefore, updating the architectural view of the system would involve adding

a heuristics component (to the architecture shown in Figure 6.10) which is in

charge of executing heuristics and signalling the manager to switch between

synchronous and asynchronous monitoring. Such a component requires the fol-

lowing connections: (i) a connection to the incoming system events — supply-

ing the required information for executing heuristics; and (ii) connections to the

de/synchronisation signals entering the synchronisation manager. The updated

architecture with these modifications is shown in Figure 6.11.

 Monitor

System

 Manager

Events

Stop/Cont

Compensate

Events

Stop/Cont

HeuristicsDes Syn

Figure 6.11: The monitoring architecture with heuristics

In practice, this approach requires that the monitoring system can handle

parametrised monitoring of transactions/users. Furthermore, it requires a way

of decomposing the system into independent components which would simul-

taneously allow synchronous and asynchronous monitoring. For this reason the

monitor-side (including the manager) typically consists of multiple parametrised

monitors, each with its own buffer, synchronisation manager and heuristics

component. This is expanded further in the following subsection.

6.5.2 Monitor Demultiplexing and Scheduling

Monitors in cLarva are dynamically instantiated for each monitored object.

Thus, a system’s monitor is in fact composed of many sub-monitors. For exam-

ple if we are monitoring a number of properties regarding a number of transac-

182

Chapter 6. Compensation-Based System-to-Monitor Synchronisation

tions for each logged-in user, then a monitor would be created for each property,

for each transaction, for each user. For this reason, although at a high level we

have shown the architecture as having one manager, in actual fact it has a buffer

for each sub-monitor as illustrated in Figure 6.12.

1. Demultiplexing

System

Des Syn

Des Syn

Events

 Manager

Compensate

Stop/Cont High−priority

synchronised

scheduling

Low−priority

risk−ordered

schedulingEvents

 Manager

Compensate

Stop/Cont Stop/Cont

Events

Stop/Cont

Events

 Heuristics

 Heuristics

 /Monitor

2. De/Synchronising 3. Monitoring/Scheduling

 /Monitor

Figure 6.12: The monitoring architecture with heuristics, demultiplexing, and
scheduling

To coordinate the execution of the sub-monitors, the following steps are carried

out every time a system event is received:

1. The event is replicated to all the relevant sub-monitor buffers. For ex-

ample, a transaction event would be copied to all buffers pertaining to

sub-monitors of that particular transaction.

2. Subsequently, if the sub-monitor is in asynchronous mode, control is im-

mediately passed back to the system. Otherwise the manager first for-

wards the event to the heuristics and monitoring components, and waits

for their response before allowing the system to proceed further.

3. Given the potentially substantial number of sub-monitors, the choice of a

scheduling strategy among sub-monitors might be crucial to detect prob-

lems as early as possible. A sensible scheduling strategy would be to asso-

183

Chapter 6. Compensation-Based System-to-Monitor Synchronisation

ciate a scheduling priority according to the corresponding risk; the higher

the risk, the higher the scheduling priority. Naturally, this is over and

above the priority that synchronous monitors should have over asynchro-

nous monitors; to ensure minimal disruption to the system — asynchro-

nous monitors should only be allowed to run when no synchronous moni-

tors are running.

After having presented the salient aspects of the monitoring architecture, in

what follows, we give an account of how this has been applied to an industrial

case study.

6.6 Industrial Case Study

We have applied cLarva on Entropay, an online prepaid payment service of-

fered by Ixaris Systems Ltd1. Entropay users deposit funds through funding

instruments (such as their own personal credit card or through a bank trans-

fer mechanism) and spend such funds through spending instruments (such as a

virtual VISA card or a Plastic Mastercard). The service is used worldwide and

thousands of transactions are processed on a daily basis.

The case study implementation closely follows the architecture described in

the previous sections including property specifications, compensations for syn-

chronisation, and heuristics for deciding between synchrony and asynchrony.

The following subsections focus on these aspects respectively, explaining how

each was applied to the case study. Subsequently, the final subsection (Sec-

tion 6.6.4) concludes by giving information about the monitoring performance

and a number of monitoring traces which represent the monitoring behaviour

attained.
1http://www.ixaris.com

184

Chapter 6. Compensation-Based System-to-Monitor Synchronisation

dormant

Foreach User

delete activate
login

logout

reg

active logged

start

operation

error
register

other

other

other

other

other

other

thaw

dormancy

Figure 6.13: The lifecycle property

6.6.1 Specifying Properties for Monitoring Entropay

When monitoring Entropay, we chose to focus on high-level business process

properties mainly because these sort of properties typically span over several

modules and are therefore difficult to test for. In what follows, we give a classifi-

cation of properties which were monitored successfully and how compensations

were managed in case of a violation detection.

Life cycle A lot of properties in Entropay depend on which phase of the life-

cycle an entity is in. Figure 6.13 is an illustration of the user life-cycle,

starting with registration and activation, allowing the user to login and

logout (possibly carrying out a series of operations in between), and finally,

the possibility of putting a user account in and out of dormancy — a state

where the user cannot perform financial transactions due to a long period

of inactivity.

Implicitly, such a property checks that for a user to perform a particular

operation and reach a particular state, the user must be in an appropriate

state. Note that the property is monitored for each user.

Another more complex example focusing on a part of the life cycle involves

the dormancy feature of Entropay which manages inactive user accounts.

If a user account has been inactive for six months, then for security reasons

185

Chapter 6. Compensation-Based System-to-Monitor Synchronisation

T3@3mnths\\
expiredDorm

dorm feePaid

unexpectedTx failedPay

thawed

failed,
pay\!correct

unexpectedDrm
Foreach User

nonDorm

anyTx\\resetT6

thaw\\resetT3

\
anyTx\\

anyTx\\resetT6

pay\correct\dorm\T6>6mnths\

dorm\T3>3mnths\

dorm\\dorm\\

T6@6mnts\\

Figure 6.14: The dormancy property

the account is put to dormant, i.e., a state where the account cannot be

used unless a permission is requested by the legitimate user. If such a

permission is requested and an administration fee is paid, then the account

is thawed but put to dormant again if the account still remains unused for

another three months. The property is depicted in Figure 6.14. Once again

this property is monitored for each user.

Real-time Several properties in Entropay such as the dormancy property just

described, have a real-time element: something should happen after six

months, and then after three months, etc. To model this property in terms

of DATEs we have used timers which trigger after a particular period of

time elapses since they have been reset (represented in Figure 6.14 as

T6@6mnths, and T3@3mnths respectively) to ensure that a violation of the

property is immediately detected2. On the other hand, timer checks are

conducted to ensure that the relevant actions do not occur earlier than ex-

pected. For example if the dormancy process occurs, it must be ensured

that enough time has elapsed since the last timer reset (represented by the

conditions T6>6mnths and T3>3mnths).

2In practice the timers are set to trigger slightly later to provide some leeway.

186

Chapter 6. Compensation-Based System-to-Monitor Synchronisation

login\loginRight\

Foreach User

unexpected

noRight

revokeRight\rightExisted\

grantRight\noRightYet\

login\\

loadTx\\
transferTx\\

grantRight\\
revokeRight\\

start

transferTx\transferRight\
loadTx\loadRight\

Figure 6.15: The property monitoring rights

Rights User rights are a very important aspect of Entropay’s security system.

A number of transactions require the user to have the appropriate rights

before they are permitted. These properties are monitored by keeping

track of rights granting and withdrawal so that the monitor effectively

maintains a database of the rights each user holds at any particular time.

Consequently, the monitor also tracks each right-requiring action and en-

sures that the user involved has the corresponding rights. For example

Figure 6.15 depicts the rights-checking property for a user login, loading

of money onto virtual credit cards, and money transfers. Note that the

property has two bad states: one which is reached if the user attempts a

transaction without having the right, and another which is reached if a

right is granted to a user already having the right or a right is revoked

from a user not having the right. The same concept is applied to other

operations requiring the user to have particular rights.

Amounts There are various limits (for security reasons) on the frequency of cer-

tain transactions and the total amount of money which these transactions

constitute. The general idea is depicted in Figure 6.16 where a user per-

forming a load operation is checked to ensure that the allowed amount of

money which can be spent within a particular time window is adhered to.

Note that the administrators of the system may update the applicable lim-

its and different limits apply depending on the user status which may also

187

Chapter 6. Compensation-Based System-to-Monitor Synchronisation

change during the user life cycle.

loadTx\limitNotExceeded\updateTotal; updateTimeWindow

Foreach User

excessstart

administratorLimitChange\\
userStatusChange\\

loadTx\limitExceeded\

Figure 6.16: The property monitoring transaction amounts

Although the Entropay properties are relatively light-weight, due to security

and performance considerations, it is not desirable to run the monitor synchro-

nously when there is no clear evidence of a potential violation. Users which pose

little or no risk to the system and which have been using the system for a number

of years should not suffer any service deterioration. The conciliatory approach

of cLarva would guarantee added security with the cost of logging under nor-

mal execution while incurring overhead only when there is convincing evidence

that something is wrong.

6.6.2 Specifying Compensations for the Case Study

In order to support asynchronous monitoring, system actions which signifi-

cantly modify the state of the system have to be associate to a compensating

action which logically undoes the action. The first two columns of Table 6.1

show a number of actions which feature in the Entropay case study together

with their corresponding compensations. However, by the time the monitor

detects a problem the compensations of the buffered events may no longer be

applicable. For example, while the compensation of a login action is a logout,

if the user had already performed a logout by the time the monitor attempts to

compensate for the login, then it no longer makes sense to perform the logout.

Similarly, some actions such as a purchase cannot be cancelled beyond a cer-

tain time bound after their occurrence. For simplicity we assume that the time

188

Chapter 6. Compensation-Based System-to-Monitor Synchronisation

Action Compensation Scope ends
activate account deactivate account deactivate account

login logout logout

create virtual credit
card

disable virtual credit
card

disable/delete
virtual credit card

load money onto
virtual credit card

withdraw money
from virtual credit
card

1 hour since load,
or money withdrawn

transfer money
among virtual credit
cards

reverse transfer
among virtual credit
cards

1 hour since transfer,
or money removed
from card

purchase with
virtual credit card

cancel purchase and
return money to
virtual credit card

1 hour since
purchase,
or purchase
cancelled

Table 6.1: Actions and their compensations

limit always occurs one hour after the completion of the activity3. This aspect is

shown in the third column of Table 6.1.

6.6.3 Implementing Heuristics as DATEs

In practice, one expects there to be a substantial overlap between monitors and

heuristics. For example to monitor for fraudulent behaviour, one would usually

try to measure how much risk is associated with a particular pattern of activi-

ties. Such a measure can lend itself useful to decide for or against synchronous

monitoring. In this subsection we will show how DATEs can be used for this

purpose.

The following features of DATEs are particularly useful for implementing

heuristics: (i) it is easy to integrate such heuristics with cLarva which is DATE-

based; (ii) DATEs are compositional — different heuristics can be implemented

as separate DATEs and then connected together to form a single DATE through

3This approach to scoping might seem at odds with the theory presented earlier where scopes
cannot intersect (except by inclusion). However, in practice, cLarva would have a monitor for
each transaction and thus the scopes would never intersect locally.

189

Chapter 6. Compensation-Based System-to-Monitor Synchronisation

channel communication; (iii) LarvaStat [37] builds upon Larva, augmenting

DATEs with support for statistical properties4; and (iv) it is easy to keep track

of multiple objects at a time through the dynamic mechanism which replicates

monitors — one for each object being monitored.

Using these features and considering our case study we opt to implement the

following heuristics for each user: (i) the monitor uses statistics to calculate the

risk factor depending on the series of activities which the user performs; and

(ii) if the risk factor exceeds a particular threshold, then the monitor is forced

to synchronise before the end of a scope (based on Table 6.1).

Thus, we will split the implementation of the heuristics into the following

parts: (i) a DATE which keeps track of whether a user is currently monitored

synchronously or asynchronously; (ii) a DATE which keeps track of the risk

factor of a user; and (iii) a DATE which upon detecting a close-scope event de-

cides whether a user should be monitored synchronously or asynchronously and

communicates the decision to (i). In what follows, we give the definition of these

DATEs:

1. Figure 6.17 shows the main DATE which listens on two channels: sync,

signifying that the monitor should be synchronised, and async to signal

that the monitor need no longer remain synchronised.

sync?\\setManagerMode(sync);

sync async

async?\\setManagerMode(async);

Figure 6.17: The DATE which listens to other DATEs for messages to synchronise
or desynchronise the monitor from the system

4One of the case studies carried out with LarvaStat involved an intrusion detection system on
top of an ftp server, assessing each user, and assigning him or her a risk factor. The risk factor
was calculated using two main techniques: (i) a Markov chain analysing the user’s command
sequence, with each ftp command being related to a risk factor, and marking the user as suspi-
cious if the command sequence exceeds a threshold; and (ii) the use of statistical moments for
the characterisation of abnormal user behaviour, monitoring each user’s download and upload
behaviour patterns, and assuming a statistically predictable pattern.

190

Chapter 6. Compensation-Based System-to-Monitor Synchronisation

risk= 3

loadMoney\\risk *= 1.3

purchase\\risk *= 0.5

transfer\\risk *= 1.2

cardCreation\\risk *= 1.7

withdraw\\risk *= 2

revise!chain

Figure 6.18: The DATE which tracks the user risk factor and notifies of a risk
change over channel revise

As soon as the DATE receives either of these messages from other moni-

tors, it relays the change to the synchronisation manager. Note that since

we would like to apply the heuristics on a per-user basis, the DATE has to

be parametrised for each user. The limitation of this approach is that prop-

erties which span over multiple users have to be very carefully devised as

the monitor states of different users might reflect different synchronisation

levels. For this reason communication across DATEs should only occur

through channel communication and not through global variables.

2. Another DATE can be useful to measure the perceived user risk factor: for

example users who use the money for a purchase are not considered as

risky, while users who load money a number of consecutive times, per-

form several transfers and withdraw the money are considered highly sus-

picious. This logic is encoded as a Markov chain shown in Figure 6.18.

3. Figure 6.19 illustrates the DATE which would force a monitor to synchro-

nise (by sending a signal to the main DATE (Figure 6.17)) in case a closing

scope action is detected and the risk factor of the corresponding user is

higher than the threshold. On the other hand, when the risk goes below

the threshold, the monitor is desynchronised from the system. Note that

new users are considered risky and thus their risk factor is initialised to a

higher value than the threshold. Such users are only considered safe after

carrying out a pattern of risk-free transactions.

191

Chapter 6. Compensation-Based System-to-Monitor Synchronisation

closeScope\risk>threshold\sync!

revise?\risk<threshold\async!

threshold

threshold = 2

Figure 6.19: The DATE which decides whether to synchronise or desynchronise

6.6.4 Monitoring Results

The case study was successfully executed on a sanitized5 database of 300,000

users with around a million virtual cards. A number of issues have been de-

tected through the monitoring system: (i) not all system activities were recorded

consistently; (ii) some system state was found to be inconsistent, e.g., certain

cards which were marked as inactive were still found to be active; (iii) in some

exceptional cases, system limits did not tally with the overall balance of the

transactions monitored.

To demonstrate the results of our case study, in this subsection we give three

anonymised6 system traces in which problems were discovered.

In the following traces, we use S to indicate an action which is later compen-

sated with an action tagged with R (actions and their corresponding compensa-

tions have been specified in Table 6.1). Also recall that the scope of compensa-

tions expires within an hour.

The monitoring heuristics used for generating these traces initialise each

monitor with a risk factor of 3 and assumes the threshold 2 when deciding be-

tween synchrony and asynchrony (as specified in Figure 6.18).

No rights issue After encountering traces such as the one presented below, the

monitor reported that some actions were carried out without the necessary

rights. For example a user requires a special right to be allowed to login,

to create a virtual credit card and also to load money onto the credit card.

5User information was obfuscated for the purpose of this study.
6Due to privacy considerations the data in certain fields cannot be exposed.

192

Chapter 6. Compensation-Based System-to-Monitor Synchronisation

Figure 6.20 shows excerpts from the system log merged with monitor ac-

tions where a user performed actions without the required rights. In this

case the monitor was run asynchronously with a high priority scheduling.

Once the monitor detected the violation (late), the transactions which oc-

curred after the illegal login were compensated (see last four entries of

Figure 6.20).

Timestamp User Transaction $

13:00:35 5-5-2010 user1 register account n/a

a monitor is dynamically created for user1 with default risk factor 3

13:05:41 5-5-2010 user1 Sactivate account n/a

13:05:45 5-5-2010 user1 Slog in n/a

user1 logged in without having the right

13:07:10 5-5-2010 user1 Screate virtual credit card n/a

risk factor for user1 increases to 5.1

13:12:06 5-5-2010 user1 Sload money onto virtual credit

card

100

risk factor for user1 increases to 6.63
(asynchronous) monitor detects rights violation
monitor initiates compensation

13:12:52 5-5-2010 user1 Rwithdraw money from virtual

credit card

100

13:12:05 5-5-2010 user1 Rdisable virtual credit card n/a

13:12:10 5-5-2010 user1 Rlog out n/a

13:12:13 5-5-2010 user1 Rdeactivate account n/a

Figure 6.20: Detection by asynchronous monitoring, compensating actions after
detection

Late dormancy of user accounts According to the specification, after six

months of user monetary inactivity, i.e., no transactions involving money

are carried out, the user account should be frozen. Nonetheless, traces

such as the one shown in Figure 6.21 were discovered. In this case, there

are two compensating activities which have been suggested by the moni-

193

Chapter 6. Compensation-Based System-to-Monitor Synchronisation

tor upon the time of detection (third and second trace entries from below).

The last activity is the reparation which is carried out after the synchroni-

sation (of the system and the monitor) is complete. Note that although the

risk factor for this user was relatively high (ensuring favourable schedul-

ing), this could not lead to synchronisation since no scope closes were en-

countered.

Timestamp User Transaction $

15:00:38 8-6-2010 user2 account registration n/a

a monitor is dynamically created for user2 with default risk factor 3

15:15:31 8-6-2010 user2 activate account n/a

15:15:33 8-6-2010 user2 grant login, card creation rights n/a

15:15:45 8-6-2010 user2 log in n/a

15:35:45 8-6-2010 user2 log out n/a

18:12:14 5-9-2010 user2 log in n/a

18:42:55 5-9-2010 user2 log out n/a

by 15:15:31 8-12-2010 the account of user2 should have been dormant

17:52:21 18-12-2010 user2 Slog in n/a

17:55:50 18-12-2010 user2 Screate virtual credit card n/a

risk factor increases to 5.1
(asynchronous) monitor detects non dormant account
monitor initiates compensation

18:00:12 18-12-2010 user2 Rdisable virtual credit card n/a

18:00:15 18-12-2010 user2 Rlog out n/a

monitor performs additional corrective action

18:00:20 18-12-2010 user2 change account status to dormant n/a

Figure 6.21: Detection by asynchronous monitoring, compensating actions after
detection, and executing a corrective action after compensating

Excessive money loading to credit cards The system’s business logic imposes

limits on the amount of money which can be loaded onto a virtual credit

card each day, each week and each month. However, two traces similar to

the one shown in Figure 6.22 were discovered where the limit for user3 for

194

Chapter 6. Compensation-Based System-to-Monitor Synchronisation

a day was $2000. In this case, the risk associated with user3 not only ex-

ceeded the threshold but the heuristic monitor also encountered the clos-

ing scope of the money load, and the monitor was thus synchronised. Note

that for this reason the system was immediately stopped when attempting

to allow the user to load money which exceeded the limit. Since the de-

tection time occurred with the time of violation, no compensations are

executed in this case.

Timestamp User Transaction $

risk factor for user3 is 1.6

11:05:15 7-10-2010 user3 log in n/a

11:12:16 7-10-2010 user3 load money onto virtual credit

card

1000

risk factor for user3 increases to 2.08

11:25:44 7-10-2010 user3 log out n/a

monitor synchronises at 12:13:20 (a close scope occurred at 12:12:16)

13:15:35 7-10-2010 user3 log in n/a

user3 attempts to load $1500 onto virtual credit card
risk factor for user3 increases to 2.704
monitor detects violation and stops the activity

Figure 6.22: Monitor synchronises based on heuristics and stops a violating ac-
tion from taking place

6.6.5 Discussion

When applied to a suitable case study, adaptive monitor synchronisation is rela-

tively cheap. For example in the case of Entropay, since compensations are part

and parcel of the system architecture, then virtually no extra implementation is

required. Unfortunately, given the limited time frame for which Entropay was

available to carry out the case study, most of the time has been spent on de-

veloping the architecture. This means that the implementation of the cLarva

architecture is still rudimentary and we have not performed enough experi-

195

Chapter 6. Compensation-Based System-to-Monitor Synchronisation

ments to reliably answers questions such as how effective the heuristics were,

or what is the best scheduling policy to adopt across monitors. What we can

say with conviction is that the non-intrusive monitoring approach we advocate

has been welcomed by the industrial partner and it has been effective for de-

tecting significant violations. Furthermore, the theory presented earlier in this

chapter provided the assurance that assuming correct compensations, synchro-

nising and desynchronising monitors at runtime through scoped compensation

exhibits the same behaviour as synchronous monitoring.

6.7 Related Work

As regards synchronous and asynchronous monitoring, in principle, any algo-

rithm used for synchronous monitoring can be used for asynchronous monitor-

ing as long as all the information available at runtime is still available asynchro-

nously to the monitor through some form of buffer. The inverse, however, is not

always true because some monitoring algorithms (such as [91]) require that the

complete trace is available at the time of checking so that it can be accessed in

reverse. In our case, the monitoring architecture has to support runtime desyn-

chronisation and resynchronisation and thus it was not a question of simply

adapting the algorithm but more a question of providing the architectural sup-

port. There are numerous algorithms and tools [6, 13, 29, 44, 45, 51, 61, 84,

91, 93] which support asynchronous monitoring — sometimes also known as

trace checking or offline monitoring. A number of these tools and algorithms

[6, 13, 29, 91] support only asynchrony unlike our approach which supports

both synchronous and asynchronous approaches. While a number of other ap-

proaches [44, 45, 51, 61, 84, 93] support both synchronous and asynchronous

monitoring, no monitoring approach of which we are aware is able to switch

between synchronous and asynchronous monitoring during a single execution.

Although the idea of using compensations as a means of synchronisation

196

Chapter 6. Compensation-Based System-to-Monitor Synchronisation

might be new in the area of runtime verification, this is not the case in other

areas, such as distributed games [43, 65, 81]. The problem of distributed games

is to minimise the effects on the playing experience due to network latencies.

Two general approaches taken are pessimistic and optimistic synchronisation

mechanisms. The former waits for all parties to be ready before anyone can

progress while the latter allows each party to progress and resolve any conflicts

later through rollbacks. The problem which we have addressed in this work is

a variant of the distributed game problem with two players: the system and the

monitor. In a similar fashion to game synchronisation algorithms, the system

compensates to revert to a state which is consistent with the monitor.

From a higher level point of view, the work presented in this chapter aims to

control the relationship between the system and the monitor as a means of strik-

ing a balance vis-á-vis the monitoring overheads. A number of works [10, 14,

17, 19, 48, 86] have been carried out to optimise the monitoring overhead. The

main distinction among these works is that a number of them [10, 14, 48] allow

the user to set an upperbound on the resources to be dedicated to monitoring

with the possibility of missing violations, while in the other cases [17, 19, 86]

it is the tool which decides the resources required but guarantee timely viola-

tion detection. Still, none of these approaches enable the switching between the

guarantees, which is effectively what we do through switching between synchro-

nous and asynchronous monitoring. The work which somewhat resembles our

approach is that of Bartocci et al. [14] which supports the use of criticality levels

to decide which monitoring instances should be given priority. However, this

still does not guarantee the timely violation detection for such instances.

6.8 Conclusion

Notwithstanding the rigorous testing which critical systems undergo, problems

still arise particularly due to the unpredictable environment under which such

197

Chapter 6. Compensation-Based System-to-Monitor Synchronisation

systems operate. This scenario motivates the need for monitoring such systems

during normal use where the occurrence of an error might imply serious reper-

cussions. However, the problem with monitoring is that it adds overheads to the

system which might already be under pressure during peak hours of usage. This

motivates the use of asynchronous monitoring which minimises the overhead to

logging system events.

When the monitor has detected a problem, then the only option to synchro-

nise the system and the monitor is by reversing the system state. Using compen-

sations, compensation-aware monitoring can be used to restore the system state

in case an error is detected late. To handle real-life scenarios where compensa-

tions expire we have designed compensation-aware monitoring to handle scopes

such that when a compensation terminates, it is no longer compensable. More-

over, pausing and unpausing the system can provide added flexibility to enable

switching between synchronous and asynchronous monitoring at runtime. Re-

ferred to as adaptive monitoring, this approach can incorporate heuristics which

are able to automatically steer the monitoring system from synchrony to asyn-

chrony and vice-versa. As a heuristic example we have demonstrated the use of

perceived user risk for switching to monitor synchrony upon scope closure de-

tection. The theoretical framework has been applied to an industrial case study

where each user is monitored individually for the perceived risk and the user’s

monitors are synchronised or desynchronised accordingly.

Although adaptive monitoring offers a highly flexible monitoring architec-

ture, it is based on a limited model of compensations where compensations are

specified on a per-action basis. In the absence of a language for specifying comp-

ensation synchronisation, keeping the model simple has been preferred with the

purpose of avoiding error-prone complexities. In Chapter 8 we lift this limi-

tation by allowing the system-monitor synchronisation to be specified through

compensating automata. Furthermore, in this chapter we have assumed system-

monitor synchronisation to happen either through compensation or through

198

Chapter 6. Compensation-Based System-to-Monitor Synchronisation

pausing the system to wait for the monitor; both operations which affect the

system. In the next chapter, we investigate a way through which it is the mon-

itor which synchronises to the system instead of the other way round, giving

more flexibility to the architecture.

199

7. Monitor-to-System

Synchronisation

Whenever new or modified stateful properties are to be monitored on a sys-

tem, monitoring has to start processing the system trace from its beginning

(which might be years’ worth of logs) — ignoring any part of the trace might

yield wrong monitoring results since the monitor state would not have correctly

evolved over the whole trace. Having a monitoring architecture where the mon-

itor can take corrective measures is of little use if the monitor is processing

events which are too old. Even using compensations as proposed in the previ-

ous chapter might not be applicable since compensations typically expire. To

tackle this issue, we propose fast-forward monitoring which provides a means of

going through the trace (or an abstraction of it) to quickly infer the state (or a

somewhat similar state) the monitor would have reached if the trace was mon-

itored normally. By ignoring the intermediate monitoring states, fast-forward

monitoring promises to be significantly faster than normal monitoring.

In this chapter we define a generic theory of monitor fast-forwarding and

then we instantiate the approach on the monitoring tool Larva.

200

Chapter 7. Monitor-to-System Synchronisation

7.1 A Theory of Monitor Fast-Forwarding

The idea behind monitor fast-forwarding is to allow the monitor to abstract

away parts of the trace but still reach the same configuration that would have

been reached had the monitor progressed normally. At its simplest level, this

would just involve a function to abstract traces into shorter ones. However, in

practice, this is usually not sufficient, and one would require abstracting also the

trace-processing transition system. Given a monitoring system, its fast-forward

version is another monitoring system, with three additional components: (i) a

mapping from the original monitoring system to the fast one; (ii) a trace ab-

straction which transforms an actual trace into a shorter or a more efficiently

processable one; and (iii) a mapping from the fast monitoring system to the

original one.1

Definition 7.1.1. Given a monitoring transition system M = 〈C, c0,→M〉 with

bad states CB, the transition system 〈A, a0,→A〉 with total domain translation

functions �� ∈ C →A, �� ∈ A→ C, and trace abstraction function α ∈ Σ∗→ Σ∗,

is said to be a fast-forward version of M. �

Typically, for actual fast-forwarding, the length of an abstracted trace is

shorter than the original trace2: length(α(w)) ≤ length(w). The trace abstraction

function is assumed to map the empty string to itself: α(ε) = ε (which follows

directly if the abstraction always shortens traces). Apart from modifying the

trace for faster processing, fast-forward monitoring may also sacrifice monitor-

ing precision (generating false positives/negatives) in favour of efficiency.

Definition 7.1.2. A transition system A is an exact fast-forward version of a

monitoring transition system M, with functions ��, �� and α if whenever

c
w
=⇒M c′:

1Note that the following definitions are based on Definition 2.1.8 stated on page 13.
2We do not enforce this in the definition to allow for abstractions to an extended alphabet

which although lengthens the trace, would still be processed faster.

201

Chapter 7. Monitor-to-System Synchronisation

∀a′ · ��(c)
α(w)
====⇒A a

′ =⇒ c′ =M ��(a′)

It is said to be an over-approximated fast-forward version if whenever c
w
=⇒M c′:

∀a′ · ��(c)
α(w)
====⇒A a

′ =⇒ c′ vM ��(a′)

It is an under-approximation if c
w
=⇒M c′ implies:

∀a′ · ��(c)
α(w)
====⇒A a

′ =⇒ ��(a′) vM c′

We will write c
w
=⇒�� c

′ if there exist a and a′ such that (i) a =��(c);

(ii) c′ =��(a′); and (iii) a
α(w)
====⇒A a

′. �

Proposition 7.1.1. Going to an exact fast-forwarded system and back does not

change the observable behaviour of the resulting monitor: ��◦�� ⊆ =M .

Proof. The proof follows directly from the definition of exact fast-forwarded sys-

tems and the fact that α(ε) = ε.

Given a monitoring transition systemM and an exact fast-forwarded version

MA, then monitoring a trace partially in M and partially in the fast-forwarded

version MA is equivalent to monitoring it completely with the original monitor

M.

Theorem 7.1.1. Given a monitoring transition system M = 〈C, c0,→M〉 with bad

states CB, and an exact fast-forward transition system MA = 〈A, a0,→A〉 with

functions ��, ��, and α, given w = w1w2 . . .wn, then w ∈ B(c0) if and only if

there exists cn ∈ CB and states ci ∈ C such that:

c0
w1
==⇒M c1

w2
==⇒�� c2

w3
==⇒M c3

w4
==⇒�� . . .

wn−1
====⇒�� cn−1

wn
==⇒M cn

If the fast-forward system is an over-approximation, then the above is a for-

ward implication. Similarly, for an under-approximation, only the backward

implication is guaranteed to hold.

Proof. This result follows by induction on the number of parts string w is split

into.

202

Chapter 7. Monitor-to-System Synchronisation

Interestingly, while it is generally undesirable to use over- or under-approxim-

ations, in certain scenarios one might be ready to compromise having false neg-

atives in the case of an over-approximation and false positives in the case of

an under-approximation3. While in this work we focus on using monitor fast-

forwarding to initialise monitors quickly — fast monitor bootstrapping — in the

following list we suggest a number of applications of fast-forwarding monitor-

ing, highlighting where it is preferable to use exact or approximate fast-forward

monitoring:

Fast monitor bootstrapping Whenever monitors have to be instantiated on a

system with a long recorded history, running the standard monitor on the

long traces may take prohibitively long. An alternative is to process the

traces using an exact fast-forwarded version of the monitor. Approximate

fast-forwarding can also be useful if, either we are assured that there are

no errors to be caught on the stored history (in which case we can use an

under-approximation) or if we prefer to process the history quickly en-

suring that any errors are caught (in which case, an over-approximation

would be applicable).

Burst monitoring In systems where resources are committed only at particular

points in time, it can be beneficial to accumulate and process the system

trace only at these moments in time. For instance, in a transaction pro-

cessing system where all database modifications are committed at the end

of a transaction one may, for example, collect the full trace of a transaction

and process it using a fast-forwarded monitor. If an exact fast-forward

may still be too expensive to check and performance is an issue, one may

choose to apply over-approximations for transactions by blacklisted users

and under-approximations for whitelisted ones.

3By definition, over-approximation may detect bad behaviour which doesn’t actually exist
since the abstraction might consider more behaviours to be bad than the concrete counterpart.
The converse is true for under-approximation.

203

Chapter 7. Monitor-to-System Synchronisation

Synchronous/asynchronous monitoring In the case of asynchronous monitor-

ing, fast-forward monitoring can be used whenever the monitor is lagging

too much behind the system. Moreover, in monitoring systems such as the

case study presented in the previous chapter where asynchronous mon-

itoring can be synchronised at runtime, fast-forward monitoring can be

used for a quick synchronisation.

To facilitate the use of monitor fast-forwarding to applications such as the

ones listed above, in the next section we instantiate the theory to the runtime

verification architecture Larva.

7.2 Instantiating Fast-Forwarding to Larva

In Larva we use monitor fast-forwarding to start monitors from a particular

point in a system’s history, i.e., fast monitor bootstrapping. This is crucial for

industrial systems so that when new properties are introduced or existing ones

modified, the monitor comes up to scratch with the system as soon as possible

— monitoring years’ of data would waste monitoring time which could be used

to start monitoring more recent (and thus more relevant) data.

Instantiating the theory of fast-forwarding to monitor bootstrapping in Larva

would include deciding the two translation functions �� and ��, the trace ab-

straction function α, and the fast-forward transition relation→A. The following

list expands each of these aspects, generalising the approach taken in Exam-

ple 7.2.1:

• In the case of Larva it is assumed that the translation function �� obtains

the list of objects which should be monitored during fast-forwarding while

the reverse translation function �� drops the additional information.

• The trace which originally includes all the system events, is collapsed to

204

Chapter 7. Monitor-to-System Synchronisation

the trace elements which are required for deciding the state of each moni-

tor.

• The fast-forward monitor which handles fast bootstrapping, first obtains

M (representing a vector of monitors4) by instantiating a monitor for each

entity indicated by�� and subsequently allows each entity to perform one

step through the fast-forward transition relation→A — updating its mon-

itor state based on the abstracted trace. Such a configuration step should

include three aspects corresponding to the configuration components q, ct,

and θ respectively:

1. The state of the respective monitor (an element of q) is updated e.g.,

monitors of users whose account has been put into dormant state in

the recent past (according to the system event log) should be in the

state dorm.

2. The clocks of each monitor (i.e., ct) are set e.g., when the last financial

transaction took place so that it can be ensured that inactive users are

actually put into the dormant state.

3. The values of the variables of each monitor (i.e., θ) are set e.g., count-

ing the number of transactions which the user has carried out so that

monitors can check that the allowed quota has not been exceeded.

Example 7.2.1. As an example of monitor fast-forwarding, we use a Larva mon-

itor from the case study which we presented in the previous chapter. To aid the

reader, we again give a short description of the property.

To ensure the security of inactive accounts, users who are inactive for more

than six months are suspended, i.e., put in dormancy mode, and an administra-

tion fee is charged. If a user asks for his account to be reactivated, then the

request is granted but the account is switched to dormant once more if the user

4The definitions have been given in Chapter 2, Section 2.1.2.

205

Chapter 7. Monitor-to-System Synchronisation

still remains inactive for another three months. This property is monitored for

each system user and thus a replica of each monitor is instantiated for each

user. Excerpts of the Larva script which specifies the dormancy property is

given in Figure 7.1[top] while the depiction of the DATE automaton is given in

Figure 7.1[bottom]5.

Foreach (String user) {

Variables {

Clock T6, T3; }

Events {

expired6 = {T6 @ 183 days}

anyTx = {event(currency, amount, type) where type = "generic"}

... }

Property dormancy {

States {

Bad { expiredDorm, unexpectedDorm, failedPay, unexpectedTx }

Normal { dorm, thawed, feepaid }

Starting { nonDorm } }

Transitions {

nondorm -> nondorm [anyTx\\resetT6]

nondorm -> dorm [dorm\expectedT]

... } } }

T3@3mnths\\
expiredDorm

dorm feePaid

unexpectedTx failedPay

thawed

failed,
pay\!correct

unexpectedDrm
Foreach User

nonDorm

anyTx\\resetT6

thaw\\resetT3

\
anyTx\\

anyTx\\resetT6

pay\correct\dorm\T6>6mnths\

dorm\T3>3mnths\

dorm\\dorm\\

T6@6mnts\\

Figure 7.1: The dormancy property expressed as a Larva script [top] and as a
DATE [bottom]

Referring to the dormancy example, we illustrate how the theory of fast-

forwarding can be instantiated for initialising dormancy monitors for the exist-

ing users of a system. Fast-forward initialisation, or fast monitor bootstrapping,
5For brevity we use dorm for dormancy, Tx for transaction, and T for Timing or Timer.

206

Chapter 7. Monitor-to-System Synchronisation

entails a choice of a cut-off point during the system’s life-cycle (as shown in Fig-

ure 7.2) which marks up to which point the monitor is expected to fast-forward.

In the rest of the example this point is referred to as the point of initialisation.

Fast−forward monitoring Normal montoring

System started running

time

nowMonitor initialisation

Figure 7.2: The typical timeline of fast monitor bootstrapping

For the sake of this example we will focus on deciding whether a user is in

the nonDorm state, or the dorm state and set the clocks accordingly. To facilitate

this decision, we need two pieces of information: (i) a list of system users, and

(ii) for each user, the timestamp for the latest transaction or the latest switch

to dormancy; whichever is most recent (this information would enable us to

deduce the active automaton state and the timers’ values).

Thus, assuming a monitor 〈C, c0,→c〉 and a system trace s, the corresponding

translation function �� transforms c0 into a configuration of type C ×Ψ (using

information from the system state) where Ψ is the list of users currently active

in the system. The reverse translation function �� simply drops Ψ from the re-

sulting configuration. The trace abstraction function α drops all events except

for the most recent activity of each user (with respect to the point of initiali-

sation). As for the fast-forward transition system, →A, for each user there are

conceptually two options: either his or her last activity was a normal transac-

tion, in which case the user is in the nonDorm state and the stopwatch should be

set to trigger six months from the latest transaction, or the last activity turned

the user into dormant and hence the user is in the dorm state.

Over and above instantiating the theory of monitor-fast-forwarding to Larva,

appropriate constructs have to be provided as part of the specification script to

aid the user program the necessary abstractions. This is further discussed in the

207

Chapter 7. Monitor-to-System Synchronisation

next section.

7.3 Adapting Larva Scripts

To enable users to easily program fast monitor bootstrapping, we have aug-

mented the Larva script structure. Recall that Larva provides the foreach con-

struct which enables monitors to be replicated for distinct objects of a particular

type. Furthermore, foreach components can be nested (e.g., for monitoring each

credit card of each user) and the outermost foreach components are enclosed

in a global component which can be used to monitor properties which are not

replicated, i.e., not related to particular objects. To initialise a global component

what is required is to give a value to variables, clocks and update the state of

any global property automata. To this end, we introduce a novel construct to the

Larva specification: initializeIf. The code in the initializeIf component triggers

on a particular condition (indicating that the monitor is in fast-forward mode)

enabling the user to specify a Java method which returns a hashmap with vari-

able/clock/automata names as keys and the corresponding intended values as

the hashmap values. No setting needs to be done if the variables/clocks/states

have not progressed from their default initialisation. Note that the initializeIf

component corresponds to the fast-forward transition relation→A and also the

trace abstraction function α since it extracts a minimal set of events to perform

the initialisation.

Yet it is not enough to be able to initialise a monitor for the global context —

the Larva script should also allow the script writer to specify a means of deduc-

ing the number of users in the system for whom a monitor should be replicated

and initialised. For this reason, each foreach may contain an initially component

(apart from an initializeIf component) which can specify a method returning an

array with all the objects for which a monitor should be created6. In our ex-

6
Larva supports foreach components for tuples of objects. Thus, the initially method actually

returns an array of arrays where each array supplies an element of the tuple.

208

Chapter 7. Monitor-to-System Synchronisation

ample the initially method returns an array of user id’s. Note that the initially

component corresponds to Ψ as presented in Example 7.2.1, contributing to��.

Furthermore, in the case of Larva the reverse translation function�� is implicit

and is done conceptually by dropping Ψ .

The approach described in this section has been successfully applied to the

live data of an industrial case study with promising results as elaborated in the

next section.

7.4 Applying Monitor Fast-Forwarding to Entropay

Since Entropay had been up and running for more than a year at the time of

applying monitoring and it was envisaged that monitors would have to be mod-

ified or added regularly, fast monitor bootstrapping was crucial to make moni-

toring feasible.

Using the constructs introduced in Section 7.3, Figure 7.3 shows how using

two SQL queries (marked with (1) and (2) in the code excerpt) we deduce when

the last successful transaction occurred for a particular user and whether the

user has been recently (since the last successful transaction) put into dormant

state. Using this information we set (marked with (3)) the corresponding clocks

to trigger when the user should be put to dormant in the future. Moreover, if the

user is currently dormant, then the corresponding dormancy automaton (shown

in Figure 7.3) is to be in state dorm. Note that we assume that the current system

state does not contain errors and consequently our fast-forwarding is an under-

approximation. Finally, a third SQL query (marked with (4)) is used to obtain

the list of active users for each of whom a monitor has to be instantiated.

The approach described in this section has been successfully applied to the

live data of an industrial case study with promising results as elaborated in the

final section of the chapter.

209

Chapter 7. Monitor-to-System Synchronisation

Foreach (String user) {

Initializeif (init) {

static HashMap<String, Object> initializeifUser(String user) {

HashMap<String, Object> list = new HashMap<String, Object>();

//obtain last successful user transaction

(1) rs = st.executeQuery(

SELECT timestamp FROM transaction_table

WHERE id=@user AND timestamp < @initializationTime

ORDER BY timestamp DESC);

latestTrans = rs.getLong("timestamp");

//check if user is currently dormant

(2) rs = st.executeQuery(

SELECT timestamp FROM log_table WHERE id=@user

AND event="USER_DORMANT" AND timestamp < @initializationTime

ORDER BY timestamp DESC);

latestDorm = rs.getLong("timestamp");

(3) if (latestDorm > latestTrans) {

//i.e. user is currently dormant

//therefore put automaton into "dorm" state

} else {

//i.e. user is not dormant

//set clock to expire 6 months after last transaction occurred

}

...

return list; } }

//code given in the previous example goes here

Variables {...} Events {...} Property ...

//code given in the previous example ends here

Initially {

static ArrayList initiallyUsers() {

...

(4) rs = s.executeQuery(SELECT id FROM users_table;);

while (rs.next())

list.add(rs.getString("id"));

return list;

} } }

Figure 7.3: The dormancy example augmented with fast bootstrapping code

7.4.1 Performance Results

The monitor was deployed on data representing activities starting from 23rd

December 2008. Data before this date was considered to be too old and would

waste monitoring time which could more beneficially be used to monitor re-

210

Chapter 7. Monitor-to-System Synchronisation

cent data pertaining to users which are more probably still active at the time of

monitoring. To quickly bootstrap the monitors up to 23rd December 2008, we

used the fast-forward technique on 58 weeks of data starting from 8th November

2007.

Using a Dual Core AMD Opteron Processor at 1.81GHz running Windows

XP x64 with 2Gb RAM, the monitors successfully fast-forwarded through 58

weeks in 35 hours. Subsequently, the monitors were run on the available data

(at the time when this case study was carried out) dating till 8th September 2009

(including 37 weeks of data) consisting of millions of transactions. This pro-

cess took 552 hours (approximately 23 days) equating to less than 15 hours of

processing per one week’s data. Proportionately, monitoring the 58 weeks of

data would have roughly taken the monitor 36 days to come at par with the live

system as opposed to the day and a half with fast-forwarded initialisation. This

time saving is crucial when one would need to receive immediate feedback upon

deploying new monitors, particularly if remedy actions can be taken based on

monitoring results.

7.4.2 Discussion

The downside of the current instantiation of monitor fast-forwarding is that

the user has to program the fast-forwarding abstractions manually. From our

experience, coming up with fast-forwarding monitors is more challenging than

devising normal monitors. The reason is that normal monitoring is usually more

similar to the typical specifications accompanying industrial systems, while the

logic needed for fast-forward monitoring can only be obtained by having an

intimate knowledge of the system at hand. For example, referring back to the

dormancy example, the industrial specifications are written in the following

imperative style: (i) The cycle starts when a registered user is inactive for six months,

at that point the user account must be put to dormant. (ii) Whilst dormant, the user

may not perform any transactions but may ask to be reactivated. (iii) If the user

211

Chapter 7. Monitor-to-System Synchronisation

has been reactivated but does not carry out a financial transaction for another three

months, the user account is deactivated again. This logic can almost be directly

translated into normal monitors with states and transitions. On the other hand,

programming under-approximating (i.e., assuming the system worked correctly

before monitoring started) fast-forward monitoring would requires declarative

knowledge such as: (i) If the user has performed financial transactions since the last

time he or she has been dormant, then the user must be active. (ii) On the other hand,

if no transactions have been carried out since, then the user is still dormant. (iii) Yet

another possibility is that if the user has carried out (only) non-financial transactions,

then the user has been thawed but not fully activated yet. Although statements

such as the latter can usually be inferred from the former, they are not typically

written in technical specifications and engineers are more accustomed to the

imperative style of specifications.

One use of more generic fast-forwarding in our case study would be to en-

able the monitor to keep up with the system in case asynchronous monitoring

is consistently slower than the system. However, as yet, we have never encoun-

tered monitors which are not able to keep up with the system. In our case study

results it is noteworthy that once monitors come at par with the system, it is not

a problem for the monitors to keep up (with slightly more than two hours of

processing for a day’s events). Still, if one had to adapt the above given code for

fast-forwarding asynchronous monitoring, this can be done by simply adding a

condition in the SQL statements to ignore entries before a particular date (the

date where the slow asynchronous monitors have reached).

7.5 Related Work

To the best of our knowledge the idea of fast-forward monitoring is novel. A

notion which relates to fast-forward monitoring is counterexample shrinking

[76, 99] from the area of testing. For example QuickCheck [64], a model-based

212

Chapter 7. Monitor-to-System Synchronisation

testing tool for Erlang, attempts to find a shorter trace when a bug is found. This

simplifies the developers’ task of debugging since it is easier to understand what

happened in a simpler trace. Note that counterexample shrinking is a special

case of our fast-forwarding theory: (i) the translation functions are the identity

functions, (ii) the trace abstraction function returns a shorter or simpler trace,

and (iii) the same identical oracle that is used during testing is used during

shrinking. In this case exact fast-forwarding ensures that the same bug that

was exhibited during the original trace is also exhibited when monitoring the

simpler one.

7.6 Conclusion

The main problem with asynchronous monitoring is that the monitor may fall

indefinitely behind the system, meaning that it might be too late to take any cor-

rective measures by the time the monitor detects a violation. For this reason, it

is desirable to have ways in which the relationship between the system and the

monitor can be controlled. From the monitor point of view, we have presented

monitor fast-forwarding — a means by which the monitor can keep up with the

system. The theory of fast-forwarding has been instantiated for the monitor-

ing tool Larva by enhancing its script with two new components which enable

users to specify fast monitor bootstrapping. Furthermore, we have shown the

usefulness of this approach for an industrial case study where monitors have to

process millions of records before starting to process relevant events.

213

8. Synchronisation Programming

with Compensating Automata

A significant limitation of our introduction of compensations to synchronise

monitoring (namely the architecture shown in Figure 6.8) is the assumption that

each individual action has an individual compensation. In many real-life sce-

narios, there may be several ways in which an action may be compensated de-

pending on the context; e.g., a payment may be refunded free of charge if a sys-

tem error occurs and for a fee in case of a customer cancellation. Furthermore,

frequently individual compensations are discarded at some point and replaced

by coarser-grained compensations, i.e., having one compensation for several ac-

tions. For example it is common that once a transaction is closed and shipment

leaves, the transaction can only be compensated by another transaction which

ships back the goods.

Systemviolation

end of buffer

beginning of buffer

Monitored events

Buffered events

Monitor

Figure 8.1: Monitored and buffered events

Another limitation of the architecture is that it is very inflexible with respect

214

Chapter 8. Synchronisation Programming with Compensating Automata

to the actions it compensates for — it automatically compensates for all the

actions which are in the buffer (depicted in Figure 8.1 as the list of events which

the system has produced but the monitor has not yet consumed) at the time of

error detection. There are at least two reasons why one might want to modify

this: (i) Not all actions in the buffer may need to be compensated (e.g., only the

most risky operations are compensated). (ii) Some actions which have already

been monitored — i.e., not in the buffer at detection-time — might need to be

compensated: e.g., in the case of a fraud this is usually detected late even when

monitoring synchronously, in which case one may desire to undo certain actions

which have been already monitored.

While these limitations have been partially lifted through compensation scop-

ing, the cLarva architecture presented in Chapter 6 can still be considered in-

flexible and useful only in particular scenarios. To lift these limitations in this

chapter we explain how compensating automata (presented in Chapter 4) can

be integrated with cLarva and show how the modified architecture can be ap-

plicable to a realistic case study.

8.1 Proposed Architecture

The cLarva architecture is able to signal the system to compensate for a se-

quence of actions, i.e., the actions remaining in the buffer at detection time af-

ter removing actions within closed scopes. To allow more flexibility as regards

the choice of compensations, we introduce an additional compensation manage-

ment component within the monitoring architecture as shown in Figure 8.2. By

listening to the system’s events, the compensation manager dynamically man-

ages what compensations are to be executed if (and when) the monitor detects

a problem. When the monitor identifies a problem, it signals the compensation

manager with a compensation strategy which is to be carried out in the spirit of

monitor-oriented compensation programming. Such a strategy would include

215

Chapter 8. Synchronisation Programming with Compensating Automata

a choice of various compensating automata whose accumulated compensations

are to be executed (sequentially or concurrently).

An important consideration in the managing of compensations is usually the

point at which the violation had occurred and the point at which the monitor

has detected a problem (depicted in Figure 8.1). These two points are indicated

by the dedicated signals: beginning-of-buffer (BoB) and the end-of-buffer (EoB)

respectively. Using these signals the compensation manager and the monitor

can take into consideration the fact that the events they will receive following

the BoB have occurred after a violation, while the receiving EoB means that all

the events have been received.

Incorporating these modifications into the architecture presented in Chap-

ter 6, we add the compensation manager component which receives all the

events as received by the monitor, and the two extra signal BoB and EoB as

shown in Figure 8.2.

Compensation

System
Heuristics

 Monitor

 Manager

Events

Stop/Cont

Events

Stop/Cont

Des Syn

Manager
Compensation

Events

Monitoring System

BoB/EoB

Comp Strategy

Figure 8.2: The cLarva architecture with the compensation manager

Note that unlike the previous architecture where the monitor simply com-

municated the buffered activities to be compensated, the new architecture dele-

gates the compensation synchronisation to the compensation manager. This is a

significant difference since it is no longer the system which has to decide how to

compensate for the actions in the monitor buffer but rather a separate module,

keeping the system uncluttered.

216

Chapter 8. Synchronisation Programming with Compensating Automata

To facilitate the programming of the compensation manager, a compensa-

tion programming language relieves the user from having to manually program

compensations. To this end, we propose compensating automata which have

been devised specifically for programming compensations. An advantage of us-

ing compensating automata is that they can be seamlessly integrated with the

monitors as proposed in Chapter 5, using monitors to decide when and which

compensation strategy to be carried out (hence the compensation strategy signal

from the monitor to the compensation manager in Figure 8.2).

In what follows, we give two examples to show how this architecture can be

useful for synchronising the system with a monitor if a problem is detected late.

8.2 Case Study

To illustrate how one could use compensating automata to synchronise the sys-

tem to the monitor, we use a case study inspired from the Entropay industrial

case study (presented in Chapter 6). For simplicity we assume that after a user

logs in, he or she may perform a sequence of operations made of repeating any

of the following three: (i) loading money from an external source onto a virtual

credit card, (ii) transferring money across virtual credit cards, and (iii) purchas-

ing through a virtual credit card. The sole aim of this case study is to show how

compensating automata can be used to synchronise the system to the monitor

and thus we abstract away from the monitoring logic which detects the violation

itself. Rather, we assume that some monitor signals that a failure has occurred

and that some other monitor is responsible of listening to failures and trigger-

ing compensations (examples of the latter are shown in Figure 8.3[top] and Fig-

ure 8.4[top]). The following points outline two examples of system failure where

synchronising the system is done through compensating automata:

Excessive loads When the monitor detects that the limit of money that can

be loaded has been exceeded, the relevant subsystem is stopped and a

217

Chapter 8. Synchronisation Programming with Compensating Automata

BoB signal is issued (i.e., a violation has been detected and the system

has stopped), followed by the events in the buffer (possibly including fur-

ther loads which have been performed after the limit had been exceeded).

Figure 8.3[bottom]1 shows a compensating automaton which accumulates

compensations after it receives the BoB signal, i.e., compensations are only

accumulated for loads which are still recorded in the buffer (and had not

been processed by the monitor)2. Once all the events in the buffer have

been processed, the EoB signal is issued and the monitor depicted in Fig-

ure 8.3[top] triggers [EXCESS] to execute the accumulated compensations.

Note that in this case, the fixed approach adopted in Chapter 6 would not

have been appropriate since not all the buffered events required compen-

sating (only the load events). The programmed compensating automata

depicted in Figure 8.3[bottom] automatically ignores any events which do

not match with the pattern.

Fraud detection The scenario is considerably different when compensating for

the actions of a user who have been detected to be a fraud. In such a case,

one would not only want to compensate till the point where the user was

detected to be fraudulent since the user has probably been fraudulent all

along3. Although the compensating automaton which compensates for a

load action by a fraudulent user (given in Figure 8.4[bottom]) appears to

be similar to the one used for compensating excessive loads, there are two

significant differences:

• The fraud compensating automaton does not wait for the BoB signal

1We use the following abbreviations: dec (decrease), inc (increase), crd (card), avl (available),
act (actual), bal (balance), int (internal), ext (external), not (notify), opr (operator), rec (receive),
settl (settlement), src (source), and dst (destination).

2For simplicity we assume that the money which has been loaded in excess has not yet been
used for transfers and/or purchases and hence we compensate for load operations only. In an
actual implementation one would need to quantify the excess and also compensate for any op-
erations which have only been possible due to the excess.

3For the monitor to detect a pattern of fraudulent behaviour, the pattern would have already
started earlier.

218

Chapter 8. Synchronisation Programming with Compensating Automata

before starting to configure compensations. This means that the com-

pensating automaton will compensate for all the loads of a user; not

only those which remain in the buffer.

• Another difference is that completed transactions are not undone but

instead the credit cards involved are frozen. The rationale of this

choice is that fraud detection is usually investigated further by a hu-

man operator. Thus, to avoid unnecessary inconvenience to innocent

users who might be detected as fraudulent, only incomplete transac-

tions are compensated — immediately stopping any impending high-

risk activity.

• While excessive loading of money is an issue concerning money loads,

a fraud permeates all the user’s operations (including transfers and

purchases). Thus, although we have focused only on money loads for

the sake of this example, an extended version of the fraud detection

case study is given in Appendix A.

Note once more that the architecture of Chapter 6 is not suitable for syn-

chronisation in this example since events which have been removed from

the buffer are also compensated.

8.3 Conclusion

Whilst synchronising a system with its monitor through compensations is bene-

ficial to enable asynchronous monitoring to give feedback to the system, a sim-

plistic compensation architecture such as that presented in the previous chap-

ter would not always suffice. To cater for compensation complexities, the user

would have to manually introduce additional compensation logic at the system

side. By externalising such compensation logic into a separate module and pro-

gramming it through compensating automata we have provided full support

219

Chapter 8. Synchronisation Programming with Compensating Automata

for complex compensation programming. Furthermore, using monitor-oriented

compensation programming we have seamlessly integrated the compensation

manager with the monitors within the existing architecture. This enables the

explicit programming of when and which synchronisation strategy to be used

depending on the violation detected. Finally, we have applied the architecture

to two examples based on an industrial case study to show where synchronisa-

tion programming is crucial to enable automatic recovery under asynchronous

monitoring.

220

C
hap

ter
8.

Synchronisation
P

rogram
m

ing
w

ith
C

om
p

ensating
A

u
tom

ata

EoB?

start [EXCESS]wait

limitExceeded?

[EXCESS]

dec−int−acc−bals

inc−crd−bal

dec−crd−bal

dec−ext−acc inc−int−acc−bals

inc−ext−acc−fee

BoB

Figure 8.3: A monitor which detects load limit excess and the EoB signal [top], a compensating automaton which man-
ages compensations when excessive loads occur [bottom]

221

C
hap

ter
8.

Synchronisation
P

rogram
m

ing
w

ith
C

om
p

ensating
A

u
tom

ata

EoB?

start wait

fraudulentUser?

[FRAUD]

[FRAUD]

inc−crd−bal

inc−ext−acc−fee dec−crd−bal

inc−int−acc−bals

dec−int−acc−bals

EoBdec−ext−acc

freezeCards

Figure 8.4: A monitor which detects user fraud and the EoB signal [top], a compensating automaton which manages
compensations when a fraudulent user has performed a load [bottom]

222

Part IV

Conclusions

This part summarises the previous two parts

and discusses directions for future work, end-

ing with some final remarks.

223

9. Conclusion

Starting out with two seemingly unconnected topics, this study has shown com-

pensations and runtime verification to be significantly related. On the one hand,

runtime verification has helped alleviate the challenge of programming com-

pensations through separating compensation programming concerns from oth-

ers. This not only eases the programming of such concerns due to the separation

but also introduces added flexibility by decoupling the structure of compen-

sations from the structure of the system they are compensating for. To sup-

port this approach, we have proposed compensating automata, a compensation-

dedicated automata-based notation which provides specialised constructs for

programming compensations. Through a non-trivial case study from the litera-

ture we have shown compensating automata to be highly expressive.

Although compensating automata free the system from being aware of the

compensation logic, the latter still has to be aware of when to execute compensa-

tions. To this end, we have shown how compensating automata can be integrated

into a monitoring architecture resulting in a framework where compensation

programming can be entirely delegated to an external monitoring module, leav-

ing the system uncluttered.

On the other hand, compensations can be also useful for providing solutions

for significant issues in the context of monitoring, notably the problem of run-

time overheads induced through monitoring. While to date asynchronous moni-

224

Chapter 9. Conclusion

toring has been synonymous with non-steering monitoring, enabling the system

and the monitor to synchronise upon error detection lifts this limitation. The

possibility of such a synchronisation significantly relaxes the coupling between

a system and its monitor, relieving the system from intrusiveness. Naturally, this

might introduce a significantly longer delay between the occurrence and detec-

tion of a violation — something which might not always be acceptable. For this

reason our framework allows the use of monitor heuristics which automatically

decide when to synchronise and desynchronise the monitor and the system, en-

abling fine-grained control over the tradeoff between monitor intrusiveness and

error detection latency. This approach has been applied to an industrial case

study with encouraging results and further scope to refine the architecture. The

case study made us aware of the need of fast-forward monitoring, a technique

which has proved crucial for initialising stateful monitors when the system has

been running for a number of years. Moreover, we have also become aware of

the limitations of our framework, particularly in the system-monitor synchroni-

sation protocol which always follows a rigid pattern of compensation execution.

To this extent, we have described a way of enhancing the framework, enabling

the user to program the synchronisation protocol through compensating aut-

omata.

9.1 Future Work

There are several directions in which the work presented here can be taken in

the future:

Language analysis Although we have formally specified compensating autom-

ata, we have not yet carried out an in depth analysis from a language per-

spective. From initial considerations, compensating automata seem to be

a special case of Aho’s nested stack automata [3]: nested stack automata

allow reading of any stack elements while compensating automata only

225

Chapter 9. Conclusion

allow access to the top most stack element at particular points of execu-

tion (during compensation execution). This would imply that the language

is an indexed grammar [2] and thus that it shares a lot of properties with

context-free grammars vis-à-vis language closure properties. In the future,

we aim to verify or refute these claims by performing a thorough study of

the language properties of compensating automata.

Syntactic sugar The compensation example given in Section 4.4 shows that

there are recurring patterns of synchronisation across parallel automata

which the programmer has to hand code through local channel communi-

cation. In the future we aim to provided such patterns as special constructs

which compile to basic compensating automata syntax. Of particular in-

terest are two constructs which have been discussed in the example: (i) one

which synchronises the start of a number of parallel automata; and (ii) an-

other which synchronises the end of concurrent compensation execution

before continuing with compensating earlier actions.

Model checking Since compensating automata execute compensation actions

in the context of a system event trace, it might be useful to model check

the execution orderings which might be triggered, e.g., ensuring that two

actions are always executed in a particular order. This would guarantee

added assurance that a compensating automata specification actually en-

codes the expected behaviour. Model checking compensating automata is

non-trivial since the state space of compensating automata is potentially

infinite due to the unbounded size of the stack.

Real-time Real-time aspects have not been incorporated within compensating

automata. This might be done for example by supporting timed events,

enabling compensations to be installed, discarded and/or replaced upon

a timeout. Given that real-life scenarios involving business transactions

usually entail significant timing constraints, this would be an interesting

226

Chapter 9. Conclusion

addition.

Industrial application Whilst we have successfully applied our theory and tech-

niques on industrial and industry-inspired case studies, there is still a

lot of scope for further experimentation. In particular, monitor-oriented

compensation programming through compensating automata has not been

tried out on industrial-scale case studies. Indeed such applications to real-

life scenarios would be vital for transforming the current prototype toolset

into a mature and reliable one.

9.2 Concluding Thoughts

A major insight obtained through combining runtime verification with compen-

sations is that whilst it has been argued that compensations are “not enough”

for real-life scenarios [57], through this work it has been shown that it is not the

compensation mechanism which is the problem but the tightly system-coupled

way compensations are usually programmed. Through the adoption of monitor-

ing-oriented programming we have shown that compensations can still be use-

ful in very complex scenarios.

This work has hopefully shed more light on the usefulness of the runtime

verification approach to programming real-life software which is becoming in-

creasingly complex. Unfortunately, convincing industrial case studies are still

lacking in the area of runtime verification. One of the major contributing fac-

tors probably being the intrusiveness of synchronous monitoring. To this extent

we have attempted to show how intrusiveness can be reduced to a minimum

by synchronising and desynchronising monitors at runtime — making it more

practical for industrial adoption. We hope that in the future these insights lead

to more uptake of runtime verification particularly in the security-intensive ar-

eas where compensations are frequently used.

227

A. System-Monitor Synchronisation

Extended Case Study

Further to the case study given in Section 8.2 concerning the programming of

system-monitor synchronisation through compensating automata, we give an

extended version of the fraud example. The main difference is that the compen-

sating automaton provided in this section manages all the financial operations

in a user’s life cycle as opposed to managing only the load operations.

For simplicity we assume that a user life-cycle is a repetition of a choice of

three actions: loading money from a bank account onto a virtual credit card,

transferring money from one virtual credit card to another, and using a virtual

credit card to affect a purchase. If a user is detected to be fraudulent, all actions

(before and after being detected as fraudulent) are compensated. A significant

difference between the programmed compensations for fraud and those for ex-

cessive money loading is that in the case of fraud, completed transactions are not

undone but instead the credit cards involved are frozen. The rationale of this

choice is that fraud detection is usually investigated further by a human op-

erator. Thus to avoid unnecessary inconvenience to innocent users who might

be detected as fraudulent, only incomplete transactions are compensated. Fig-

ure A.11 shows the compensating automata involved in programming compen-

1We use the following abbreviations: dec (decrease), inc (increase), crd (card), avl (available),

228

Appendix A. System-Monitor Synchronisation Extended Case Study

sations for the life-cycle of a user who has been detected as fraudulent. For read-

ability, parts of the main compensating automaton (shown last) are shown be-

fore and marked with curly brackets, namely {LOAD}, {TRANS}, and {PURCH}.

Managing compensations for these three operations mainly involves monitoring

balance changes and recording compensations accordingly.

act (actual), bal (balance), int (internal), ext (external), not (notify), opr (operator), rec (receive),
settl (settlement), src (source), and dst (destination).

229

A
p

p
end

ix
A

.
System

-M
onitor

Synchronisation
E

xtend
ed

C
ase

Stu
d

y

EoB?

start wait

fraudulentUser?

[FRAUD]

{LOAD}

dec−crd−bal

inc−int−acc−bals

inc−ext−acc−fee

dec−ext−acc inc−crd−bal

dec−int−acc−bals

Figure A.1: A user life-cycle compensating automaton which manages compensations for a user life-cycle (cont.)

230

A
p

p
end

ix
A

.
System

-M
onitor

Synchronisation
E

xtend
ed

C
ase

Stu
d

y

{TRANS}

dec−src−avl−baldec−src−act−bal

inc−src−act−bal

inc−dst−act−bal

dec−dst−act−bal

inc−dst−act−bal

dec−src−avl−bal dec−dst−act−bal

{PURCH}

inc−int−avl−bal

inc−crd−act−bal

rec−settl

 not−opr

dec−crd−avl−bal dec−int−avl−bal

inc−int−act−bal

dec−crd−act−bal dec−int−act−bal

inc−crd−avl−bal

Figure A.1: A user life-cycle compensating automaton which manages compensations for a user life-cycle (cont.)

231

A
p

p
end

ix
A

.
System

-M
onitor

Synchronisation
E

xtend
ed

C
ase

Stu
d

y

[FRAUD]

ase

transfer {TRANS} (above)

{LOAD} (above)

purch {PURCH} (above)

login

load

freezeUser

logout

freezeCards

freezeCards

freezeCards

repeat

Figure A.1: A user life-cycle compensating automaton which manages compensations for a user life-cycle

232

B. Publications

The work presented in this thesis includes the following published and unpub-

lished papers. The contribution of the respective authors is explained below.

Published Papers

1. Monitor-Oriented Compensation Programming, Christian Colombo and

Gordon J. Pace, to appear in Graph Transformation and Visual Modeling

Techniques. 2013.

Pace reviewed the paper several times.

2. Fast-Forward Runtime Monitoring — An Industrial Case Study, Christian

Colombo and Gordon J. Pace, in Runtime Verification, volume 7687 of Lec-

ture Notes in Computer Science, pages 214–228, Springer, 2012.

Pace reviewed the paper and rewrote Section 3.1.

3. Recovery within Long Running Transactions, Christian Colombo and Gor-

don Pace, to appear in ACM Computing Surveys, 2012.

Pace performed several reviews of the paper and rewrote parts of Section 5.

4. Safer Asynchronous Runtime Monitoring Using Compensations, Christian

Colombo, Gordon Pace and Patrick Abela, volume 41 of Formal Methods

in System Design, pages 269–294, 2012.

233

Appendix B. Publications

Pace reviewed the paper several times, rewrote parts of Section 3 and wrote

Section 4. Abela reviewed the parts related to Ixaris Ltd.

5. Compensation-Aware Runtime Monitoring, Christian Colombo, Gordon

J. Pace and Patrick Abela, in Runtime Verification (RV), volume 6418 of

Lecture Notes in Computer Science, pages 214–228, Springer, 2010.

Pace reviewed the paper several times and rewrote parts of Section 3. Abela

reviewed the parts related to Ixaris Ltd.

Papers Submitted for Publication

1. Fully Monitor-Oriented Compensation Programming, Christian Colombo

and Gordon J. Pace, Department of Computer Science, University of Malta.

2012.

Pace reviewed the paper.

234

Appendix B. Publications

Technical Reports

1. Separating Compensation Concerns and Programming them with Com-

pensating Automata, Christian Colombo and Gordon J. Pace, Department

of Computer Science, University of Malta. Technical Report CS2012-01,

2012.

Pace reviewed the paper several times.

2. Programming Compensations for System-Monitor Synchronisation, Chris-

tian Colombo and Gordon Pace, internal report 03-WICT-2012, University

of Malta, 2012.

Pace reviewed the paper.

3. A Compensating Transaction Example in Twelve Notations, Christian Col-

ombo and Gordon J. Pace, Department of Computer Science, University of

Malta. Technical Report CS2011-01, 2011.

Pace reviewed the paper several times.

4. An Architecture Supporting Compensation-Aware Monitoring, Christian

Colombo, Gordon J. Pace and Patrick Abela, internal report 01-WICT-

2010, Malta.

Pace reviewed the paper several times.

5. Offline Runtime Verification with Real-Time Properties: A Case Study,

Christian Colombo, Gordon J. Pace and Patrick Abela, internal report 01-

WICT-2009, Malta.

Pace reviewed the paper several times.

235

References

[1] Business process modeling notation, v1.1, 2008. http://www.bpmn.

org/Documents/BPMN_1-1_Specification.pdf (Last accessed: 2010-
02-17).

[2] A. V. Aho. Indexed grammars — an extension of context-free grammars.
Journal of the ACM, 15(4):647–671, 1968.

[3] A. V. Aho. Nested stack automata. Journal of the ACM, 16:383–406, July
1969.

[4] R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer
Science, 126(2):183–235, 1994.

[5] R. Alur, S. Kannan, and M. Yannakakis. Communicating hierarchical state
machines. In International Colloquium on Automata, Languages and Pro-
gramming (ICAL), pages 169–178. Springer, 1999.

[6] J. H. Andrews and Y. Zhang. General test result checking with log file
analysis. IEEE Transactions on Software Engineering, 29(7):634–648, 2003.

[7] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Ley-
mann, K. Liu, D. Roller, D. Smith, S. Thatte, I. Trickovic, and S. Weer-
awarana. Business process execution language for web services v1.1,
2003. http://download.boulder.ibm.com/ibmdl/pub/software/dw/

specs/ws-bpel/ws-bpel.pdf (Last accessed: 2010-02-17).

[8] D. Ardagna, M. Comuzzi, E. Mussi, B. Pernici, and P. Plebani. PAWS: A
framework for executing adaptive web-service processes. IEEE Software,
24:39–46, 2007.

[9] A. Arkin, S. Askary, B. Bloch, F. Curbera, Y. Goland, N. Kartha, C. K.
Liu, S. Thatte, P. Yendluri, and A. Yiu. Web services business pro-
cess execution language version 2.0, 2007. OASIS Standard. Avail-
able at: http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf (Last ac-
cessed: 2010-02-17).

[10] M. Arnold, M. Vechev, and E. Yahav. QVM: an efficient runtime for de-
tecting defects in deployed systems. SIGPLAN Notes, 43:143–162, 2008.

236

References

[11] L. Baresi and S. Guinea. Self-supervising BPEL processes. IEEE Transac-
tions on Software Engineering, 37(2):247–263, 2011.

[12] H. Barringer, Y. Falcone, B. Finkbeiner, K. Havelund, I. Lee, G. J. Pace,
G. Rosu, O. Sokolsky, and N. Tillmann, editors. First International Confer-
ence, RV 2010, volume 6418 of Lecture Notes in Computer Science. Springer,
2010.

[13] H. Barringer, A. Groce, K. Havelund, and M. Smith. An entry point for
formal methods: Specification and analysis of event logs. In Formal Meth-
ods in Aerospace (FMA), volume 6 of Electronic Proceedings in Theoretical
Computer Science, pages 16–21, 2009.

[14] E. Bartocci, R. Grosu, A. Karmarkar, S. A. Smolka, S. D. Stoller, E. Zadok,
and J. Seyster. Adaptive runtime verification. In Runtime Verification (RV),
Lecture Notes in Computer Science, 2012. to appear.

[15] A. Bauer, M. Leucker, and C. Schallhart. Runtime verification for ltl and
tltl. Transactions on Software Engineering and Methodology, 20(4):14:1–
14:64, 2011.

[16] L. Bocchi, C. Laneve, and G. Zavattaro. A calculus for long-running
transactions. In Formal Methods for Open Object-Based Distributed Systems
(FMOODS), volume 2884 of Lecture Notes in Computer Science, pages 124–
138. Springer, 2003.

[17] E. Bodden, F. Chen, and G. Rosu. Dependent advice: a general approach
to optimizing history-based aspects. In Aspect-oriented software develop-
ment (AOSD), pages 3–14. ACM, 2009.

[18] E. Bodden, L. Hendren, P. Lam, O. Lhoták, and N. A. Naeem. Collabora-
tive runtime verification with tracematches. In Runtime Verification (RV),
pages 22–37. Springer, 2007.

[19] E. Bodden, L. Hendren, and O. Lhoták. A staged static program analysis
to improve the performance of runtime monitoring. In Object-Oriented
Programming (ECOOP), volume 4609 of Lecture Notes in Computer Science,
pages 525–549. Springer, 2007.

[20] R. Bruni, H. Melgratti, and U. Montanari. Theoretical foundations for
compensations in flow composition languages. In Principles of Program-
ming Languages (POPL), pages 209–220. ACM, 2005.

[21] R. Bruni, H. Melgratti, and U. Montanari. Theoretical foundations for
compensations in flow composition languages. In Principles of Program-
ming Languages (POPL), pages 209–220. ACM, 2005.

237

References

[22] R. Bruni, H. C. Melgratti, and U. Montanari. Nested commits for mo-
bile calculi: Extending join. In IFIP International Conference on Theoretical
Computer Science, pages 563–576. Kluwer, 2004.

[23] M. J. Butler and C. Ferreira. A process compensation language. In Inte-
grated Formal Methods, volume 1945 of Lecture Notes in Computer Science,
pages 61–76. Springer, 2000.

[24] M. J. Butler and C. Ferreira. An operational semantics for StAC, a lan-
guage for modelling long-running business transactions. In Coordination
Models and Languages (COORDINATION), volume 2949 of Lecture Notes
in Computer Science, pages 87–104. Springer, 2004.

[25] M. J. Butler, C. Ferreira, and M. Y. Ng. Precise modelling of compensating
business transactions and its application to BPEL. Journal of Universal
Computer Science, 11(5):712–743, 2005.

[26] M. J. Butler, C. A. R. Hoare, and C. Ferreira. A trace semantics for long-
running transactions. In 25 Years Communicating Sequential Processes, Lec-
ture Notes in Computer Science, pages 133–150. Springer, 2004.

[27] M. J. Butler, C. A. R. Hoare, and C. Ferreira. A trace semantics for long-
running transactions. In 25 Years Communicating Sequential Processes, vol-
ume 3525 of Lecture Notes in Computer Science, pages 133–150. Springer,
2004.

[28] M. J. Butler and S. Ripon. Executable semantics for compensating CSP.
In European Performance Engineering Workshop (EPEW) / Web Services and
Formal Methods (WS-FM), Lecture Notes in Computer Science, pages 243–
256. Springer, 2005.

[29] F. Chang and J. Ren. Validating system properties exhibited in execution
traces. In Automated Software Engineering (ASE), pages 517–520. ACM,
2007.

[30] A. Charfi and M. Mezini. AO4BPEL: An aspect-oriented extension to
BPEL. World Wide Web, 10(3):309–344, 2007.

[31] F. Chen and G. Roşu. Towards monitoring-oriented programming: A
paradigm combining specification and implementation. Electronic Notes
in Theoretical Computer Science, 89(2):108–127, 2003.

[32] F. Chen and G. Roşu. Java-mop: A monitoring oriented programming en-
vironment for java. In International Conference on Tools and Algorithms for
the construction and analysis of Systems (TACAS), volume 3440 of Lecture
Notes in Computer Science, pages 546–550. Springer, 2005.

238

References

[33] F. Chen and G. Roşu. MOP: an efficient and generic runtime verification
framework. SIGPLAN Notes, 42(10):569–588, 2007.

[34] M. Chessell, C. Griffin, D. Vines, M. Butler, C. Ferreira, and P. Henderson.
Extending the concept of transaction compensation. IBM Systems Journal,
41(4):743–758, 2002.

[35] E. M. Clarke, O. Grumberg, and D. A. Peled. Model checking. MIT Press,
2000.

[36] S. Colin and L. Mariani. Run-time verification. In Model-Based Testing of
Reactive Systems, volume 3472 of Lecture Notes in Computer Science, pages
525–555. Springer, 2004.

[37] C. Colombo, A. Gauci, and G. J. Pace. Larvastat: Monitoring of statistical
properties. In Runtime Verification (RV), volume 6418 of Lecture Notes in
Computer Science, pages 480–484. Springer, 2010.

[38] C. Colombo and G. Pace. Recovery within long running transactions. ACM
Computing Surveys, 45(3), 2013. To appear.

[39] C. Colombo and G. J. Pace. A compensating transaction example in twelve
notations. Technical report, Department of Computer Science, University
of Malta, 2011. Technical Report CS2011-01.

[40] C. Colombo, G. J. Pace, and G. Schneider. Dynamic event-based runtime
monitoring of real-time and contextual properties. In Formal Methods for
Industrial Critical Systems (FMICS), volume 5596 of Lecture Notes in Com-
puter Science, pages 135–149. Springer, 2008.

[41] C. Colombo, G. J. Pace, and G. Schneider. Larva — safer monitoring of
real-time java programs (tool paper). In Software Engineering and Formal
Methods (SEFM), pages 33–37. IEEE, 2009.

[42] M. Colombo, E. Di Nitto, and M. Mauri. Scene: a service composition
execution environment supporting dynamic changes disciplined through
rules. In International conference on Service-Oriented Computing (ICSOC),
pages 191–202. Springer, 2006.

[43] E. Cronin, A. Kurc, B. Filstrup, and S. Jamin. An efficient synchroniza-
tion mechanism for mirrored game architectures. Multimedia Tools and
Applications, 23(1):67–73, 2004.

[44] M. d’Amorim and K. Havelund. Event-based runtime verification of java
programs. In International Workshop on Dynamic Analysis (WODA), pages
1–7. ACM, 2005.

239

References

[45] B. D’Angelo, S. Sankaranarayanan, C. Sánchez, W. Robinson,
B. Finkbeiner, H. B. Sipma, S. Mehrotra, and Z. Manna. LOLA:
Runtime monitoring of synchronous systems. In International Symposium
on Temporal Representation and Reasoning (TIME), pages 166–174. IEEE,
2005.

[46] C. T. Davies, Jr. Recovery semantics for a DB/DC system. In ACM annual
conference, pages 136–141. ACM, 1973.

[47] N. Delgado, A. Q. Gates, and S. Roach. A taxonomy and catalog of runtime
software-fault monitoring tools. IEEE Transactions on Software Engineer-
ing, 30(12):859–872, 2004.

[48] M. B. Dwyer, M. Diep, and S. Elbaum. Reducing the cost of path property
monitoring through sampling. In Automated Software Engineering (ASE),
pages 228–237. IEEE, 2008.

[49] C. Eisentraut and D. Spieler. Fault, compensation and termination in WS-
BPEL 2.0 - a comparative analysis. In Web Services and Formal Methods
(WS-FM), volume 5387 of Lecture Notes in Computer Science, pages 107–
126. Springer, 2008.

[50] A. Erradi, P. Maheshwari, and V. Tosic. Ws-policy based monitoring of
composite web services. In European Conference on Web Services (ECOWS),
pages 99–108. IEEE, 2007.

[51] S. A. Ezust and G. V. Bochmann. An automatic trace analysis tool genera-
tor for estelle specifications. In Applications, technologies, architectures, and
protocols for computer communication (SIGCOMM), pages 175–184. ACM,
1995.

[52] D. Fahland and W. Reisig. ASM-based semantics for BPEL: The negative
control flow. In Abstract State Machines (ASM), pages 131–152, 2005.

[53] Y. Falcone, M. Jaber, T.-H. Nguyen, M. Bozga, and S. Bensalem. Run-
time verification of component-based systems in the bip framework with
formally-proved sound and complete instrumentation. SOftware and SYs-
tem Modeling (SOSYM). to appear.

[54] H. Garcia-Molina and K. Salem. Sagas. In Management of Data (SIGMOD),
pages 249–259. ACM, 1987.

[55] A. Gauci, A. Francalanza, and G. J. Pace. Distributed system contract
monitoring. Journal of Logic and Algebraic Programming (JLAP), 2013. to
appear.

[56] J. Gray. The transaction concept: Virtues and limitations (invited paper).
In Very Large Data Bases (VLDB), pages 144–154. IEEE, 1981.

240

References

[57] P. Greenfield, A. Fekete, J. Jang, and D. Kuo. Compensation is not enough.
In Enterprise Distributed Object Computing Conference (EDOC), pages 232–
239. IEEE, 2003.

[58] C. Guidi, I. Lanese, F. Montesi, and G. Zavattaro. On the interplay be-
tween fault handling and request-response service invocations. In Ap-
plication of Concurrency to System Design (ACSD), pages 190–198. IEEE,
2008.

[59] C. Guidi, R. Lucchi, R. Gorrieri, N. Busi, and G. Zavattaro. SOCK: A calcu-
lus for service oriented computing. In International Conference on Service-
Oriented Computing (ICSOC), volume 4294 of Lecture Notes in Computer
Science, pages 327–338. Springer, 2006.

[60] S. Guinea, G. Kecskemeti, A. Marconi, and B. Wetzstein. Multi-layered
monitoring and adaptation. In International Conference on Service-Oriented
Computing (ICSOC), volume 7084 of Lecture Notes in Computer Science,
pages 359–373. Springer, 2011.

[61] K. Havelund and G. Roşu. Synthesizing monitors for safety properties.
In Tools and Algorithms for the Construction and Analysis of Systems, pages
342–356. Springer, 2002.

[62] Y. He, L. Zhao, Z. Wu, and F. Li. Formal modeling of transaction behavior
in WS-BPEL. In Computer Science and Software Engineering (CSSE), pages
490–494. IEEE, 2008.

[63] T. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[64] J. Hughes. Quickcheck testing for fun and profit. In Practical Aspects of
Declarative Languages, volume 4354 of Lecture Notes in Computer Science,
pages 1–32. Springer, 2007.

[65] D. Jefferson. Virtual time. In International Conference on Parallel Processing
(ICPP), pages 384–394. IEEE, 1983.

[66] G. Kiczales. Aspect-oriented programming. In Software Engineering
(ICSE), page 313. ACM, 2005.

[67] M. Kim, M. Viswanathan, S. Kannan, I. Lee, and O. Sokolsky. Java-mac: A
run-time assurance approach for java programs. Formal Methods in System
Design, 24(2):129–155, 2004.

[68] I. Lanese, C. Vaz, and C. Ferreira. On the expressive power of primi-
tives for compensation handling. In Programming Languages and Systems
(ESOP), volume 6012 of Lecture Notes in Computer Science, pages 366–386.
Springer, 2010.

241

References

[69] I. Lanese and G. Zavattaro. Programming sagas in SOCK. In Software
Engineering and Formal Methods (SEFM), pages 189–198. IEEE, 2009.

[70] C. Laneve and G. Zavattaro. Foundations of web transactions. In Foun-
dations of Software Science and Computation Structures (FoSSaCS), volume
3441 of Lecture Notes in Computer Science, pages 282–298. Springer, 2005.

[71] R. Lanotte, A. Maggiolo-Schettini, P. Milazzo, and A. Troina. Model-
ing long-running transactions with communicating hierarchical timed
automata. In Formal Methods for Open Object-Based Distributed Systems
(FMOODS), volume 4037 of Lecture Notes in Computer Science, pages 108–
122. Springer, 2006.

[72] R. Lanotte, A. Maggiolo-Schettini, P. Milazzo, and A. Troina. Design and
verification of long-running transactions in a timed framework. Science of
Computer Programming, 73:76–94, 2008.

[73] A. Lapadula, R. Pugliese, and F. Tiezzi. A calculus for orchestration of web
services. In Programming Languages and Systems (ESOP), volume 4421 of
Lecture Notes in Computer Science, pages 33–47. Springer, 2007.

[74] A. Lapadula, R. Pugliese, and F. Tiezzi. A calculus for orchestration of
web services. Technical report, Dipartimento di Sistemi e Informatica,
Università di Firenze, 2008. http://rap.dsi.unifi.it/cows.

[75] A. Lapadula, R. Pugliese, and F. Tiezzi. A formal account of WS-BPEL.
In Coordination Models and Languages (COORDINATION), volume 5052
of Lecture Notes in Computer Science, pages 199–215. Springer, 2008.

[76] A. Leitner, M. Oriol, A. Zeller, I. Ciupa, and B. Meyer. Efficient unit test
case minimization. In Automated Software Engineering (ASE), pages 417–
420. ACM, 2007.

[77] M. Leucker and C. Schallhart. A brief account of runtime verification.
Journal of Logic and Algebraic Programming, 78(5):293–303, 2009.

[78] J. Li, H. Zhu, and J. He. Algebraic semantics for compensable transactions.
In Theoretical Aspects of Computing (ICTAC), volume 4711 of Lecture Notes
in Computer Science, pages 306–321. Springer, 2007.

[79] J. Li, H. Zhu, G. Pu, and J. He. Looking into compensable transactions.
Software Engineering Workshop, Annual IEEE/NASA Goddard, 0:154–166,
2007.

[80] R. Lucchi and M. Mazzara. A pi-calculus based semantics for WS-BPEL.
Journal of Logic and Algebraic Programming, 70(1):96–118, 2007.

242

References

[81] M. Mauve, J. Vogel, V. Hilt, and W. Effelsberg. Local-lag and timewarp:
providing consistency for replicated continuous applications. IEEE Trans-
actions on Multimedia, 6(1):47–57, 2004.

[82] M. Mazzara and S. Govoni. A case study of web services orchestration.
In Coordination Models and Languages (COORDINATION), volume 3454
of Lecture Notes in Computer Science, pages 1–16. Springer, 2005.

[83] P. M. Melliar-Smith and B. Randell. Software reliability: The role of pro-
grammed exception handling. ACM Software Engineering Notes, 2:95–100,
1977.

[84] P. O. Meredith, D. Jin, D. Griffith, F. Chen, and G. Roşu. An overview of
the MOP runtime verification framework. International Journal on Soft-
ware Techniques for Technology Transfer, 14:249–289, 2012.

[85] O. Moser, F. Rosenberg, and S. Dustdar. Event driven monitoring for ser-
vice composition infrastructures. In International Conference on Web Infor-
mation Systems Engineering (WISE), pages 38–51. Springer, 2010.

[86] S. Navabpour, C. W. W. Wu, B. Bonakdarpour, and S. Fischmeister. Effi-
cient techniques for near-optimal instrumentation in time-triggered run-
time verification. In Runtime Verification (RV), volume 7186 of Lecture
Notes in Computer Science, pages 208–222. Springer, 2012.

[87] S. Nepal, A. Fekete, P. Greenfield, J. Jang, D. Kuo, and T. Shi. A service-
oriented workflow language for robust interacting applications. In On the
Move to Meaningful Internet Systems - Part I, pages 40–58. Springer, 2005.

[88] G. Plotkin. A structural approach to operational semantics. Technical
report, Department of Computer Science, Aarchus University, Denmark,
1981. DAIMI FM-19.

[89] A. Pnueli. The temporal logic of programs. In Foundations of Computer
Science (FOCS), pages 46–57. IEEE, 1977.

[90] B. Randell, P. Lee, and P. C. Treleaven. Reliability issues in computing
system design. ACM Computing Surveys, 10:123–165, 1978.

[91] G. Roşu and K. Havelund. Synthesizing dynamic programming algo-
rithms from linear temporal logic formulae. Technical report, RIACS,
2001.

[92] G. Roşu and K. Havelund. Rewriting-based techniques for runtime veri-
fication. Automated Software Engineering (ASE), 12(2):151–197, 2005.

[93] G. Roşu and K. Havelund. Rewriting-based techniques for runtime veri-
fication. Automated Software Engineering (ASE), 12(2):151–197, 2005.

243

References

[94] U. Sammapun, A. Easwaran, I. Lee, and O. Sokolsky. Simulation of simul-
taneous events in regular expressions for run-time verification. Electronic
Notes in Theoretical Computer Science, 113:123–143, 2005.

[95] M. Schäfer, P. Dolog, and W. Nejdl. Engineering compensations in web ser-
vice environment. In International Conference on Web Engineering (ICWE),
pages 32–46. Springer, 2007.

[96] N. A. Tahamtan and W.-D. team. WS-DIAMOND: Web services - DIAg-
nosability, MONitoring and Diagnosis. In E. di Nitto, A. Sassen, P.Traverso
and A. Zwegers (Eds), At your service, Chapter 9, MIT Press, page Chapter
9. MIT Press, May 2007.

[97] C. Vaz, C. Ferreira, and A. Ravara. Dynamic recovering of long running
transactions. Trustworthy Global Computing, 5474:201–215, 2009.

[98] J. S. M. Verhofstad. Recovery techniques for database systems. ACM Com-
puting Surveys, 10:167–195, 1978.

[99] A. Zeller and R. Hildebrandt. Simplifying and isolating failure-inducing
input. IEEE Transactions on Software Engineering, 28(2):183–200, 2002.

[100] L. Zeng, H. Lei, J.-J. Jeng, J.-Y. Chung, and B. Benatallah. Policy-driven
exception-management for composite web services. In Conference on E-
Commerce (CEC), pages 355–363. IEEE, 2005.

244

