
Monitoring Distributed Systems with Distributed
POLYLARVA

Ian Cassar, Adrian Francalanza, Christian Colombo
Faculty of ICT, CS Department

University of Malta
Emails: {ian.cassar.10, adrian.francalanza, christian.colombo}@um.edu.mt

Abstract—POLYLARVA is a language-agnostic RV tool, which
converts a POLYLARVAScript into a monitor for a given system.
While an implementation for POLYLARVA exists, the language
and its compilation have not been formalised. We therefore
present a formal implementation-independent model which de-
scribes the behaviour of POLYLARVAScript, comprising of the
µLarvaScript calculus and of a set of operational semantics. This
allows us to prove important properties, such as determinism, and
also enables us to reason about ways of re-designing the tool in
a more scalable way. We also present a collection of denotational
mappings for µLarvaScript converting the constructs of our
calculus into constructs of a formal actor-based model [7], thus
providing an Actor semantics for µLarvaScript. We are also
able to prove certain correctness properties of the denotational
translation such as that the denoted Actors behave in a way which
corresponds to the behaviour described by our implementation-
independent model. We finally present DISTPOLYLARVA, a pro-
totype implementation of the distributed POLYLARVA tool, which
implements the new actor-based semantics over a language that
can natively handle distribution and concurrency called Erlang.

I. INTRODUCTION

Runtime Verification (RV) [3] is a dynamic [3], [5] ver-
ification technique which invokes monitoring procedures at
runtime so as to verify that the current execution, of the system
being verified, is correct with respect to a given specification.
It is therefore important that RV tools should be verified for
correctness themselves, thus making users more confident in
trusting and relying on such tools for verification. As RV tools
weave additional monitoring code into the system being verified,
an inevitable runtime overhead is imposed upon the system.
Moreover, monitoring demands may quickly increase especially
when monitoring distributed systems, as these systems are able
to scale up rapidly. Such a drastic increase in monitoring load
would impose a negative effect on the monitoring efficiency,
thus also affecting the performance of the monitored system.
For this reason, various ways are being explored by which
this overhead can be minimized [6], [7]. Concurrency and
parallelisation provide a way of decreasing these overheads
by exploiting tightly-coupled, multi-core architectures. When
dealing with high monitoring demands, distributed monitoring
may also be a more scalable and feasible alternative for
increasing monitoring efficiency as distribution also enables
the exploitation of loosely-coupled processing units.

A. PolyLarva

POLYLARVA [11], [6] is a language agnostic RV compiling
tool, which when given an RV specification written in polyLS
(short for poly-LarvaScript), creates the additional monitoring
computation for a given system. polyLS language provides an

event-driven monitoring framework by which one can identify
and specify a number of monitoring requests, that each monitor
can handle, in terms of Events. For each monitor, one can also
specify a set of monitoring checks and handling procedures in
terms of Conditions and Actions. These three components are
then associated with one another in the monitor’s list of rules.

Example 1.1.

BR1=ReqFunds(Usr,Sum)/!IsUsrValid(Usr)→WarnUsr();
BR2=ReqFunds(Usr,Sum)/!EnoughFunds(Sum)
→WarnUsr();
BR3=ReqFunds(Usr,Sum)→TransferFunds(Usr,Sum);

Example 1.1 shows a sample pseudo-script defining three
rules all of which are related to the same ReqFunds event.
Whenever the monitor receives an event e from the system, it
starts by matching it with the event pattern of the first rule
in the sequence, i.e., BR1. If e is for example of the form
ReqFunds(“usr1”,9000), it would match the rule’s pattern
ReqFunds(Usr,Sum) and as a result replace every occurrence
of variables Usr by “usr1” and Sum by 9000, else the event is
matched to the event pattern of Rule BR2. When e matches the
event pattern of BR1, the associated condition !IsUsrValid(Usr)
would change into !IsUsrValid(“usr1”) and evaluate to either
true or false. If true, the rule’s action WarnUsr() would also
execute, otherwise the rule is ignored and the event would be
matched with the pattern of BR2.

B. Problem Definition

There are several problems with the original POLYLARVA
[11]:

(i) POLYLARVA was developed using a compiler-driven1

[6] approach, hence no formal language semantics exist
for polyLS. This is not ideal as one would require a
thorough understanding of how the POLYLARVA compiler
is implemented, in order to understand the behaviour
of the language constructs. This also makes it hard to
understand how the POLYLARVA compiler interprets and
converts the polyLS constructs into monitoring constructs
and even harder to improve it.

(ii) Since no formal model exists for POLYLARVA, there
also does not exist any type of formal proof which
substantiates the validity and the correctness of the
POLYLARVA compiler. This makes it hard for users to
trust that our RV tool would correctly verify their system,
as specified in their compiled script.

1The aim was to develop an actual compiler implementation.

(iii) Due to the shared-state, multi-threaded design of the
synthesised monitor, POLYLARVA does not provide a
foundation by which the compiled monitor could be easily
scaled up in order to make use of distributed architectures.
A distributed design would introduce more areas that
can be explored in order to exploit the advantages of
distributed architectures so as to be capable of handling
higher monitoring demands.

II. THE HIGH-LEVEL MODEL

The main focus of this model is that of providing a
formal, implementation-independent description of the runtime
behaviour of polyLS. In fact, this model formally describes the
behaviour of the most essential constructs of POLYLARVA’s
polyLS. It consists of the µLarvaScript calculus, derived from
the original polyLS language, and from a series of operational
semantics which provide a formal implementation-independent
description of the runtime behaviour of the constructs in our
calculus.

A. The µLarvaScript Calculus

The following µLarvaScript calculus is made from abstract
syntax, meaning, that the language is treated as if it has already
been parsed and hence assumed to be syntactically correct.
It assumes denumerable sets of values v ∈ V al, variables
x ∈ V ar, and identifiers i ∈ Id = V al ∪ V ar, within its
other constructs. It also assumes the inclusion of predicate
functions, which are used in conditions so as to perform checks
on the monitor’s state. The entire µLarvaScript calculus is
defined below.

Table 3.1. M ∈ Mons ::= 〈s,d〉 | M0‖M1

d ∈ RulesList ::= r; d |ε
r ∈ Rule ::= ((q, c)7→a)
n ∈ EventName ⊇ {mthdInvoked, exThrown, mthdRet, internal}
s ∈ State : Var* ::= { x0 , x1 , . . . }
e ∈ Event ::= n(v0 . . . vk)
t ∈ EventStream ::= e;t |ε
q ∈ Query ::= n(i0 . . . ik)
b ∈ Boolean ::= true | false
c ∈ Conditions ::= b | !(c) | c1 && c2 | p(v0 ∈ Val, ... ,vk ∈
Val)
a ∈ Actions : (State→State) ::= stop | fail | noOp | a1,a2 |

update(S,F) | load(M)

A monitoring system consists of a collection of concurrent
monitors, M0‖M1, where each individual monitor, 〈s, d〉,
possesses its own current local state “s” and its own rule
list “d”. Monitors are able to process sequences of events “t”
which are forwarded to the monitor by the system. The state of
a monitor, “s”, comprises a set of local variables, {x0, ..., xn},
while a rule list, “d” consists of a sequence of rules. Each
individual rule, of the form ((q, c) 7→ a), binds an event query
“q”, and a condition “c”, with an action “a”. Although an
event query, “q”, has a very similar structure to an event, “e”,
the latter describes an actual event which originates from the
system being monitored. Conversely, the former is used to
describe a pattern which states that the host monitor is able to
handle system events which match the pattern denoted by the
query. A condition “c”, can be a boolean formula or a predicate
which performs checks on the monitor’s current state and on

the values passed as its arguments, so as to yield a boolean
result. Similarly, an action “a” is a deterministic function which
processes a sequence of operations which can possibly modify
the monitor’s current state. The following example script shows
the same rules defined in Example 1.1, written in µLarvaScript
syntax:

Example 3.1.

〈{usr1, funds},
((ReqFunds(Usr, Sum), !IsUsrValid(Usr)) 7→ WarnUsr());
((ReqFunds(Usr, Sum), !EnoughFunds(Sum)) 7→ WarnUsr());
((ReqFunds(Usr, Sum), true) 7→ TransferFunds(Usr,Sum); 〉

B. Operational Semantics

The operational semantics for polyLS consists of a group
of reduction rules. These rules, defined below, are segmented
into high level monitoring rules, denoted by the high-level
relation (7−→), and into the low-level monitoring rules, denoted
by the low-level relation (→) relation. These rules serve to
indicate how a collection of monitors would behave when they
receive a system event. In fact, they describe how an event is
ignored when no monitor in the collection is able to handle
the event. They also describe how an event is consumed and
removed from the event stream if there exists a single monitor
which is capable of consuming that event.

µLarvaScript High-Level Monitoring rules:

RHLMON1 tBM→t′ BM ′

tBM 7−→t′ BM ′ RHLMON2
e; tBM 6→

e; tBM 7−→tBM

µLarvaScript Low-Level Monitoring rules:

RPARMON
tBM0→t′ BM ′

0

tBM0‖M1→t′ BM ′
0‖M1

RMONEVTHANDLING
e, s, d⇓s′

e; tB 〈s, d〉→tB 〈s′, d〉

µLarvaScript Event Consumption rules:

RCONSAX
matches(q,e)=σ s, cσ⇓c true
e, s, ((q, c) 7→a); d⇓aσ(s)

RCONSIND1
matches(q,e)6=σ e, s, d⇓s′

e, s, ((q, c) 7→a); d⇓s′

RCONSIND2
matches(q,e)=σ s, cσ⇓c false e, s, d⇓s′

e, s, ((q, c) 7→a); d⇓s′

The high-level monitoring rules state that a high-level reduction
is only possible if t BM is able to reduce into t′ BM ′

through some low-level reduction. However, if a low-level
reduction is unable to reduce e; tBM into some other form,
then it means that event “e” will be ignored, thus reducing
e; t BM into t BM where “t” is the tail of “e; t” and “M”
remained unmodified by the reduction.

RPARMON is a low-level inductive rule which determines
whether t BM0‖M1, consisting of a sequence of events “t”
and monitor collection “M0‖M1”, is capable of reducing into
t′ BM ′0‖M1, where “t′ ” is a modified stream of events while
“M ′0‖M1” represents a modified monitor collection. It states

that such a reduction is only allowed if there exists some sub-
monitor collection “M0”, which when given the same event
stream, “t”, reduces it into event stream “t′ ” and “M ′0”, i.e.,
a modified version of collection “M0”. RMONEVTHANDLING
is an axiom which specifies that a monitor, of the form “〈s, d〉”
which is provided with a sequence of events “e; t”, changes
its state to “s′”. It also specifies that this reduction is allowed
if the event “e”, together with the current monitor’s state “s”
and rule list “d”, are able to evaluate into the next state “s′”
by using the Event Consumption Evaluation rules.

These rules describe how an individual monitor, consisting
of state “s” and rule list “d”, reacts and behaves in order
to handle the received event “e”. In fact they indicate that a
successive state “s′” is derived once the event has been handled
by the monitor and removed from the event stream. Hence,
the above rules, describe the operational behaviour by which a
µLarvaScript monitor consumes a system event. Particularly,
these rules define that a modified state “s′” is only produced
when the received system event “e” matches a query “q” of one
of the monitor’s rules, which causes condition “c” to evaluate
to true, thus invoking an action “a” which modifies state “s”
into some “s′”.

C. The Single Receiver Property

One of the most prominent properties observed in POLY-
LARVA was that no matter how many monitors are specified,
only a maximum of one monitor ends up receiving and handling
an event. For this reason we assume that a sound monitoring
specification is one which coincides with the Single Receiver
Property defined by Definition 3.1. Moreover, we will base our
arguments and evaluation proofs upon this important property,
meaning that any guarantees offered by our models, only apply
for sound specifications.

Definition 3.1. The Single Receiver Property.

tBM0‖M1 → t′ BM ′ implies

tBM0 → t′ BM ′0 and tBM1 6→

III. THE DISTRIBUTED-STATE MODEL AND ITS
TRANSLATION

This model aims to provide a formal description of the
behaviour of the µLarvaScript constructs in a way which is
closely related to an actual, distributed-state implementation. In
fact, this distributed-state model consists in a formal translation
from µLarvaScript constructs to constructs of a formal Actor
model for Erlang adapted from [7] by Seychell et al. In this way,
the meaning of the µLarvaScript constructs is given in terms of
a highly scalable [10], distributed state model, which produces
a monitoring system capable of handling larger monitoring
demands with the same or better performance. This claim is
supported by Gustafson’s Law [9].

A. Concurrency, the Actor Model & Erlang

The Actor Model [8] is a highly scalable paradigm [10]
which offers a level of abstraction by which both data and
procedures can be encapsulated into a single construct.

Actors differ from objects since actors are also concurrent
units of execution, each of which executes independently and

asynchronously. This fusion of data abstraction and concurrency
relieves the developer from having to recur to the explicit con-
cept of a thread in order to make use of concurrency. Moreover,
since Actors communicate through Message Passing [8], the
developer does not need to develop explicit synchronization
mechanisms to prohibit dangerous concurrent access to the
data, shared amongst the communicating threads.

Additionally, message passing between these actors is
performed asynchronously [8], which means, that an Actor
is able to send a message without having to wait for the
receiver’s response. Conversely, the receiver does not need
to be listening for incoming messages in order to receive them
since the messages are deposited in the Actor’s mailbox.

In order for an actor to retrieve the received data, it must
issue a receive command to recover a message from its mailbox.
An important factor is that message passing in the Actor model
normally assumes fairness, that is, any message sent by an
actor to another existing actor, is guaranteed to eventually
be deposited inside the target actor’s mailbox. In addition to
this merger between data, functions and concurrency, an actor
is also assigned a unique and persistent identifier, which is
essential to identify the target destination actor of the message
being sent. A case in point is Erlang [13], [2], a programming
language which natively implements this model.

Although forms of concurrency are employed in the
monitors synthesised by POLYLARVA, this is done through
multi-threading and shared state communication [11] using
explicit locking mechanisms. As these concurrent monitors
do not use a distributed state2, they can only be executed
concurrently on the same machine. This implies that unlike a
distributed multi-processing design, a multi-threaded monitor
side cannot exploit the full processing capabilities of loosely
coupled distributed architectures, making it less scalable [1].

B. Alternative Semantics for µLarvaScript

The denotations in Figure 4.1 convert µLarvaScript con-
structs into constructs of the formal Actor model for Erlang [7],
thus giving Actor semantics to µLarvaScript. Also one must
distinguish between the constructs which are declared within
the denotations and those declared without any denotation. The
constructs declared in a denotation are µLarvaScript constructs,
for example, abc in JabcKm refer to a µLarvaScript construct,
while if abc is not declared in a denotation, then it is a construct
of the Erlang model [7].

Jt BMKm presents the root denotational function which
takes an event stream t and a µLarvaScript monitor specification
“M”. It then invokes another denotational function JtKmes, which
creates a coordinating Actor that executes in parallel with the
monitoring actors returned by fst(JMKmpar). Moreover, in order
for the denotation JtKmes to keep on reducing, it requires a list
of process identifiers3 (PIDS) returned by snd(JMKmpar).

The translation JtKmes converts an event stream into a
coordinating actor, when given a list of PIDS. This special Actor
is required to interface with the monitored system and to make
sure that the synthesized monitor is behaving in accordance with

2“Distributed state” means that each monitor has its own local state and
communicate through message passing.

3A PID uniquely identifies an Actor.

the Single Receiver Property. In fact, JtKmes creates an actor
with JtKmmb as its mailbox, meaning that the system events
will be delivered to the coordinator’s mailbox. Moreover, the
coordinator consists of a recursive function which takes a list
of PIDS and listens for messages in its mailbox via a recv
command. Whenever the coordinator receives the message
{new, P id}, it signifies that one of the concurrent monitors
has issued a Jload(M)Kma action, so as to dynamically create a
new concurrent monitor. For this reason, the coordinator adds
the PID of the new monitor to its PID-list and issues a recursive
call, to restart listening for other messages. Conversely, when
the coordinator reads a system event message, {evt, E}, it
broadcasts the message4 emsg ≡ {self, E} to all monitors
executing concurrently, by using the “bcast” function. The
coordinator then awaits feedback from the monitors by calling
“await(count)”, where “count” is initially set to be the length
of the coordinator’s PID-list. Moreover, the “await” function
makes use of a selective receive so as to only retrieve feedback
messages, of the form “ok” or “nok”, from all the monitors
in its PID-list. This makes sure that only a maximum of one
monitor has indeed handled the broadcasted event. In fact it
issues an error if more than one monitor handles the event, thus
signifying that the Single Receiver Property has been violated
by the translated monitoring specification.

J−Kmpar is a function that converts a µLarvaScript monitor
into a meta-level tuple containing a list of monitoring actors
together with another list with their PIDS. The meta-functions
fst and snd are then invoked at compile-time so as to extract
the two separate lists from the denoted meta-tuple. Each actor
denoted by J〈s, d〉Kmpar is always associated with a unique PID,
“i”, and is initialized with an empty mailbox “ε” so as to wait
for event messages of the form {CoordPid, e}, by issuing
a “recv” command so as to listen for messages from the
coordinator. This command is followed by JdKmd which converts
a µLarvaScript rule list into an Erlang list of guarded rules.
An empty µLarvaScript rule list, is converted by JεKmd into a
guarded rule which matches any broadcasted event message.
This is required since when a message matches its pattern, the
monitor sends a rejection feedback to the coordinator by using
“Coord!nok” and leaves the monitor’s current state unmodified.

Each µLarvaScript rule, in a non-empty rule list, is
translated through J((q, c) 7→ a)Kmr into an Erlang guarded
command. Whenever the guarded rule’s tuple query, of the form
{Coord,JqKmq }, pattern matches the structure of the received
event in a way which causes condition JcKmc to return true, the
rule sends an “ok” feedback message to the coordinator, which
signifies that the event has been handled. It then executes the
function denoted by JaKma on the monitor’s current state, thus
generating the next state.

The denotation J−Kms , for the monitor’s state, dictates that
the monitor’s state variables are converted into a list of Erlang
variables. The translation J−Kme , states that a µLarvaScript
event is translated into an Erlang tuple containing the event
name and a tuple of values created by the system, while the
query denotation, J−Kmq , returns an Erlang tuple containing
the event name and a tuple of identifiers, where each identifier
can be either a value or a variable. The condition denotation
J−Kmc , converts µLarvaScript conditions into Erlang functions

4Where self refers to the coordinator’s PID and E is the actual system event
received.

Fig 4.1 The formal translation.

JtBMKmdef
= JtKmes(snd(JMKmpar))‖fst(JMKmpar)

JtKmes(PidList) def
= coord [(µ yrec · λ Xlst · (

recv {evt,E}: →
bcast({ E,self() },Xlst),

case await(len(Xlst)-1) of
0 → yrec(Xlst);
1 → yrec(Xlst);
→ error

end
{new,Pid} →

yrec(Xlst:Pid);
end.)(PidList) C JtKmmb]

JM0‖M1Kmpar
def
= (fst(JM0Kmpar)‖fst(JM1Kmpar) ,
snd(JM0Kmpar):snd(JM1Kmpar))

J〈s, d〉Kmpar
def
= (i[(µyrec · λXstate ·Xnew=recv (JdKmd
(Xstate)) end, yrec(Xnew).)(JsKms)))C ε] , i)

JεKmd
def
= λXstate · { Coord , }→ Coord ! nok, (Xstate);

Jr1; d1Kmd
def
= λXstate · Jr1Kmr (Xstate); Jd1Kmd (Xstate)

J((q, c)7→a)Kmr
def
= λXstate · { Coord, JqKmq }when
(JcKmc (Xstate))7→(Coord ! ok, JaKma (Xstate))

J{x0, x1, . . . , xk}Kms
def
= Jx0Kmi :Jx1Kmi :. . .:JxkKmi

J∅Kms
def
= ε

Jn(v0, . . . , vk)Kme
def
= {′n′, {Jv0Kmi :Jv1Kmi :. . .:JvkKmi }}

Jn(i0, . . . , ik)Kmq
def
= {′n′, {Ji0Kmi :Ji1Kmi :. . .:JikKmi }}

JtrueKmc
def
= λXstate · true

J! (C)Kmc
def
= λXstate · notJCKmc

JC1&&C2Kmc
def
= λXstate · JC1Kmc andJC2Kmc

Jp(v0, . . . , vk)Kmc
def
= λXstate · λv0, . . . , vk · P ({v0, . . . , vk}, Xstate)

JstopKma
def
= λXstate · exit.

JfailKma
def
= λXstate · Coord ! error.

JnoOpKma
def
= λXstate ·Xstate

Jupdate(S,F)Kma
def
= λF · λS · F (S)

Jload(M)Kma
def
= λXstate · (Coord ! {new,
spw(fst(JMKmpar)) }), Xstate

Ja0, a1Kma
def
= λXstate · Ja1Kma (Ja0Kma (Xstate))

which return a boolean value after performing a check on the
monitor state passed as its argument. The action denotation
J−Kma , translates µLarvaScript actions into Erlang functions
which take the monitor’s current state and return an updated
state accordingly.

Example 6.1. This example outlines how a monitor containing
only the first rule used in Example 3.1, can be formally
translated into Erlang code by applying the denotational
functions provided.

J〈{usr1, funds}, ((ReqFunds(Usr, Sum),

!IsUsrValid(Usr))7→WarnUsr()); 〉Km
def
= { By applying the root denotation J−Km}

JtKmes(snd(J〈{usr1, funds}, ((ReqFunds(Usr, Sum),

!IsUsrValid(Usr))7→WarnUsr()); 〉Kmpar))‖
fst(J〈{usr1, funds}, ((ReqFunds(Usr, Sum),

!IsUsrValid(Usr))7→WarnUsr()); 〉Kmpar)
def
= { Applying J−Kmpar , and extracting pidList “[i]” with the

snd meta function and the actor expression with fst. }
JtKmes([i])‖i[(µyrec · λXstate ·Xnew=recv (
J((ReqFunds(Usr, Sum), !IsUsrValid(Usr))7→WarnUsr())Kmd
(Xstate)) end, yrec(Xnew).)(J{usr1, funds}Kms)))C ε]

. . .
def
= { After applying the necessary denotations }

JtKmes([i])‖i[(µyrec · λXstate ·Xnew=recv (λXstate·
{Coord, {‘ReqFunds’,Usr,Sum}}when (!IsUsrValid(Usr))
(Xstate)7→(Coord! ok, (WarnUsr()(Xstate)));

{ Coord , }→ Coord ! nok, (Xstate)) end)C ε]

def
= { ApplyingJtKmesto create the coordinator}

coord[(µyrec · λXlst · (recv {evt, E}
→bcast({E, self()}, Xlst),

case await(len(Xlst)− 1) of 0→yrec(Xlst);

1→yrec(Xlst); →error end;
{new, P id}→yrec(Xlst:Pid)end.)([i]) C JtKmmb]
‖ i[(µyrec · λXstate ·Xnew=recv (λXstate·

{Coord, {‘ReqFunds’,Usr,Sum}}when (!IsUsrValid(Usr))
(Xstate)7→(Coord! ok, (WarnUsr()(Xstate)));

{ Coord , }→ Coord ! nok, (Xstate)) end)C ε]

IV. THE DISTPOLYLARVA PROTOTYPE

DISTPOLYLARVA is prototype implementation based on our
new actor-based design. This prototype seeks to re-implement
POLYLARVA’s monitor compiler in a way which conforms to
the denotational translations provided in our distributed-state
model. This ensures that any guarantees offered by the formal
models would also apply for our prototype compiler.

Also, DISTPOLYLARVA parses a variant of polyLS,
called Pseudo-polyLS, into a parse tree which, resembles
the µLarvaScript abstract syntax, together with additional
parsed constructs. Although our prototype compiler is able

to recognize all polyLS keywords and synthesise additional
monitoring features, which are not formalized in our models,
it only guarantees correct behaviour for specifications which
only use constructs from the formalized subset which forms
µLarvaScript. The parsed constructs are then converted into
Erlang actor expressions in a similar way as in our formal
translation. Furthermore, this prototype was developed with the
aim to demonstrate that our translation is implementable.

A. The Compilation Phases

DISTPOLYLARVA passes a given Pseudo-polyLS specifi-
cation from four subsequent stages so as to synthesise the
required monitoring Erlang code.

Lexical and Parsing Phases: The Lexical phase uses a
regular grammar which defines a number of patterns that a
character sequence, in the given Pseudo-polyLS script, must
match in order to be translated into an abstract token. The
generated token sequence is passed to the Parsing phase which
checks that the structure of the script being compiled, is correct
with respect to the production rules defined by the context
free grammar of our language defined in Table 3.1. If the
entire token sequence obeys the rules of the grammar, it is
converted into an unambiguous parse tree which conforms to
the abstract syntax of µLarvaScript. DISTPOLYLARVA’s lexer
was implemented using a lexer generator called LEEX while its
parser was implemented using a parser generator called YECC
[12].

Semantic Analysis and Code Generation Phase: This
phase is essentially an Erlang implementation of our formal
denotations in Figure 4.1. It starts by invoking the initial
denotational function which inspects the initial node of the parse
tree and invokes other denotational functions which inspect the
semantics of its child nodes, from left to right. The compiler
also checks that any event, condition and action referred by
the rules of a specific monitor, is actually declared within the
same monitor, so as to preserve scoping. The generated Erlang
source modules (.erl) are then written in a directory specified
by the user and are compiled into executable Beam files via
the Erlang compiler.

V. EVALUATION

The high level and distributed-state models were evaluated
by proving certain theorems about the runtime behaviour they
describe. The guarantees obtained from proving these theorems
are also inherited by DISTPOLYLARVA, as this was developed
with a close relation to the formal denotational translation.
Moreover, the prototype was further evaluated through a series
of tests.

A. Evaluating the High-level Model

In order to evaluate the behaviour described by this model
we proved a theorem which guarantees that any monitoring
system, specified in µLarvaScript, will operate deterministically.
This property is important since it ensures that whenever any
collection of µLarvaScript monitors is in a particular collective
state5, and it receives a specific system event, it will always

5By “collective state” we refer to the local states of all monitors in the
specified monitor collection.

handle the event in the same manner, thus transitioning to the
same successive collective state. This means that no matter
how many times the monitoring system is executed, depending
on the current state, it will always handle a specific event
in the same way, and so transition to same consecutive state.
Hence, this guarantees that a monitoring system will operate
consistently.

Theorem 6.1. µLarvaScript Determinism.
tBM 7−→ t′ BM ′ ∧ tBM 7−→ t′′ BM ′′ implies t′ =
t′′ ∧ M ′ ≡ M ′′

Specifically, Theorem 6.1 states [4] that if M reduces to
both tBM ′ and tBM ′′ , by a using high-level reduction
(7−→), then it implies that t BM ′ and t BM ′′ are equal
to each other. The proof of this theorem was divided into
separate lemmas, each of which were proved accordingly by
using various inductive techniques.

B. Evaluating the Formal Translation

The evaluation of our denotational semantics consisted in
proving that our formal translation is in some sense correct.
We showed that the behaviour of any actor-based monitoring
system, derived using our denotational conversion, corresponds
to the behaviour described by the high-level model. These
proofs not only help to increase the user’s confidence but
also state that any property proved on our high-level model,
such as determinism in Theorem 6.1, would also transitively
apply to our synthesised monitoring system. In our proofs we
assume that all µLarvaScript specifications observe the Single
Receiver Property. This implies that the denotational translation
is only guaranteed to provide a correctly-behaving actor
implementation when the specification script being translated
observes the Single Receiver Property.

The evaluation consisted in proving the following two
theorems:

Lemma 6.1. Single-Step Correspondence.
tBM 7−→ t′ BM ′ implies JtBMKm →∗ Jt′ BM ′Km

Lemma 6.2. Multi-Step Correspondence.
tBM 7−→∗ t′ BM ′ implies JtBMKm →∗ Jt′ BM ′Km

Lemma 6.1 guarantees that for one high-level reduction, i.e.,
tBM 7−→ t′ BM ′, there exists a corresponding translation,
JtBMKm, which reduces in 0 or more Erlang reduction steps
into Jt′ BM ′Km. The proof for Lemma 6.2 relies on Lemma
6.1 so as to guarantee that for 0 or more high level reductions,
we can find a denotational translation which reduces JtBMKm
in 0 or more Erlang steps into Jt′ BM ′Km.

VI. FUTURE WORK

As part of our future work we propose to extend our
µLarvaScript calculus so as to formalize other polyLS con-
structs such as timers. This extension requires modifications
to our formal models, as well as, additional formal results.
The new results would guarantee that the extended high-level
model still operates deterministically and that its behaviour still
corresponds to the behaviour of an extended version of our
distributed-state model. The additional features in our DIST-
POLYLARVA compiler could then be properly implemented in
a way which guarantees correct operation.

Moreover, as we were more concerned with the mathemati-
cal aspect of our designs and since our prototype implementa-
tion was only intended to demonstrate our actor-based concept,
the DISTPOLYLARVA compiler was rapidly developed. Hence
we propose to provide a more thorough implementation based
on our prototype and on our formal models. In fact we propose
that the code of the prototype should be properly structured
so as to be more maintainable in the future. Moreover, the
synthesised monitoring code can be further optimized so as
to reduce the tool’s monitoring overhead as much as possible.
Additionally, the finalized compiler should also provide better
error reporting and error recovery mechanisms which would
further aid users to debug their Pseudo-polyLS specification
scripts. We also suggest that the proper implementation should
also be tested for efficiency and compared with the original
POLYLARVA implementation.

VII. CONCLUSION

We have sought to increase the understandability and relia-
bility of POLYLARVA with the aim of elevating the user’s level
of confidence in our RV tool. This was done by providing a high-
level operational model which describes the runtime behaviour
of the core constructs of polyLS. The evaluation for this model
consisted in proving that the model describes a deterministic
monitoring behaviour. We also created denotational semantics
which convert µLarvaScript specifications into Erlang actor
expressions. The evaluation of this model consisted in proving
the correctness of the formal translation, which permits that any
property proved for the high-level model would also apply for
the denoted monitoring Actors. This also helps in increasing the
user’s level of confidence in our tool. This formal translation
was then implemented as the DISTPOLYLARVA prototype
compiler which guarantees a correct translation for Pseudo-
polyLS specifications which only include constructs that are
formalized in µLarvaScript.

REFERENCES

[1] M. K. A and K. P. Distributed computing approaches for scalability
and high performance, 2010.

[2] J. Armstrong. Programming Erlang: Software for a Concurrent World.
Pragmatic Bookshelf, 2007.

[3] A. Bauer, M. Leucker, and C. Schallhart. Runtime verification for ltl
and tltl. Technical report, 2006.

[4] I. Cassar. Monitoring distributed systems with distributed polylarva.
Technical report, University of Malta, 2013. Final Year Project.

[5] C. Colombo. Practical runtime monitoring with impact guarantees of
java programs with real-time constraints. Master’s thesis, University of
Malta, 2008.

[6] C. Colombo, A. Francalanza, R. Mizzi, and G. J. Pace. polylarva:
Runtime verification with configurable resource-aware monitoring
boundaries. In Software Engineering and Formal Methods - 10th
International Conference, SEFM 2012, volume 7504 of Lecture Notes
in Computer Science, pages 218–232. Springer, 2012.

[7] A. Francalanza and A. Seychell. Synthesising correct
concurrent runtime monitors in erlang. Technical Report
CS2013-01, University of Malta, 2013. Available from
www.um.edu.mt/ict/cs/research/technical_reports.

[8] A. Gul A., T. Prasannaa, and Z. Reza. Actors: A model for reasoning
about open distributed systems. Technical report, University of Illinois
at Urbana USA, 2001.

[9] J. L. Gustafson. Reevaluating amdahl’s law. Communications of the
ACM, 31:532–533, 1988.

[10] P. Haller and F. Sommers. Actors in Scala. Artima Incorporation, USA,
2012.

[11] R. Mizzi. An extensible and configurable runtime verification framework.
Master’s thesis, University of Malta, 2012.

[12] Ericsson AB. Parse tools reference manual, Feb. 2013.
[13] R. Vermeersch. Concurrency in erlang and scala. Jan 2009.

