
A Domain Specific Property Language For Fraud
Detection To Support Agile Specification

Development

Aaron Calafato
Dept. of Computer Science

University of Malta
aaron.calafato.06@um.edu.mt

Christian Colombo
Dept. of Computer Science

University of Malta
christian.colombo@um.edu.mt

Gordon J. Pace
Dept. of Computer Science

University of Malta
gordon.pace@um.edu.mt

Abstract—Fraud detection has long been established as an
indispensable element of fiscal reporting. Typically, fraud experts
identify patterns which are used by a development team to
implement a system to run over existing data for the identification
of suspicious behaviour. The process of defining rules is lengthy,
expensive and error prone; even for minor variation of properties.
In this paper we propose a framework enabling fraud experts
to directly experiment with fraud patterns, getting immediate
feedback based on past data so as to enable their verification and
refinement. Using a domain-specific language, the framework will
empower fraud experts to design the patterns, whilst the use of
automated fiscal trail analysis enables feedback from the effect
of the rules onto the system.

I. INTRODUCTION

Fraud is a problem that can be found in any financial
transaction system. The cost of fraud has been reported
to be substantial, with for instance, 234 cases known to
the police in Malta in the year 20101. In the USA, it was
reported that “The IRS could net almost $28 billion from tax
fraud and errors that are identified and ripe for collection.”2.
Consequently, focusing on the design of patterns that can be
used to detect fraudulent cases of tax reporting, has been an
important goal in any financial system.

Fraud detection can be approached in various ways with
the most straightforward way being that of manually
accessing various documents and auditing any suspicious
ones according to the fraud expert’s judgement. However,
this methodology has two well known disadvantages: patterns
which are common between cases can only be defined with
the fraud expert’s intuition, and that the process is too lengthy.

One approach which tackles these problems is that of
using machine learning techniques. Algorithms such as
Artificial Neural Networks (ANN) and Genetic Algorithms
can learn patterns when provided with historic data of financial
transactions [1]–[3]. Rules are then automatically induced
by the algorithm using a test data set. In the case of fraud
detection for a tax system, the test data could be composed of
all recorded tax entries, with the ones confirmed as fraudulent
marked accordingly. When a new tax return is submitted in
the system, the algorithm can advise whether the tax return

1http://www.nso.gov.mt/statdoc/document file.aspx?id=3173
2http://www.taxpolicycenter.org/UploadedPDF/900641.pdf

is to be audited based on the learnt patterns. However, the
algorithm has shown to be unsuccessful without intensive
work from the fraud expert and IT team [1]. Furthermore,
testing the ANN is not straightforward, since this approach
does not depict the learnt rules.

With an ANN, the fraud expert might find it difficult to
deduct the source of the problem if the system selects
erroneous records. It would be more natural for a fraud expert
to define rules in the first place, instead of analysing why the
result of an algorithm returned erroneous patterns. This issue
calls for a system which can have the rules defined precisely,
both at testing and implementation stages.

Fraud Expert Software

Developer

Communicates rules informally

Implements

Uses

Fig. 1. Approach of manual generation of fraud rules

Having clearly defined rules, thus separating any technology
issues (e.g. Why was this case selected?) from the business
ones (e.g. Is this a correct fraud pattern?) would enable the
fraud expert to focus more on the latter. To date, most of
the IT fraud systems implement rules directly in the main
system. Figure 1 shows a typical cycle required to adopt new
fraud detection system rules. The fraud expert starts off by
providing a list of rules to the developer who then implements
the system based on his/her interpretation of the rules. The
system matches cases that are supposed to be fraudulent, and
these are then examined by the fraud expert. Based on the
matched cases, the fraud expert may decide to refine the rule,
thus inducing an iterative process.

Certain issues emerge in this approach. The first issue
is the disparity between the area of expertise of the fraud
expert and the software developer, where such discrepancy
may influence the interpretation of the rules. In a taxation
system, for example, a taxpayer may be interpreted as anyone
who is registered with the tax department or anyone who
has ever paid taxes. Due to a possible lack of knowledge
of the area, the software developer may neglect such details
when implementing the rules, resulting in an inaccurately
implemented rule. Additionally, even if the rule has been
interpreted correctly, the system may contain a number of
bugs. Therefore, severe testing has to be done on the system
both when implementing new rules and when refining existing
ones. This clearly indicates that the whole cycle may be
lengthy, even when dealing with minor changes.

Once cases are identified as fraudulent by pattern matching,
these are subsequently audited. The cost of auditing someone
may be substantial, so in order to avoid unnecessary expenses,
the number of false positives (cases wrongfully identified as
fraudulent) should be minimised by analysing the impact of
new rules prior to implementation.

Another disadvantage of this approach is maintainability:
when a new rules needs to be added, existing ones have
to be analysed and understood. This might not always be
straightforward, especially with systems implemented years
ago and maintained by a number of different developers.
Rules which have been in place for a number of years should
be documented thoroughly, and this requires significant effort
to maintain [4].

It can be argued that it is crucial to involve the fraud
expert when defining or discovering rules. Instead of tackling
any technical issues, the fraud expert should focus on the
rules’ descriptions. Subsequently the fraud expert would be
aided by a monitoring system which, given the rules, selects
cases to be audited. An intermediate process is required to
automate certain steps, making the process faster and less
dependent on an IT person.

The major contribution in our work will be based on
Domain Specific Languages (DSL) to tackle the description
of the fraud detection patterns. DSLs [5], [6] are languages
which differ from generic languages in two aspects: (i) they
contain predefined concepts which are suitable for any issue
within the domain, and (ii) they provide a more restricted
set of expressions used to define rules. The first advantage
is crucial for fast definition of rules without the chance of
inducing bugs, since concepts like ‘income’, ‘expenses’,
and ‘profit’ would be predefined in a formal manner. The
fraud expert can then focus on the actual implementation
of rules rather than the technicalities that come with the
implementation of basic components. The second advantage
is the restricted language of a DSL, which when well
designed, provides a set of operators concise enough to avoid
ambiguities [7] yet expressive enough to define any possible
rule within the domain [8].

This process can be achieved using a runtime verification
(RV) framework to continuously monitor the system’s
behaviour, when provided with a set of properties. RV tools

are sometimes enhanced by an interface which aids the user,
in this case the fraud expert, in defining and refining rules. A
framework with a design mechanism and automated RV, will
be discussed in more detail in section 2. This approach will
be compared to other works related to the domains of DSLs
and RV, in section 3. Finally, we will conclude our paper and
illustrate the way forward for our proposed work in section 4.

II. PROPOSED ARCHITECTURE

Our proposed solution for fraud detection allows for an iter-
ative process. Iterations are needed to define and refine rules
without any dependency on IT personnel. As shown in figure
II, the process will start from the description of the rules
through a specific language for fraud detection, thus allowing
for a more formal, less ambiguous set of rules. These rules
will be automatically compiled and processed vis-à-vis the
main system. The result of this processing will be returned to
the user. The concise language and results may be augmented
into a workbench aiding the fraud expert by abstracting the
excessive technicalities found in the automated process.

Main System

Fraud Expert

Fraud System

Fig. 2. Architecture of automated system

A. A concise but expressive language

Our proposed system has to start off with a simple IDE
(Integrated Development Environment) capable of defining
rules in a clear and manageable way, such as a Domain
Specific Language. The use of the DSL paradigm has been
valuable in a wide range of domains, from graphics design
[6] to controlled language for contracts [7]. DSLs strive to
provide the expressiveness needed to describe the desired
properties, which, in terms of the fraud domain, refers to the
fraud detection rules to be composed.

A DSL has the advantage of being more concise than
standard programming languages, by providing the user with
the expressivity only for the concerned domain. For instance,
an example of an informal rule would be:

“Anyone declaring less than 2,000 Euro per year for
three years is likely to be fraudulent.”

It can be argued that this rule contains a number of
unspecified details:

• Does “Anyone” refer to any taxpayer category (indi-
viduals, companies, etc.)?

• Are the 2,000 Euro income or profit?

• Are the three years consecutive or not?

A DSL aids in eliminating any ambiguities with the use of
predefined operators. For instance, the “Anyone” keyword in
the first question above may be too generic, and formally
predefined constructs like “Taxpayer” or “Employee” would
reduce such ambiguity. Furthermore, in practice, the second
question may have a significant effect on the cases detected
for fraud. Assuming that the 2,000 Euro refers to income,
companies declaring more expenses than income for a number
of years would not be flagged, since the above rule targets
the income and not the profit. As a final result, companies
never paying taxes, due to the lack of profit, would end up
not being audited even though these may be very suspicious.

With regards to whether the three years are consecutive
or not, changing this detail in a manual system would require
major maintenance cost for implementation and testing. This
is because definitions of temporal logic can be hard to define
in an imperative language. Whilst it may be straightforward
to define any years without order, it would be more intricate
to define the “consecutive” operator. On the other hand,
constructing the “consecutive” operator in a DSL would
remove this heavy maintenance cost. As a result of these
three questions, a more formal rule may be:

“Any company declaring a profit of less than 2,000 Euro
per year for three consecutive years is likely to be fraudulent.”

A disadvantage claimed for DSLs is the initial cost [9],
which is higher than that of a standard application having
the rules hard-wired in it. However, fraud detection patterns
have been proven to change from time to time [2], thus
inducing maintenance costs. When compared to manually
implementing the rules into the system, DSLs require less
maintenance since a number of core concepts are predefined
in the system, such as the “consecutive” operator, since the
rules are dynamically imported into the system. Thus, any
effort in the refinement of rules is transferred to the fraud
expert who can independently describe rules as shown in the
following sections.

B. Automated monitors

Once the rules are defined, rules have to be compiled and
processed against the main system. Automated interpretation
and compilation of the rules reduces the chances of software
bugs, especially when there is an increase in the number of
iterations needed to refine a rule. Maintenance is rigorously
reduced by removing the dependency on the IT person. This
will be done by automating a number of steps:

1) Compiling the rules into an intermediate structure
2) Generating a number of monitors
3) Executing monitors on a subset of the system trace

With automated execution of the rules, the system may execute
the monitors on the existing logs and compare them to the
previous set of results, thus providing results directly to the
fraud expert in a more consistent manner.

C. Feedback Mechanism

Automated monitors allow for timely feedback when refining
rules. However, in order to achieve a feedback mechanism,

a monitoring system has to simulate the rules on a set of
data. This is not possible at runtime, since online monitoring
examines the current trail of events, whilst feedback of a rule
refinement would require the simulation of the rule on an
extensive trail of events in a short period of time. This can be
done using offline monitors [10], which allows the monitoring
system to retrieve the log of events from the existing financial
system. The feedback mechanism would have the power to
define the range of events to examine, since a rule might have
to be checked on a limited span of events.

The fraud expert would interact with the system by designing
rules and analysing the feedback from the rules. Having this
kind of behaviour in a timely manner would ultimately allow
for fast rule refinement and sensitivity analysis, before rules
are permanently applied onto the system.

Once the feedback is returned to the user, it would be
ideal to categorise the selected cases according to the
respective rule with which these were identified. In order for
this to be achieved, the automation discussed previously has
to be done in both ways: (i) from the DSL to the monitors
and (ii) from the monitors’ results to the respective rule.
Therefore, besides the compilation of monitors, a backward
mapping has to exist from the compiled monitors to the
rules described in the DSL. Figure 3 shows how the rules
written with the DSL are automatically compiled and, using
a monitoring system, cases to be audited are returned to the
domain expert.

Main System

Fraud Expert

Event Logs

Fraud System

Fraud

Pattern

DSL

Runtime

Verification

Tool

Offline

Logs

Extraction

Offline

Monitors

Feedback

Interpreter

Automated ProcessSimplified

IDE

Fig. 3. Approach of automated system

III. RELATED WORK

Within this domain, research on the Artificial Intelligence
field [1]–[3] tackles rules’ discovery and/or optimisation
through machine learning using algorithms like Artificial
Neural Networks (ANN) and Genetic Algorithms. Whilst
claiming that, following an amount of work this approach may
be effective, the works in [1], [3] show that it is also noted
that the fraud expert has to analyse the results of the machine
learning algorithm in a more technical manner. Technologies
like the ANN do not provide adequate feedback with regards
to why certain cases have been selected and, in a sensitive

area like fraud, such analysis is vital.

Our two major areas of interest in this work are domain
specific languages and monitoring systems, which when
combined, provide the feedback required to refine rules. On
the topic of specific languages, [11] shows how graphical
representation can abstract processes from the excessive
technicalities. Graphical aid is advantageous when compared
to scripted approaches, since syntax errors cannot occur as
the input is controlled by the designated tools. In the domain
of fraud detection, it would be useful to have a descriptive
language which can be easily documented but this cannot
be directly achieved solely through graphical tools. Perhaps,
a suitable approach may be to have multiple compilations,
from the specification of rules to the outputted monitors and
documentation, such as the work found in [12].

Two advantages of DSLs found in [7]–[9], [13] highlight how
DSLs are suitable to define rules in a clear and concise manner.
[7] shows how DSLs may be used to reduce ambiguities with
a well defined structure for contracts. The second advantage
is the predefined core concepts found in DSLs like [8]. This
work starts off from the very basic operators of the domain
and builds up to the more complex operators based on the
basic ones. The final result is a concise yet expressive enough
set of operators. The conciseness of DSLs is also highlighted
in Lula [13] which uses a DSL to describe how to define stage
lighting. Being so concise, Lula does not cater for temporal
logic, however this can be augmented through Lulal, another
DSL found in the same work. This approach may be useful
in our domain especially with a large number of categories
for taxpayers (self employed, employed, companies, etc.).

The work found in [4] is the one that most closely
resembles monitoring aspect of our proposed system. The
architecture starts off with a set of requirements which,
when modelled, are converted into a Compliance Rule Graph
(CRG). Whilst the modelling from the requirements to the
CRG is unclear, [4] claim that an advantage of a graphical
representation is that there is a very simple mapping between
the designed rules and the actual structure used to monitor
the system. [4] claims that one of the most important factors
in a monitoring system is “root cause” analysis, i.e. knowing
why the system’s behaviour was found to be invalid. The
approach of providing the results of the processing within the
same graphical models may be suitable for refining rules.

IV. CONCLUSIONS

In this paper, we have proposed a system architecture capable
of handling the description of fraud detection rules in a natural
manner. This will be done using a DSL as a descriptive tool
and a monitoring system which examines the existing trail
of log for possible fraudulent cases. A fraud expert will be
capable of defining rules with diminished or no assistance
from an IT person. Being an iterative process, rules may be
refined, whilst a timely feedback will highlight the effect of
the refinement. The use of external DSLs is hypothesised to
be more suitable for this work, as it provides a more concise
yet expressive enough language. In addition to this, a DSL
aiding tool would provide further assistance to the fraud
expert at the rule-description stage.

In order to aid the fraud expert, a number of steps are
to be automated. Rules are to be internally formalised and
automatically compiled into monitors, thus shortening the
process. To our knowledge, no work tackles the description
of rules and the simulation of the rules upon the existing
trail of logs. Our contribution will be therefore to combine
a well-designed DSL with a feedback mechanism illustrating
the effect of rule refinement on the main system. This
approach is ideal for a sensitive domain like fraud detection
systems where one needs to thoroughly check the effect of a
rule before actually auditing cases.

REFERENCES

[1] S. Maes, K. Tuyls, B. Vanschoenwinkel, and B. Manderick, “Credit
card fraud detection using bayesian and neural networks,” in In:
Maciunas RJ, editor. Interactive image-guided neurosurgery. American
Association Neurological Surgeons, 1993, pp. 261–270.

[2] S. Rosset, U. Murad, E. Neumann, Y. Idan, and G. Pinkas, “Discovery
of fraud rules for telecommunications-challenges and solutions,” in
Proceedings of the Fifth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. ACM Press, 1999, pp. 409–
413.

[3] T. Fawcett, Foster, and F. Provost, “Adaptive fraud detection,” Data
Mining and Knowledge Discovery, vol. 1, pp. 291–316, 1997.

[4] L. T. Ly, S. Rinderle-Ma, D. Knuplesch, and P. Dadam, “Monitoring
business process compliance using compliance rule graphs.” in OTM
Conferences (1), ser. Lecture Notes in Computer Science, R. Meersman,
T. S. Dillon, P. Herrero, A. Kumar, M. Reichert, L. Qing, B. C. Ooi,
E. Damiani, D. C. Schmidt, J. White, M. Hauswirth, P. Hitzler, and
M. K. Mohania, Eds., vol. 7044. Springer, 2011, pp. 82–99.

[5] M. Fowler, Domain Specific Languages, 1st ed. Addison-Wesley
Professional, 2010.

[6] J. Bentley, “Programming pearls: little languages,” Commun. ACM,
vol. 29, no. 8, pp. 711–721, Aug. 1986. [Online]. Available:
http://dx.doi.org/10.1145/6424.315691

[7] G. J. Pace and M. Rosner, “A controlled language for the specification of
contracts,” in CNL’09 Proceedings of the 2009 conference on Controlled
natural language, 20-24 June 2009, pp. 226–245.

[8] S. P. Jones, J. M. Eber, and J. Seward, “Composing contracts: an
adventure in financial engineering (functional pearl),” in ICFP ’00:
Proceedings of the fifth ACM SIGPLAN international conference on
Functional programming. New York, NY, USA: ACM, 2000, pp.
280–292. [Online]. Available: http://dx.doi.org/10.1145/351240.351267

[9] P. Hudak, “Modular domain specific languages and tools,” in Pro-
ceedings of Fifth International Conference on Software Reuse. IEEE
Computer Society, Jun. 1998, pp. 134–142.

[10] C. Colombo, G. J. Pace, and P. Abela, “Offline runtime verification
with real-time properties: A case study,” in Proceedings of WICT 2009,
2009.

[11] M. Carro and M. V. Hermenegildo, “Some design issues in the visualiza-
tion of constraint logic program execution.” in APPIA-GULP-PRODE,
J. L. Freire-Nistal, M. Falaschi, and M. V. Ferro, Eds., 1998, pp. 71–86.

[12] A. V. Deursen, “Little languages: Little maintenance?” p. 19, 1998.
[Online]. Available: http://homepages.cwi.nl/ arie/papers/domain.pdf

[13] M. Sperber, “Developing a stage lighting system from scratch,”
in Proceedings of the Sixth ACM SIGPLAN International
Conference on Functional Programming, ser. ICFP ’01. New
York, NY, USA: ACM, 2001, pp. 122–133. [Online]. Available:
http://doi.acm.org/10.1145/507635.507652

