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Introduction 

In statistical communication theory, using binary PSK transmission, over a binary 
symmetric channel, BSC, the probability of a bit error event over an additive 
white Gaussian noise channel, (AWGN)is given by 
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where Eb is the symbol energy and n0 is the spectral noise energy, and the erfc(x) 
is the complementary error function 
erfc(x) = 1 � erf(x) where  
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This is also given in terms of 
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The classical Digital Communication System is shown in Fig 3.1. In this section 
we are looking at the channel encoding and decoding in the presence of noise that 
can be additive or burst noise. The channel can be any type from cable to satellite, 
as well as electromagnetic storage involving CD�s and other data storage media. 



 
 
Basic jargon associated with error correcting codes 
 

(i) a block code can be of various types. But all types have a block of k 
data bits associated to a codeword of n bits. This is called an (n, k) 
code. The code rate, which indicates the efficiency of the code, is 
k/n and is always a fraction. 

(ii) A binary code�s capability  is defined in terms of the XOR outcome 
between any two of its codewords. An (n,k) code has 2k codewords 
spread over a vector space of 2n n-tuples. The outcome is called the 
distance between two codewords. The minimum distance of a code 
is the minimum distance between any two codewords, denoted by t. 

(iii) The error correcting capability in bits, given by d, is obtained as 
d  ≤  2t + 1 

   So a code with minimum distance 3, can correct 1 bit in error. 
(iv) There are also codes that have memory over the blocks, called convolutional 
codes. These type of codes are defined on 3 parameters, (n, k, r) where r denotes the 
number of codewords being generated that are influenced by any block of data being 
used. 
 
Clearly there must be a mechanism of how to obtain codes, based on some technique 
that gives the best, or good, minimum distance. Further for large k and n there must 
be techniques of generating automatically the codewords, and not have a memory 
through which to compare and associate the current data to its appropriate codeword. 
There must also be techniques of automatically checking the received n-tuple to be 
able to decide on whether it is correct, and if it is not correct, to automatically correct 
the error. Linear Algebra theory based on groups, fields, Galois Fields of the type 
GF(2) and GF(2m), is used extensively as a basis for generating efficiently good error 
correcting codes. 
The above is based also on the premise that the received n-tuple does not have error 
bits that exceed the capabilities of the code, as this may result in undetectable errors. 
These are to be avoided as much as possible, (in fact in some applications at all costs), 
and therefore application type, signal power, and expected channel noise, have to be 



analysed to decide on the necessary error code capability, before deciding on which 
code to use. Further there are applications where two types of codes are used to 
increase the robustness of the coding. 
 
Block Codes 
 
A   Linear Block Codes 
 
In a linear block code the sum of two codewords, based on XOR, results in another 
codeword. This means that the codewords form a closed subspace over the field of 
GF(2). Initially we will consider the necessary algebra to understand the GF(2). 
 
 
(a) Definition of a group: 
A set of elements G with an operation * is called a group if: 

(i) the binary operation U* is associative; 
(ii) G contains an element e, the identity element, such that 

A*e = e*a = a 
(iii) for any element a, there exists an inverse element a� such that 

a*a� = a�*a = e 
 
A group is commutative if for any two elements a, b 
   A*b = b*a 
The binary set 0,1 is a group under the operation of XOR. The integers 0 to (N-1) are 
a group under modulo(N) addition.  
The integers {1,2,�,p} are also a group under modulo (N) multiplication IF p is 
prime. 
   1 2 3 4 
  1 1 2 3 4  
  2 2 4 1 3 
  3 3 1 4 2 
  4 4 3 2 1 
 
   Table of integer modulo-5 under multiplication 
 
 
(b) Definition of a field 
In this case there are two operators and in general one can talk about addition, 
subtraction, multiplication and division, where operation on two elements of a set {F} 
still results in another element of set {F} 
 

(i) F is commutative under addition, (+), and the identity element is 0. 
(ii) F is commutative under multiplication (.). The identity elemnt is 

the unit element , 1 
(iii) Multiplication is distributive over addition 

a.(b+c) = a.b + a.c 
 
A field with a finite number of elements is called a finite field. Finite fields are also 
called Galois Fields. Galois Fields with a number of elements that is prime, in 
particular GF(2) play an important role in coding theory. 



 
 Modulo-2 Addition    Modulo-2 Multiplication 
+ 0 1     . 0 1 
0 0 1     0 0 0 
1 1 0     1 0 1 
 
    GF(2) 
 
 
Sets of integers {0,1,2,�,p-1} of p elements, where p is a prime constitute a Galois 
Field GF(p). 
 
Note that the process of addition involves adding the inverse element under addition, 
while division involves multiplying the inverse element under multiplication. 
An extension of GF(p, p a prime, to a GF(pm) is also possible. We will be making 
extensive use of Galois fields of the type GF(2m). 
 
A linear block code is an (n,k) code where every codeword is the modulo-2 sum of 
any other two codewords. 
 
A linear block code is characterized by a generator matrix. The generator matrix  is 
made up of a parity check  and an Identity matrix. 
Ex. For a (7,4) code, the generator matrix consists of 
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a parity check [4 x 3] matrix followed by  an Identity [4 x 4] matrix to make up a [4 x 
7] matrix. In this format the linear block code is also called a systematic code since 
the structure of the code separates out the derived parity checks and the original data 
block into separate subblocks. 
 
Example:  Linear Block Code (7,4) has a generator matrix 
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and results in the 24 = 16 codewords listed below 
 

Data Codeword 
0000 000 0000 
0001 111 0001 
0010 011 0010 
0011 100 0011 



0100 101 0100 
0101 010 0101 
0110 110 0110 
0111 001 0111 
1000 110 1000 
1001 001 1001 
1010 101 1010 
1011 010 1011 
1100 011 1100 
1101 100 1101 
1110 000 1110 
1111 111 1111 

 
The Hamming Weight of every codeword is at least three. The minimum distance of 
the code is the minimum difference between any two codewords, but since any 
codeword is the sum of any other two codewords, the minimum Hamming distance is 
3. 
 
The parity-check matrix of an (n,k) linear block code is derived from the [k x n] 
generator matrix, as an [(n-k) x n] matrix given by 
 
H = In-k.PT  where I is the identity matrix and P the parity-check part of the 
generator matrix. 
 
For the (7,4) code above, the parity-check matrix H is a [3 x 7] matrix, given by 
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The importance of the parity-check matrix is due to the fact that 
 
G. HT = 0;  also implies that  v. HT = 0;  where v is any valid codeword 
 
 
Syndrome and Error Detection 
 
In general, when a received word is passed through the HT matrix it gives rise to an 
[n-k] bit pattern called the syndrome. A non-zero syndrome indicates an error has 
been detected. 
One can write the received vector as  r = e + v  where r is the received n-tuple that 
can be considered to be made up of a codeword v and an error vector e. 
 
However there is still the possibility of an undetectable error if the error vector e 
alters one codeword to another. There are (2k � 1) received n-tuples that can be 
undetectable errors. The rest, i.e. 2n � 2k are detectable. 
The probability of an undetectable error, denoted by Pu(E) is given by 
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where A is the Hamming weight of each codeword and 
 p≡ pe is the probability of bit error, (transition error probability) on a BSC. 
 And (1-p) ≡ pc is the probability of a correctly received bit 
 
For the (7,4) code above the weight distribution is A0 = 1, A3 = A4 = 7, A1 = A2 = A5 = 
A6 = 0. Therefore 
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and for a p = 10-2, the Pu(E) = 7 x 10-6, considerably lower than p. 
 
 
Syndrome circuit 
 
From HT of the (7,4) code above the syndrome bits are 
s0 =  r0 + r3 + r4 + r6 ;  s1 =  r1 + r3 + r5 + r6 ;  s2 =  r2 + r4 + r5 + r6 ; and they can be 
obtained from an XOR logic circuit given below. 
 

 
 

The next important issue is whether given a syndrome, and the consequent indication 
of an error, there is the possibility of automatically correcting the error. For a (7,4) 
code there are 27 � 24 = 128 detectable error patterns, that are detected by (23-1) = 7 
non-zero syndrome patterns. Clearly there is a mapping of 16 to 1. 
Using maximum likelihood, the error vector with the minimum Hamming weight 
from the set of 16, should be chosen. Denoting this vector by e, the resultant 
codeword would be  
  v = r + e 
The 16 patterns that are a set for each syndrome pattern, together with the sixteen 
codewords when the syndrome is zero, form the 27 = 128 possible 7-bit tuples for the 
(7,4) code. For a linear block code these give rise to a standard array. The pattern with 
the minimum Hamming weight in each of the eight cosets, is used as a coset leader. 



 
  

  0000000 1110001 0110010 10000011 1010100 0100101 1100110 0010111 1101000 0011001 1011010 0101011 0111100 1001101 0001110 1111111 

1000000 0110001 1110010 00000011 0010101 1100101 0100110 1010111 0101000 1011001 0011010 1101011 1111100 0001101 1001110 0111111 

0100000 1010001 0010010 1100011 1110100 0000101 1000100 0110111 1001000 0111001 1111010 0001011 0011100 1101101 0101110 1011111 

0010000 1100001 0100010 1010011 1000100 0110101 1110110 0000111 1111000 0001001 1001010 0111011 0101100 1011101 0011110 1101111 

0001000 1111001 0111010 1001011 1011100 0101101 1101110 0011111 1100000 0010001 1010010 0100011 0110100 1000101 0000110 1110111 

0000100 1110101 0110110 1000111 1010000 0100001 1100010 0010011 1101100 0011101 1011110 0101111 0111000 1001001 0001010 1111011 

0000010 1110011 0110000 1000001 1010110 0100111 1100100 0010101 1101010 0011011 1011000 0101001 0111110 1001111 0001100 1111101 

0000001 1110000 0110011 1000010 1010101 0100100 1100111 0010110 1101001 0011000 1011011 0101010 0111101 1001100 0001111 1111110 

 
Standard Array for the (7,4)code 

 
The coset leaders are in the first column of each coset and are the 7-bit pattern with 
minimum weight in that coset. 
 
Finally, the relationship of the syndrome to the coset leaders is given by 
 

Syndrome Coset Leader 

100 10000000 

010 0100000 

001 0010000 

110 0001000 

101 00000100 

011 00000010 

111 00000001 

 
Note that the order of the syndrome patterns correspond to the row order of the HT . 
For a k greater than 8, the size of the table becomes considerable, and the search for 
the corresponding error vector to add to the received 7-bit pattern to obtain the 
codeword becomes long. 
 
There is a relationship between a generator matrix and its parity check matrix in terms 
of dual codes. If  H is used for code C, then the same H is the G for the dual code Cd. 

This can be used to calculate the Pu(E) when it is not easy to get the codewords 
weight distribution Ai of the code because k is big. Defining the two weight 
distributions in terms of polynomials as 
C    A(z) = A0 + A1z + . . . . + Anz

n  and for its dual  (3.5) 
Cd B(z) =  B0 + B1z + . . . . + Bnz

n where z is given by  (3.6) 
z = p/(1-p) and A(z) can be obtained in terms of B(z) from 
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and using (3.4) given by 



n

i

ini
iu ppAEP

1

)1()( ,  by rearranging to obtain 


 


n

i

i
i

n
u p

p
ApEP

1

)
1

()1()(     (3.8) 

and since A0 = 1, then using the two equations  (3.7) and (3.8), an alternative to (3.4) 
can be obtained as 
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Either 3.4 or (3.9) can be used to obtain Pu(E) depending on which of k or (n-k) is 
suitable. 
 
Example:  For the (7.4) code having G and H above, the Cd is a (7,3) code whose G is 

given by 
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G  and the eight codewords are given by 

000 0000 001 0111 010 1011 011 1100 100 1101  
101 1010 110 0110 111 0001 
 
The weight distribution gives  B(z) = 1 + 7z4 
Hence from the dual code 

743 )1(])21(71[2)( ppEPu    which is equal to the previous answer. (*Check 

it out by working out the polynomial in p for both cases). 
In general, for large (n.k) it is not easy to work out Pu(E).  It can be shown that an 
upper bound exists given by 
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Hamming Codes 
 
These are linear codes based on the following properties. For any m ≥ 3, a Hamming 
code can be built with 
 
 n = 2m � 1; k =  2m � m �1; n-k = m. 
 
Note that the (7,4) code above is a Hamming code. One particular property, because 
of the nature of the number of syndrome patterns available, is that a Hamming code is 
a perfect code. The class of  t-error correcting codes that has in its standard array all 
patterns of t or less weight as the coset leaders, is called a perfect code. 
Perfect codes are rare. Besides the Hamming Codes, the other nontrivial perfect code 
is the (23,12) Golay code. 
 
The Hamming code therefore cannot detect two or more errors. However this can be 
done using a shortened Hamming code obtained by removing from the H matrix all 
the columns whose weight is even. If l columns are removed, the code now becomes 
 Code length n = 2m - l � 1 = n � l 
 Information bits k =  2m � m - l � 1 
 Parity check bits n-k = m 
 Minimum distance  d ≥ 3 
 
Using this shortened cyclic code decoding is done as follows: 

1. If the syndrome is zero a correct codeword is received 
2. If the syndrome is odd, then a single error occurred which can be corrected 
3. If the syndrome is even there is an uncorrectable error pattern  

 


