CCE5102 Information Theory and Coding
 Tutorial 2
 Linear Block Codes

1. Consider the binary linear block code whose generator matrix is

$$
G=\left[\begin{array}{lllll}
1 & 0 & 1 & 0 & 1
\end{array}\right]
$$

(a) Find the generator matrix in systematic form for an equivalent code
(b) Find the parity check matrix H for the code in (a).
(c) Find the codeword that has [110] as its information word.
(d) What is the minimum distance for the code?
2. A binary linear block code C has a generator matrix

$$
G=\left[\begin{array}{ll}
1 & 0 \\
1 & 1 \\
1 & 0
\end{array}\right]
$$

(a) Find the weight distribution $\mathrm{W}[\mathrm{C}]$
(b) Using elementary row operations obtain G^{\prime} in a systematic form
(c) Show that the weight distribution $\mathrm{W}\left[\mathrm{C}^{\prime}\right]$ from G^{\prime} is the same as $\mathrm{W}[\mathrm{C}]$
3. A binary linear block code C has a generator matrix

$$
G=\left[\begin{array}{llll}
1 & 0 & 0 & 1
\end{array}\right]
$$

(a) What are the values of length n , and dimension k of the code?
(b) Find the weight distribution $\mathrm{W}[\mathrm{C}]$ and use it to determine the probability of an undetected error
(c) Determine the error correcting probability, t , of C
(d) Find the parity check matrix H of C .
(e) Find the standard array of C , based on H
(f) Use standard array decoding to find the closest code word to the received word $\mathrm{r}=\left[\begin{array}{lllll}1 & 1 & 0 & 1 & 1\end{array}\right]$
4. Consider an $(8,4)$ systematic code whose parity-check equations are given by
$\mathrm{p}_{3}=\mathrm{d}_{0}+\mathrm{d}_{2}+\mathrm{d}_{3}$
$\mathrm{p}_{2}=\mathrm{d}_{0}+\mathrm{d}_{1}+\mathrm{d}_{3}$
$\mathrm{p}_{1}=\mathrm{d}_{0}+\mathrm{d}_{1}+\mathrm{d}_{2}$
$\mathrm{p}_{0}=\mathrm{d}_{1}+\mathrm{d}_{2}+\mathrm{d}_{3}$
(a) Find the generator matrix $\left[\mathrm{P}_{4}\right]$ for the code, C .
(b) Work out the parity check matrix of C.
(c) Show that the minimum distance of C is 4 .

