
Student Projects using SMPCache 2.0

1/12

Student Projects using SMPCache 2.0

1. Introduction ...1

2. Uniprocessor Traces..1

2.1. Project 1: Locality of Different Programs..2

2.2. Project 2: Influence of the Cache Size ...3

2.3. Project 3: Influence of the Block Size..4

2.4. Project 4: Influence of the Block Size for Different Cache Sizes..........................4

2.5. Project 5: Influence of the Mapping for Different Cache Sizes.............................5

2.6. Project 6: Influence of the Replacement Policy...6

3. Multiprocessor Traces ...6

3.1. Project 7: Influence of the Cache Size on the Miss Rate7

3.2. Project 8: Influence of the Cache Size on the Bus Traffic8

3.3. Project 9: Influence of the Cache Coherence Protocol on the Miss Rate9

3.4. Project 10: Influence of the Cache Coherence Protocol on the Bus Traffic9

3.5. Project 11: Influence of the Number of Processors on the Miss Rate10

3.6. Project 12: Influence of the Number of Processors on the Bus Traffic11

1. Introduction

This document contains some ideas for student projects using SMPCache. These idea
descriptions are intended as starting point from which other many project assignments could
be designed. Students should be familiar with the simulator to carry out any of the projects.
We have developed the “Getting Started with SMPCache” manual with this aim.

If you have comments about this document or the simulator, please contact Miguel A.
Vega at mavega@unex.es (Fax: +34-927-257202) or at the following address:

Miguel A. Vega-Rodríguez

Dept. de Informática, Univ. de Extremadura, Escuela Politécnica

Campus Universitario s/n. 10071. Cáceres. España (Spain)

2. Uniprocessor Traces

We will first study the basic algorithms and concepts that are present in every cache
memory system, uniprocessor or multiprocessor. We will consequently configure the
SMPCache simulator with a single processor, and we will use uniprocessor traces. For this
first set of projects we will consider traces of some SPEC’92 benchmarks (Hydro, Nasa7,
Cexp, Mdljd, Ear, Comp, Wave, Swm and UComp), according to real tests performed on a

Student Projects using SMPCache 2.0

2/12

MIPS R2000 system. The traces used represent a wide variety of “real” application programs.
These traces come from the Parallel Architecture Research Laboratory (PARL), New Mexico
State University (NMSU), and they are available by anonymous ftp to tracebase.nmsu.edu.
The traces had different formats, like Dinero or PDATS, and they have been changed to the
SMPCache trace format (see Getting Started with SMPCache 2.0, section 4). These traces,
with the correct format for SMPCache, are included in your copy of the simulator. A
summary of the traces is given in Table 1.

Name Classification Language Comments
Hydro Floating point --- Astrophysics: Hydrodynamic Naiver Stokes equations

Nasa7 Floating point Fortran
A collection of 7 kernels. For each kernel, the program
generates its own input data, performs the kernel and
compares the result against an expected result

Cexp Integer C
Portion of a Gnu C compiler that exhibits strong random
behaviour

Mdljd Floating point Fortran

Solves the equations of motion for a model of 500 atoms
interacting through the idealized Lennard-Jones
potential. It is a numerical program that exhibits mixed
looping and random behaviour

Ear Floating point ---
This trace, the same as the rest, was provided by Nadeem
Malik of IBM

Comp Integer C
Uses Lempel-Ziv coding for data compression.
Compresses an 1 MB file 20 times

Wave Floating point Fortran
Solves Maxwell’s equations and electromagnetic particle
equations of motion

Swm Floating point Fortran
Solves a system of shallow water equations using finite
difference approximations on a 256*256 grid

UComp Integer C The uncompress version of Comp

Table 1: Uniprocessor traces.

Remember: All these uniprocessor projects can be performed in a similar way with

multiprocessor traces.

2.1. Project 1: Locality of Different Programs

Purpose

Show that the programs have different locality, and there are programs with “good” or
“bad” locality.

Development

Configure a system with the following architectural characteristics:

• Processors in SMP = 1.
• Cache coherence protocol = MESI.
• Scheme for bus arbitration = Random.
• Word wide (bits) = 16.
• Words by block = 16 (block size = 32 bytes).
• Blocks in main memory = 8192 (main memory size = 256 KB).
• Blocks in cache = 128 (cache size = 4 KB).

Student Projects using SMPCache 2.0

3/12

• Mapping = Fully-Associative.
• Replacement policy = LRU.

Obtain the miss rate using the memory traces: Hydro, Nasa7, Cexp, Mdljd, Ear, Comp,
Wave, Swm and UComp (trace files with the same name and extension “.prg”).

Do all the programs have the same locality grade? Which is the program with the best
locality? And which does it have the worst? Do you think that the design of memory systems
that exploit the locality of certain kind of programs (which will be the most common in a
system) can increase the system performance? Why?

During the development of the experiments, you can observe graphically how, in
general, the miss rate decreases as the execution of the program goes forward. Why? Which is
the reason?

2.2. Project 2: Influence of the Cache Size

Purpose

Show the influence of the cache size on the miss rate.

Development

Configure a system with the following architectural characteristics:

• Processors in SMP = 1.
• Cache coherence protocol = MESI.
• Scheme for bus arbitration = Random.
• Word wide (bits) = 16.
• Words by block = 16 (block size = 32 bytes).
• Blocks in main memory = 8192 (main memory size = 256 KB).
• Mapping = Fully-Associative.
• Replacement policy = LRU.

Configure the blocks in cache using the following configurations: 1 (cache size = 0,03
KB), 2, 4, 8, 16, 32, 64, 128, 256, and 512 (cache size = 16 KB). For each of the
configurations, obtain the miss rate using the trace files (extension “.prg”): Hydro, Nasa7,
Cexp, Mdljd, Ear, Comp, Wave, Swm and UComp.

Does the miss rate increase or decrease as the cache size increases? Why? Does this
increment or decrement happen for all the benchmarks or does it depend on the different
locality grades? What does it happen with the capacity and conflict (collision) misses when
you enlarge the cache? Are there conflict misses in these experiments? Why?

In these experiments, it may be observed that for great cache sizes, the miss rate is
stabilized. Why? We can also see great differences of miss rate for a concrete increment of
cache size. What do these great differences indicate? Do these great differences of miss rate
appear at the same point for all the programs? Why?

In conclusion, does the increase of cache size improve the system performance?

Student Projects using SMPCache 2.0

4/12

2.3. Project 3: Influence of the Block Size

Purpose

Study the influence of the block size on the miss rate.

Development

Configure a system with the following architectural characteristics:

• Processors in SMP = 1.
• Cache coherence protocol = MESI.
• Scheme for bus arbitration = Random.
• Word wide (bits) = 16.
• Main memory size = 256 KB (the number of blocks in main memory will vary).
• Cache size = 4 KB (the number of blocks in cache will vary).
• Mapping = Fully-Associative.
• Replacement policy = LRU.

Configure the words by block using the following configurations: 4 (block size = 8
bytes), 8, 16, 32, 64, 128, 256, 512, and 1024 (block size = 2048 bytes). For each of the
configurations, obtain the miss rate using the trace files: Hydro, Nasa7, Cexp, Mdljd, Ear,
Comp, Wave, Swm and UComp.

Does the miss rate increase or decrease as the block size increases? Why? Does this
increment or decrement happen for all the benchmarks or does it depend on the different
locality grades? What does it happen with the compulsory misses when you enlarge the block
size? What is the pollution point? Does it appear in these experiments?

In conclusion, does the increase of block size improve the system performance?

2.4. Project 4: Influence of the Block Size for Different Cache Sizes

Purpose

Show the influence of the block size on the miss rate, but in this case, for several cache
sizes.

Development

Configure a system with the following architectural characteristics:

• Processors in SMP = 1.
• Cache coherence protocol = MESI.
• Scheme for bus arbitration = Random.
• Word wide (bits) = 32.
• Main memory size = 1024 KB (the number of blocks in main memory will vary).
• Mapping = Fully-Associative.
• Replacement policy = LRU.

Student Projects using SMPCache 2.0

5/12

Configure the words by block using the following configurations: 8 (block size = 32
bytes), 16, 32, 64, 128, 256, 512, and 1024 (block size = 4096 bytes). For each of the
configurations of words by block, configure the number of blocks in cache in order to get the
following cache sizes: 4 KB, 8 KB, 16 KB, and 32 KB. For each configuration obtain the
miss rate using the memory trace: Ear.

We are first going to ask you the same questions as in the previous project: Does the
miss rate increase or decrease as the block size increases? Why? What does it happen with the
compulsory misses when you enlarge the block size? Does the pollution point appear in these
experiments?

Does the influence of the pollution point increase or decrease as the cache size
increases? Why?

2.5. Project 5: Influence of the Mapping for Different Cache Sizes

Purpose

Analyse the influence of the mapping on the miss rate for several cache sizes.

Development

Configure a system with the following architectural characteristics:

• Processors in SMP = 1.
• Cache coherence protocol = MESI.
• Scheme for bus arbitration = Random.
• Word wide (bits) = 32.
• Words by block = 64 (block size = 256 bytes).
• Blocks in main memory = 4096 (main memory size = 1024 KB).
• Replacement policy = LRU.

Configure the mapping using the following configurations: Direct, two-way set
associative, four-way set associative, eight-way set associative, and fully-associative
(remember: Number_of_ways = Number_of_blocks_in_cache / Number_of_cache_sets). For
each of the configurations of mapping, configure the number of blocks in cache in order to get
the following cache sizes: 4 KB (16 blocks in cache), 8 KB, 16 KB, and 32 KB (128 blocks in
cache). For each configuration obtain the miss rate using the memory trace: Ear.

Does the miss rate increase or decrease as the associativity increases? Why? What does
it happen with the conflict misses when you enlarge the associativity grade?

Does the influence of the associativity grade increase or decrease as the cache size
increases? Why?

In conclusion, does the increase of associativity improve the system performance? If the
answer is yes, in general, which is the step with more benefits: from direct to 2-way, from 2-
way to 4-way, from 4-way to 8-way, or from 8-way to fully-associative?

Student Projects using SMPCache 2.0

6/12

2.6. Project 6: Influence of the Replacement Policy

Purpose

Show the influence of the replacement policy on the miss rate.

Development

Configure a system with the following architectural characteristics:

• Processors in SMP = 1.
• Cache coherence protocol = MESI.
• Scheme for bus arbitration = Random.
• Word wide (bits) = 16.
• Words by block = 16 (block size = 32 bytes).
• Blocks in main memory = 8192 (main memory size = 256 KB).
• Blocks in cache = 128 (cache size = 4 KB).
• Mapping = 8-way set-associative (cache sets = 16).

Configure the replacement policy using the following configurations: Random, LRU,
LFU, and FIFO. For each of the configurations, obtain the miss rate using the trace files
(extension “.prg”): Hydro, Nasa7, Cexp, Mdljd, Ear, Comp, Wave, Swm and UComp.

In general, which is the replacement policy with the best miss rate? And which does it
have the worst? Do the benefits of LFU and FIFO policies happen for all the benchmarks or
do they depend on the different locality grades?

For a direct-mapped cache, would you expect the results for the different replacement
policies to be different? Why or why not?

In conclusion, does the use of a concrete replacement policy improve the system
performance? If the answer is yes, in general, which is the step with more benefits: from
Random to LRU, from Random to LFU, or from Random to FIFO? Why (consider the
cost/performance aspect)?

3. Multiprocessor Traces

After analysing the basic algorithms and concepts that are present in every cache
memory system (uniprocessor or multiprocessor), we study some theoretical issues related
with multiprocessor systems. In these projects, we will consequently configure the SMPCache
simulator with more than one processor, and we will use multiprocessor traces with tens of
millions of memory accesses (references) for four benchmarks (FFT, Simple, Speech and
Weather). These traces were provided by David Chaiken (then of MIT) for NMSU PARL,
and they are available by anonymous ftp to tracebase.nmsu.edu. The traces represent several
real parallel applications (FFT, Simple and Weather traces were generated using the post-
mortem scheme implemented by Mathews Cherian with Kimming So at IBM). The traces had
different formats, like the canonical format for multiprocessor traces developed by Anant
Agarwal, and they have been changed to the SMPCache trace format (see Getting Started with
SMPCache 2.0, section 4). These traces, with the correct format for SMPCache, can be
obtained at the address http://atc.unex.es/mavega/SMPCache/SMPCacheEnglish.htm or
http://atc.unex.es/smpcache. A summary of the traces is shown in Table 2.

Student Projects using SMPCache 2.0

7/12

Name References Language Comments
FFT 7,451,717 Fortran Parallel application that simulates the fluid dynamics with FFT

Simple 27,030,092 Fortran Parallel version of the SIMPLE application

Speech 11,771,664 ---
Kirk Johnson and David Kranz (both at MIT) are responsible
for this trace

Weather 31,764,036 Fortran
Parallel version of the WEATHER application, which is used
for weather forecasting. The serial version is from NASA
Space Flight Center, Greenbelt, Md.

Table 2: Multiprocessor traces.

3.1. Project 7: Influence of the Cache Size on the Miss Rate

Purpose

Study the influence of the cache size on the miss rate during the execution of a parallel
program in a SMP (symmetric multiprocessor). This project also allows us to show that all the
previous uniprocessor projects can be performed in a similar way for multiprocessor systems
(multiprocessor traces).

Development

Configure a system with the following architectural characteristics:

• Processors in SMP = 8.
• Cache coherence protocol = MESI.
• Scheme for bus arbitration = LRU.
• Word wide (bits) = 16.
• Words by block = 32 (block size = 64 bytes).
• Blocks in main memory = 524288 (main memory size = 32 MB).
• Mapping = Set-Associative.
• Cache sets = They will vary depending on the number of blocks in cache, but you

must always have four-way set associative caches (remember: Number_of_ways =
Number_of_blocks_in_cache / Number_of_cache_sets).

• Replacement policy = LRU.

Configure the blocks in cache using the following configurations: 16 (cache size = 1
KB), 32, 64, 128, 256, 512, 1024, and 2048 (cache size = 128 KB). For each of the
configurations, obtain the global miss rate for the system using the trace files: FFT, Simple,
Speech and Weather.

Does the global miss rate increase or decrease as the cache size increases? Why? Does
this increment or decrement happen for all the benchmarks or does it depend on the different
locality grades? What does it happen with the capacity and conflict (collision) misses when
you enlarge the caches? And, what does it happen with the compulsory and coherence misses
when you enlarge the caches? Are there conflict misses in these experiments? Why?

In these experiments, it may be observed that for great cache sizes, the miss rate is
stabilized. Why? We can also see great differences of miss rate for a concrete increment of
cache size. What do these great differences indicate? Do these great differences of miss rate
appear at the same point for all the programs? Why?

Student Projects using SMPCache 2.0

8/12

Compare these results with the results obtained in the project 2 (section 2.2). You can
observe that the miss rates are higher for multiprocessor traces than for uniprocessor traces.
Do you think that, in general, parallel programs exhibit more or less spatial and temporal
locality than serial programs? Why? Is it due to the shared data?

In conclusion, does the increase of cache size improve the multiprocessor system
performance?

3.2. Project 8: Influence of the Cache Size on the Bus Traffic

Purpose

Show the influence of the cache size on the bus traffic during the execution of a parallel
program in a SMP.

Development

Configure a system with the following architectural characteristics:

• Processors in SMP = 8.
• Cache coherence protocol = MESI.
• Scheme for bus arbitration = LRU.
• Word wide (bits) = 16.
• Words by block = 32 (block size = 64 bytes).
• Blocks in main memory = 524288 (main memory size = 32 MB).
• Mapping = Set-Associative.
• Cache sets = They will vary depending on the number of blocks in cache, but you

must always have four-way set associative caches (remember: Number_of_ways =
Number_of_blocks_in_cache / Number_of_cache_sets).

• Replacement policy = LRU.

Configure the blocks in cache using the following configurations: 16 (cache size = 1
KB), 32, 64, 128, 256, 512, 1024, and 2048 (cache size = 128 KB). For each of the
configurations, obtain the bus traffic (in bytes per memory access) for the system using the
trace files: FFT, Simple, Speech and Weather. In order to compute the bus traffic, assume that
cache block transfers move 64 bytes (the block size) on the bus data lines, and that each bus
transaction involves six bytes of command and address on the bus address lines. Therefore,
you can compute the address traffic (including command) by multiplying the obtained bus
transactions by the traffic per transaction (6 bytes). In the same way, you can compute the
data traffic by multiplying the number of block transfers by the traffic per transfer (64 bytes).
The total bus traffic, in bytes per memory access, will be the addition of these two quantities
divided by the number of memory accesses (references) in the trace (see Table 2).

Does the global bus traffic increase or decrease as the cache size increases? Why (give
two reasons, one for the data traffic and another for the address+command bus traffic)? Does
this increment or decrement happen for all the benchmarks?

In these experiments, it may be observed that for great cache sizes, the bus traffic is
stabilized. Why? We can also see great differences of bus traffic for a concrete increment of
cache size. What do these great differences indicate? Do these great differences of bus traffic
appear at the same point for all the programs? Why?

Student Projects using SMPCache 2.0

9/12

In conclusion, does the increase of cache size improve the multiprocessor system
performance? Are the conclusions you obtain similar to the previous ones for the miss rate
(project 7)?

3.3. Project 9: Influence of the Cache Coherence Protocol on the Miss Rate

Purpose

Study the influence of the cache coherence protocol on the miss rate during the
execution of a parallel program in a symmetric multiprocessor.

Development

Configure a system with the following architectural characteristics:

• Processors in SMP = 8.
• Scheme for bus arbitration = LRU.
• Word wide (bits) = 16.
• Words by block = 32 (block size = 64 bytes).
• Blocks in main memory = 524288 (main memory size = 32 MB).
• Blocks in cache = 256 (cache size = 16 KB).
• Mapping = Set-Associative.
• Cache sets = 64 (four-way set associative caches).
• Replacement policy = LRU.

Configure the cache coherence protocol using the following configurations: MSI,
MESI, and DRAGON. For each of the configurations, obtain the global miss rate for the
system using the memory traces: FFT, Simple, Speech and Weather.

Do all the protocols have the same miss rate? Which is the coherence protocol with the
best miss rate? And which does it have the worst? In particular, is the miss rate the same for
the MSI and MESI protocols? Why?

Do you observe any difference between the update-based protocol and the invalidation-
based protocols? Which? Why? Are the coherence misses the same for these two kinds of
protocols?

Do you think that the results and conclusions obtained with these experiments are of
general application or they may change depending on the used benchmarks?

In conclusion, does the use of a concrete cache coherence protocol improve the
multiprocessor system performance? Why?

3.4. Project 10: Influence of the Cache Coherence Protocol on the Bus Traffic

Purpose

Analyse the influence of the cache coherence protocol on the bus traffic during the
execution of a parallel program in a SMP.

Student Projects using SMPCache 2.0

10/12

Development

Configure a system with the following architectural characteristics:

• Processors in SMP = 8.
• Scheme for bus arbitration = LRU.
• Word wide (bits) = 16.
• Words by block = 32 (block size = 64 bytes).
• Blocks in main memory = 524288 (main memory size = 32 MB).
• Blocks in cache = 256 (cache size = 16 KB).
• Mapping = Set-Associative.
• Cache sets = 64 (four-way set associative caches).
• Replacement policy = LRU.

Configure the cache coherence protocol using the following configurations: MSI,
MESI, and DRAGON. For each of the configurations, obtain the bus traffic (in bytes per
memory access) for the system using the trace files: FFT, Simple, Speech and Weather. In
order to compute the bus traffic, assume that cache block transfers move 64 bytes (the block
size) on the bus data lines, and that each bus transaction involves six bytes of command and
address on the bus address lines. Therefore, you can compute the address traffic (including
command) by multiplying the obtained bus transactions by the traffic per transaction (6
bytes). In the same way, you can compute the data traffic by multiplying the number of block
transfers by the traffic per transfer (64 bytes). The total bus traffic, in bytes per memory
access, will be the addition of these two quantities divided by the number of memory accesses
(references) in the trace (see Table 2).

Do all the protocols have the same bus traffic? Which is the coherence protocol with the
best bus traffic? And which does it have the worst? In particular, is the bus traffic the same for
the MSI and MESI protocols? Why (for this answer, remember how the miss rate was for
these two protocols –project 9)?

Do you observe any difference between the update-based protocol and the invalidation-
based protocols? Which? Why (give at least two reasons)?

Do you think that the results and conclusions obtained with these experiments are of
general application or they may change depending on the used benchmarks? Indicate other
scenario in which the invalidation protocol does much better than the update protocol.

In conclusion, does the use of a concrete cache coherence protocol improve the
multiprocessor system performance? Why? Are the conclusions you obtain similar to the
previous ones for the miss rate (project 9)?

3.5. Project 11: Influence of the Number of Processors on the Miss Rate

Purpose

Study the influence of the number of processors on the miss rate during the execution of
a parallel program in a symmetric multiprocessor.

Development

Configure a system with the following architectural characteristics:

Student Projects using SMPCache 2.0

11/12

• Cache coherence protocol = MESI.
• Scheme for bus arbitration = LRU.
• Word wide (bits) = 16.
• Words by block = 32 (block size = 64 bytes).
• Blocks in main memory = 524288 (main memory size = 32 MB).
• Blocks in cache = 256 (cache size = 16 KB).
• Mapping = Set-Associative.
• Cache sets = 64 (four-way set associative caches).
• Replacement policy = LRU.

Configure the number of processors in the SMP using the following configurations: 1,
2, 4, and 8. For each of the configurations, obtain the global miss rate for the system using the
three traces that were generated by the post-mortem scheme: FFT, Simple and Weather.

Does the global miss rate increase or decrease as the number of processors increases?
Why? Does this increment or decrement happen for all the benchmarks or does it depend on
the different locality grades, shared data,...? What does it happen with the capacity and
coherence misses when you enlarge the number of processors? Are there conflict misses in
these experiments? Why?

Do you think that the results and conclusions obtained with these experiments are of
general application or they may change depending on the cache coherence protocol? Why?

In conclusion, does the increase of the number of processors improve the multiprocessor
system performance? Why and in what sense?

3.6. Project 12: Influence of the Number of Processors on the Bus Traffic

Purpose

Evaluate the influence of the number of processors on the bus traffic during the
execution of a parallel program in a symmetric multiprocessor.

Development

Configure a system with the following architectural characteristics:

• Cache coherence protocol = MESI.
• Scheme for bus arbitration = LRU.
• Word wide (bits) = 16.
• Words by block = 32 (block size = 64 bytes).
• Blocks in main memory = 524288 (main memory size = 32 MB).
• Blocks in cache = 256 (cache size = 16 KB).
• Mapping = Set-Associative.
• Cache sets = 64 (four-way set associative caches).
• Replacement policy = LRU.

Configure the number of processors in the SMP using the following configurations: 1,
2, 4, and 8. For each of the configurations, obtain the bus traffic (in bytes per memory access)
for the system using the three traces that were generated by the post-mortem scheme: FFT,
Simple and Weather. Remember: In order to compute the bus traffic, assume that cache block

Student Projects using SMPCache 2.0

12/12

transfers move 64 bytes (the block size) on the bus data lines, and that each bus transaction
involves six bytes of command and address on the bus address lines. Therefore, you can
compute the address traffic (including command) by multiplying the obtained bus transactions
by the traffic per transaction (6 bytes). In the same way, you can compute the data traffic by
multiplying the number of block transfers by the traffic per transfer (64 bytes). The total bus
traffic, in bytes per memory access, will be the addition of these two quantities divided by the
number of memory accesses (references) in the trace (see Table 2).

Does the global bus traffic increase or decrease as the number of processors increases?
Why (give two reasons, one for the data traffic and another for the address+command bus
traffic)? Does this increment or decrement happen for all the benchmarks or does it depend on
the different locality grades, shared data,...?

In general, which is the step with more bus traffic: from 1 to 2 processors, from 2 to 4
processors, or from 4 to 8 processors? Why?

Do you think that the results and conclusions obtained with these experiments are of
general application or they may change depending on the cache coherence protocol? Why?

Change the results obtained with these experiments in order to measure the bus traffic in
bytes per instruction (you must divide by the number of instruction captures -not memory
accesses- in the traces). Supposing that these applications run at a sustained 100 MIPS per
processor (and they are integer-intensive applications), what is the address and data bus
bandwidth requirement for each application and configuration of the number of processors?

The computation in the question above gives the average bandwidth requirement under
the assumption that the bus bandwidth is enough to allow the processors to execute at full
speed. This computation provides a useful basis for sizing the system. For example, on a
machine with 4.8 GB/s of data bandwidth, how many processors will the bus be able to
support without saturating for each benchmark? Remember: If the bandwidth is not sufficient
to support the application, the application will slow down.

In conclusion, does the increase of the number of processors improve the multiprocessor
system performance? Why and in what sense? Are the conclusions you obtain similar to the
previous ones for the miss rate (project 11)?

