
SMock — A Test Platform for Monitoring Tools?

Christian Colombo1, Ruth Mizzi1 and Gordon J. Pace1

Department of Computer Science, University of Malta
{christian.colombo | rmiz0015 | gordon.pace}@um.edu.mt

Abstract. In the absence of a test framework for runtime verification tools, the
evaluation and testing of such tools is an onerous task. In this paper we present the
tool SMock; an easily and highly configurable mock system based on a domain-
specific language providing profiling reports and enabling behaviour replayabil-
ity, and specifically built to support the testing and evaluation of runtime verifi-
cation tools.

1 Introduction

Two of the major challenges in runtime verification, which are crucial for its adoption
in industry, are those of the management of overheads induced through the monitoring
and the ensuring the correctness of the reported results. State-of-the-art runtime verifi-
cation tools such as Java-MOP [7] and tracematches [1] have been tested on the DaCapo
benchmark1, but the kind of properties in these case studies were typically rather low
level, contrasting with our experience with industrial partners who are more interested
in checking business logic properties (see e.g., [4, 3]). Whilst we had the chance to test
our tool Larva [5] on industrial case studies, such case studies are usually available
for small periods of time and in limited ways due to confidentiality concerns. Relying
solely on such case studies can be detrimental for the development of new tools which
need substantial testing and analysis before being of any use.

To address this lack, we have built a configurable framework which may be used to
mock transaction2 systems under different loads and usage patterns. The key feature of
the framework is the ease with which one can define different types of transactions and
farm out concurrent instances of such transactions through user-specified distributions.
Profiling the overheads induced by different runtime verification tools, thus, enables
easier benchmarking and testing for correctness of different tools and techniques under
different environment conditions. Although not a replacement of industrial case studies,
this enables better scientific evaluation of runtime verification systems.

SMock allows straightforward scripting of case studies, giving control over trans-
action behaviour, timing issues, load buildup, usage patterns, etc., which can be used
to benchmark the correctness and performance of different runtime verification tools.
A major issue SMock attempts to address is that of repeatability of the experiments,

? The research work disclosed in this publication has been partially funded by the University of
Malta Research Fund 2012, grant number CPSRP04-02.

1 http://www.dacapobench.org/
2 We use transaction to refer to an independent, highly replicated unit of processing.

2 C. Colombo, R. Mizzi and G. J. Pace

ensuring the scientific validity of the conclusions. To evaluate the use of the tool, we
have used it to build a suite of benchmarks and compared the performance of JavaMop
[7] and polyLarva [2] under different mocked scenarios.

2 The Architecture and Design of SMock

SMock has been built in such a manner so as to enable the easy generation of families
of transaction systems with two levels of configurability: (i) the form of the underlying
transactions (possibly including variations); and (ii) the scenarios depicting transaction
firing as distributed over time. To enable us to achieve this goal, SMock takes a script
describing these options and generates a Java mock system behaving in the prescribed
manner, generating events which can be captured by monitoring tools. Such a system
is then typically monitored using a specification script in a runtime monitoring tool,
enabling the measurement of overheads induced by the monitors in such a setting. Since
the mock system may include parts which are randomly generated (e.g., launch between
100 and 120 transactions in the first 10 seconds), its execution also tracks information
to allow exact replayability. This enables, for instance, comparison of the performance
of the different versions of a runtime verification tool, or its performance against that
of other tools, or as a regression test following a bug fix. The general usage pattern of
SMock is shown below:

RUNTIME
MONITOR

RV specification

SMock specification

GENERATED
SYSTEM

Replay
Configuration

Profiling Report

3 Scripting Behaviours

One of the strengths of SMock is that it allows users to script scenarios to be used
for testing. The scripts are written in a small domain-specific language which provides
a number of constructors to enable the description of processes and how they are to
be launched. Basic processes are individual actions which are characterised by three
parameters — their duration, memory consumption and CPU usage. These parameters
can be exact values or probability distributions3, to enable the mock system to behave
within a range of possible behaviours. Actions can be named if one would want to be
able to monitor their moment of entry and exit, but can also be left unnamed.

Processes can be combined using the following operators: (i) sequential composi-
tion; (ii) probability weighted choice between processes; and (iii) parallel composition
of processes. The combinators come in a binary form and also generalised versions
which allow the combination of multiple processes together.

3 The tool currently supports uniform and normal distributions.

SMock— A Test Platform for Monitoring Tools 3

Example 1. Consider a document management system which allows users to login,
browse, upload documents, edit these documents, etc. The resources used by some of
these actions can be characterised as follows:

login df
= action〈duration = uniform(3, 5),memory = normal(20, 40), cpu = 0.1〉

browse df
= action〈duration = normal(5, 8),memory = 300, cpu = normal(0.5, 0.7)〉

logout df
= action〈duration = normal(1, 3),memory = normal(20, 40), cpu = 0.1〉

One can now generate 300 users acting in one of two possible ways — browsing or
editing a number of files:

usertype1 df
= login; browse; logout

usertype2 df
= login;

seq foreach document ∈ {1 . . . 3} do
open; edit; save; edit; close;

logout
system df

= par foreach user ∈ {1 . . . 300} do

choice
{

0.9 7→ usertype1
0.1 7→ usertype2

In practice, for a more realistic scenario, we would not want the user transactions
to be launched all together at a single point in time, so we would add an (unnamed)
action preceding each user transaction, which takes some time to terminate, but does
not consume CPU or memory resources. �

As seen in the above simple example, when writing a script, one would usually want
to be able to define and reuse transactions, requiring further (non-functional) constructs
in the language. Similarly, one may want to add compile-time computations which cal-
culate constants to be used in the rest of the script (e.g., memory usage of a class of
actions could be automatically calculated as a function of CPU usage and duration). To
avoid having to extend the language with such constructs, we have chosen to build the
scripting language as an embedded language [6] in Python. This allowed us to avoid
having to build a parser and type-checker for the language, and also allows the user to
use Python for function definitions and computation.

4 An Application of SMock

SMock supports the generation of mock systems written in the Java language. As a case
study SMock has been used to generate a mock document management system — an
extension of the example given in Section 3.

In this case study, the generated system was used in conjunction with existing run-
time verification tools in order to analyse the effects these tools have on the overall
performance of concurrent systems, of which the document management system is an
example. Two runtime verification tools, JavaMop [7] and polyLarva [2] were used in
this case study. In both instances a sample property: an edited document must always
be saved before closing, has been monitored.

4 C. Colombo, R. Mizzi and G. J. Pace

The programs in Program 4.1 for JavaMop and polyLarva, show simplified ex-
cerpts of the specification scripts used to generate runtime monitors for JavaMop and
polyLarva. The most relevant feature of these scripts is the definition of noteworthy
system events, such as À and Á, which one must necessarily hook onto, to monitor
the required property. Our previous explanation of the SMock specification language
has highlighted how these system events are created through the definition of named
actions. Both RV tools use AspectJ4 technology to convert the event specifications to
aspect code that can identify the occurrence of these events on the system. The resul-
tant code is woven into the mock system’s code to provide runtime monitoring of its
execution.

Program 4.1 JavaMop and polyLarva specifications

JavaMOP:
SavedDoc(Document d) {
À event open after(Document d):call(* Document.open(..)) && target(d) {}
...
ere: (open save* edit edit* close) }

polyLarva:
upon { newDocument(doc) } {
events {

Á open(doc) = {doc.open();}
... }

rules { ... } }

The aim of this case study was not to carry out comparison between the runtime
monitoring tools; but rather its purpose is that of highlighting the type of analysis that
can be carried out using a mock system generated by SMock. In particular we wanted
to note the effect of runtime monitoring on the system’s performance when it is under
considerable load. Changes to the specification affecting the choice settings result in
different executions which model differing loads. We generated systems where only
10% of the users are carrying out document editing tasks and then increased this to
50% and 100% for the following executions. Since the property triggers only when a
document is manipulated, this affects the overheads induced by the runtime monitors.

The analysis uses the profiling information from the runs of the generated document
management system. For each configuration, the mock system was executed multiple
times in the following setups: (i) without any code instrumentation; (ii) using JavaMop;
and (iii) using polyLarva. Replaying was used to ensure comparison between identical
executions.

The table below compares performance of the system execution and demonstrates
how profiling data extracted by SMock can give a good indication of the effect that
differing system loads can have on the overall system performance and execution time.

4 http://www.eclipse.org/aspectj/

SMock— A Test Platform for Monitoring Tools 5

For each different load of users carrying out document management activities, the table
shows the average memory usage and CPU usage across the whole execution together
with an indication of system duration.

% users Average Mem Average % Total Sys Time (mins)
monitored (Kb) CPU None MOP poly

10 13.8 31.3 1.6 1.7 1.7

50 24.3 32.9 3.2 3.3 3.3

100 27.2 33.5 3.4 3.5 5.7

The monitoring overheads are non-trivial in these scenarios and the analysis allows
an understanding of how monitoring affects the overall system execution.

5 Related Work

While industry-calibre tools (e.g., jMock5) exist for mocking parts of a system under
test, to the best of our knowledge, no tools exist which enable one to mock a whole
system. Another significant difference of SMock from existing mocking tools is that
these do not explicitly support the specification of CPU and memory usage. SMock, not
only provides this through a dedicated language, but also provides constructs for the
specification of probability distributions over such resources. These differences make
SMock ideal to test systems which act upon other systems, e.g., monitoring systems
and testing systems.

Another area of somewhat related work is the area of traffic generators (e.g., Apache
JMeter6) for performance testing. However, such tools assume the existence of a system
on which traffic is generated. Since the load on a runtime verification tool occurs by
proxy, i.e. as a consequence of the load of another system, performance testing tools
cannot be used directly for the performance testing of runtime verification tools.

6 Conclusions and Future Work

With the significant advancements in the area of runtime verification in recent years, the
availability of mature tools is crucial for the increased adoption in industry. To facilitate
the testing and profiling of runtime verification tools we have presented SMock7, a
mock system generator coupled with replay and profiling capabilities. The tool has
been successfully applied to two state of the art tools showing the overheads in terms
of time taken, memory consumption, and processing resources.

Future improvements to SMock will focus on providing more advanced profiling
features such as power consumption measurement and automatic measurement repeti-
tion to ensure that results are not affected by external factors such as garbage collection

5 http://jmock.org/
6 http://jmeter.apache.org/
7 The tool can be downloaded from http://www.cs.um.edu.mt/svrg/Tools/SMock.

6 C. Colombo, R. Mizzi and G. J. Pace

or unrelated operating system activities. Furthermore, we would like to build an ap-
propriate test suite to test runtime monitoring tools for correctness. Although, at the
moment we only support the generation of a mock system written in Java, the design of
the tool makes it straightforward to extend to other languages — which we plan to do
in the near future.

References

1. Bodden, E., Hendren, L.J., Lam, P., Lhoták, O., Naeem, N.A.: Collaborative runtime verifica-
tion with tracematches. J. Log. Comput. 20(3), 707–723 (2010)

2. Colombo, C., Francalanza, A., Mizzi, R., Pace, G.J.: Extensible technology-agnostic runtime
verification. In: FESCA. EPTCS, vol. 108, pp. 1–15 (2013)

3. Colombo, C., Pace, G.J., Abela, P.: Compensation-aware runtime monitoring. In: RV. LNCS,
vol. 6418, pp. 214–228 (2010)

4. Colombo, C., Pace, G.J., Schneider, G.: Dynamic event-based runtime monitoring of real-time
and contextual properties. In: FMICS. LNCS, vol. 5596, pp. 135–149 (2008)

5. Colombo, C., Pace, G.J., Schneider, G.: Larva — safer monitoring of real-time java programs
(tool paper). In: SEFM. pp. 33–37 (2009)

6. Hudak, P.: Building domain-specific embedded languages. ACM Computing Surveys 28(4es),
196 (1996)

7. Meredith, P.O., Jin, D., Griffith, D., Chen, F., Roşu, G.: An overview of the MOP runtime
verification framework. JSTTT 14(3), 249–289 (2012)

