
A Controlled Natural Language
for Business Intelligence Monitoring

Christian Colombo1, Jean-Paul Grech1, and Gordon J. Pace1

University of Malta
{christian.colombo | jean-paul.grech.11 | gordon.pace}@um.edu.mt

Abstract. With ever increasing information available in social networks,
the number of businesses attempting to exploit it is on the rise, particu-
larly by keeping track of their customers’ posts and likes on social media
sites like Facebook. Whilst APIs can be used to automate the tracking
process, writing scripts to extract information and process it requires
considerable technical skill and is thus not an option for non technical
business analysts. On the other hand, off-the-shelf business intelligence
solutions do not provide the desired flexibility for the specific needs of
particular businesses. In this paper, we present a controlled natural lan-
guage enabling non-technical users to express their queries in a language
they can easily understand but which can be directly compiled into ex-
ecutable code.

Keywords: controlled natural languages, social networks, runtime ver-
ification

1 Introduction

Social media has provided the business community with a unique and unprece-
dented opportunity to engage with their customers, critics, competitors, etc.
Yet, this comes at the cost of continuously monitoring various fora on which
brand names may be mentioned, queries may be posted and products may be
compared. Dealing effectively with social media in a context where even an hour
can be considered as far too long a response time, is a challenging task.

Focusing in particular on Facebook, a typical business would have its own
page as well as a strong interest in pages on which their products may be dis-
cussed or advertised. Typical events which are relevant for a business might
include any mention of the brand or product, an advertising post by a competi-
tor, a comment by a customer (particularly if negative or a question), and so
on. To make the task of checking for these events manageable, dashboards [1–3]
are available allowing users to specify events of interest so that a notification is
received when such an event is detected (e.g., a notification when more than five
comments are awaiting a response).

The problem with existing tools is that while they allow the specification of
a number of events of interest, they do not offer the flexibility which might be

required for the business’ specific needs. For example, one might want to priori-
tise the notifications in order of urgency (e.g., a comment from a new customer
might be given precedence over that of an existing customer); alternatively one
might want to group them into batches (e.g., a notification per five comments
unless a comment has been posted for more than three hours). Such flexibility
usually comes at the price of a tailor-made solution which is generally expensive
both if developed in house or by a third party.

One way of allowing a high degree of flexibility while providing an off-the-
shelf solution would be to present a simple interface which would allow a business
intelligence analyst the flexibility to express the desired events for notification.
These would in turn be automatically compiled into Facebook monitors without
any further human intervention. Whilst an automated compiler would struggle to
handle natural language descriptions and a non-technical business analyst would
struggle with a programming language, a domain-specific language presented to
the user as a controlled natural language (CNL) [7] may act as an intermediary:
it provides the feel of a natural language but constraints the writer to particular
keywords and patterns.

In this paper, we present a CNL (Section 2) we have developed based on
the results of interviews with business analysts, supporting the expression of
requests such as ‘Create an alert when the service page has a post and the post
contains the keywords fridge, heater, and freezer’ and ‘Create an alert when my
page has a post and the post is negative and the post has 10 likes’.

The language is given an operational semantics (Section 3), which in turn
enables the compilation of specifications in the language into executable moni-
tors which can analyse traces of Facebook events. Although runtime verification
[4, 8] is typically used for bug detection by matching the execution flow of a
program to patterns encoded in terms of formally specified properties, runtime
verification tools essentially provide specification of monitors independent of the
main system. We have thus translated CNL specifications to be used by the
runtime verification tool Larva [5] and then used an adapter to present relevant
Facebook events as method calls in the control flow of a program.

Putting everything together, Figure 1 depicts the proposed architecture. The
user — depicted on the left — writes a specification in CNL and feeds it to the
CNL-to-Monitor tool. Subsequently, this tool generates two elements: a mon-
itoring specification for the Larva monitoring tool and an event bridge which
harvests Facebook events and communicates them in an appropriate form to
Larva. Finally, based on the output from Larva, a dashboard is updated to give
feedback to the user. The architecture we have developed can be easily adapted
to new data sources (e.g. Twitter) and to alternative monitoring tools, although
some work would be required to modify the Facebook-specific parts of the CNL.

The CNL has been evaluated (see Section 4) from the point-of-view of non-
technical users through a hands-on session and questionnaire involving users
from an insurance company. The results, reported herein, indicate that the users
managed to understand well ready-written rules and were able to express rules
using the language without any syntactic checking and user-interface support.

Business	 Intelligence	 Dashboard	

CNL	
specifica9on	 CNL-‐to-‐Monitor	

tool	
LARVA	

specifica9on	

Event	 bridge	

Larva	

Fig. 1. The architecture of the proposed approach

2 A Controlled Natural Language for Business
Intelligence

The business intelligence language being proposed, based on interviews with
end-users, is at core a controlled natural language [7], to enable non-technical
users to experiment with different rules and modify them without the need of
going through a further cycle with a developer or technical expert.

To reduce the risk of syntax errors, at the top level, the language is largely
a template-based one [6] allowing for the definition of alerts as in, for example,
the declaration:

Create an alert when the service page p has a multiple of 5 check-ins,
with priority 3.

This alert notifies the user whenever a particular page hits 5, 10, 15, etc. check-
ins1. The priority identifies the severity of the alert, allowing us to have a tiered
approach to alert handling.

Alerts can be triggered on three main types of events: (i) page-centric events;
(ii) post-centric events; and (iii) message-centric events. All these events fire
when a particular change of state happens. For instance, in the case of page-
centric events, three types of event firings can be identified as shown in the
following grammar fragment:

〈PageEvent〉 ::= 〈Page〉 has a post 〈Filter〉
| 〈Page〉 has 〈Count〉 check-ins
| poster 〈UserPageAction〉 〈Page〉

Thus, page-centric events can fire when (i) a new post appears on a page;
(ii) a number of check-ins occur on a page; or (iii) a user (poster) performs an
action on a page (e.g., likes or shares a page). As can be seen, these events can
be easily extended by allowing for alternative templates at this level.

1 Check-ins are events when users register their presence at a particular location or
business premises.

However, at a finer level, our alert specification language loses its template-
based flavour and allows for a slightly freer form of specification. Most events can
be filtered by relevant features — for example, posts on a page can be filtered
by placing a conjunction of constraints on the message or the poster, as can be
seen in the following grammar fragment:

〈MessageFilter〉 ::= has 〈Count〉 〈UserPageRelation〉
| has keywords 〈KeywordList〉
| is 〈TypeOfComment〉
| . . .

〈PosterFilter〉 ::= poster 〈UserPageAction〉 〈Page〉
| has left 〈Count〉 posts on 〈Page〉
| is from 〈Location〉
| . . .

Note that the filters take different forms, depending on the elements avail-
able for the event in question. While users posting comments can be filtered by
their location, messages can be filtered by keywords. Of particular interest are:
(i) filters based on linguistic analysis of the customer’s post — the third option
for a message filter in the grammar above is such a filter, allowing an alert to
depend on whether a question was posted, or based on whether the comment
was a positive or negative one by using an external sentiment analysis library;
and (ii) filters based on temporal constraints, such as by day of the week, date
ranges or time elapsed between two events.

Apart from alert definitions, the language also supports setting, and modi-
fying parameters for the alert rules to trigger. For instance, a user may set the
weight assigned to negative or positive posts on a page, to allow them firing
when they exceed a particular threshold.

3 Monitoring Semantics

The CNL is given an operational semantics of the form σ
a−→ σ′, where a is a

timestamped Facebook event and σ is the configuration of the Facebook monitor,
storing the relevant information, such as timers, the state of counters, etc. The
rules for all the patterns supported by the CNL are represented by the rule Cnl
(see Figure 2). These semantics can be readily translated into a specification for
a runtime verification tool such as Larva.

Note that rules of the form σ
a−→ σ′ assume that monitoring can take place as

soon as an event happens, i.e. in synchrony with events happening on the Face-
book platform. Unfortunately, this is not always feasible in the case of Facebook,
since one is not allowed to subscribe to notifications of pages one does not own. To
address this constraint, we adopt a polling-based approach, in which the system
regularly queries Facebook (through its API) and fetches relevant events which
have gathered since the last query. For this reason, the monitor consumes events
from a buffer rather than directly from Facebook as represented by rule Mon.

Representing the progression of the state of Facebook pages is not as straight-
forward as it might appear, since Facebook can only be queried for events on

Cnl
. . .

σ
a−→ σ′ Mon

σ
a−→ σ′

(fb, σ)a:buf
a−→ (fb, σ′)buf

Fb
fb

W−→ fb′

(fb, σ)buf
poll−−→ (fb′, σ)buf++sort(W)

Fig. 2. The semantic rules for monitoring Facebook events

a page-by-page basis, thus returning a set of unordered events in each case.
Thus, mathematically, the trace fragment returned by a Facebook poll has to be
chronologically sorted before being processed, as is shown in rule Fb.

Connecting back to the architecture presented in the first section, rules Mon
and Fb are embodied in the Event bridge component which replays the events to
the Larva monitor (which in turn embodies the Cnl rule) in the correct order.
This logic has been successfully implemented and tested on two case studies.
However, in this paper we focus on the language design aspect of this work
and thus the next section describes how we evaluated the CNL in terms of its
understandability and usability by non-technical users.

4 Evaluation

From an expressivity point of view, we ensured that the language supports the
necessary aspects by interviewing business analysts. However, there were a num-
ber of interesting elements which were not easy to incorporate within the CNL
without running into considerable complexities:
Social awareness It might be useful to distinguish between the people inter-
acting with the business’ online presence in terms of how much closely related
they are to the business. For example, a like from a business employee or a close
relative might be considered less important than that of a person with no links.
Although a valid suggestion, we considered these social aspects to be outside the
scope of our time-limited project.
Semantic analysis of posts Another proposal emerging from the interviews
was to enable semantic analysis of posts, identifying adverts by third parties, dis-
tinguishing between positive and negative posts, questions from non-questions,
etc. Whilst we have successfully managed to integrate two third party projects2

for these purposes, there are many other natural language techniques which can
extract further useful information.

Apart from expressivity issues, our main concern for the proposed CNL was
how easily a lay person would be able to understand expressions written in
the CNL and subsequently how long it would take for the person to be able

2 http://sourceforge.net/projects/chatscript for question detection and
http://sentiment.vivekn.com for sentiment analysis.

to write useful expressions in CNL. To this end, a questionnaire was used to
interview thirteen non-technical persons from a local insurance company. The
questionnaire was split into two main parts as follows:
Understanding the CNL The participants were presented with a number
of statements expressed in the proposed CNL (e.g., ‘Create an alert when the
competitor page (www.facebook.com/competitor) has a positive post and the
poster has left posts on my page (www.facebook.com/mybusiness) before’) and
they were expected to explain the meaning of the statements in natural language
without any supporting documentation. In each of the four cases, more than two-
thirds of the respondents explained the statement correctly although some left
out minor details in their explanations.
Expressing statements in the language The second exercise involved the
opposite: given a textual description (e.g., ‘You want to know when someone
leaves a question on your page’), respondents were expected to write it in terms
of the CNL without any support (except the language samples in the previous
exercise). This proved to be harder but around 60% of the respondents managed
to produce an answer sufficiently close to be easily auto-correctable with the
help of an appropriate user interface.

With these encouraging results, we feel that the presented work is a step in
the right direction albeit requiring further development in order to make the
approach more usable in practice.

5 Conclusions

In this paper, we have presented some initial experiments with the design of a
controlled natural language to enable business analysts to customise a Business
Intelligence dashboard. Although the language is rather contrived, it proved to
be usable by non-technical experts, and can be used to effectively customise
analysis of social media activity. Furthermore, the architecture can be easily
adaptable to work of other streams of information e.g. Twitter, or to refer to
other currently unhandled events from Facebook.

One way of increasing the usability of the CNL approach is by providing users
with a richer interface (rather than simply a text editor) to write their business
rules. By using a pull-down menu approach or a ‘fridge magnet’ interface [9] (in
which the interface emulates fridge-magnet words, allowing the users to move
the words to compose valid sentences on the fridge), would make the process
less error prone and would avoid error-handling and syntax debugging to which
non-technical persons can be averse.

The interviews we held with business analysts also suggest that there are
areas of great interest which the CNL barely touches. We hope to extend this in
the future by integrating with more NLP tools on the one hand, and extracting
more information from the social network to provide further data points. Finally,
by looking into other industrial case studies and by having more non-technical
users we hope to obtain more feedback to fine-tune the CNL to improve its
comprehensibility and utility.

References

1. Facebook real-time updates. https://developers.facebook.com/docs/graph-api/real-
time-updates, March 2014

2. Geckoboard. http://www.geckoboard.com, December 2013
3. Tableau software. http://www.tableausoftware.com, December 2013
4. Colin, S., Mariani, L.: Run-time verification. In: Model-Based Testing of Reactive

Systems, LNCS, vol. 3472, pp. 525–555. Springer (2005)
5. Colombo, C., Pace, G.J., Schneider, G.: Larva — safer monitoring of real-time Java

programs (tool paper). In: Software Engineering and Formal Methods. pp. 33–37.
IEEE (2009)

6. Esser, M.W., Struss, P.: Obtaining models for test generation from natural-language-
like functional specifications. In: Workshop on Principles of Diagnosis. pp. 75–82
(2007)

7. Kuhn, T.: A survey and classification of controlled natural languages. Computa-
tional Linguistics 40(1), 121–170 (2014)

8. Leucker, M., Schallhart, C.: A brief account of runtime verification. The Journal of
Logic and Algebraic Programming 78, 293 – 303 (2009)

9. Ranta, A.: Grammatical framework. J. Funct. Program. 14(2), 145–189 (2004)

