
Jennifer Bellizzi, Mark Vella, Christian Colombo and Julio Hernandez-Castro

This work is supported by the DETECTIF (Digital Evidence Targeting covErt Cyberattacks through Timely Information Forensics) project.
DETECTIF is funded by the Malta Council for Science and Technology (MCST) under the FUSION R&I: Research Excellence Programme,
Grant Agreement No. REP-2022-007.

Using infrastructure-based agents to

enhance forensic logging of third-party

applications

ICISSP 2023 9th International Conference on Information Systems Security and Privacy

Long-term stealth

Motivation

● Logs are the primary data source forensic analysts to:

○ Diagnose faults in distributed systems (VAIF1)

○ Diagnose attacks in the case of Incident Response2

● BUT it is difficult to anticipate where logs may be needed, especially in cyber attacks

● Post-deployment application-specific logging agents that use instrumentation are

needed for endpoint visibility.

1Toslali, M., Ates, E., Ellis, A., Zhang, Z., Huye, D., Liu, L., Puterman, S., Coskun, A. K., and Sambasivan, R. R. (2021). Automating
instrumentation choices for performance problems in distributed applications with VAIF. In ACM SoCC , pages 61–75

2Ma, S., Lee, K. H., Kim, C. H., Rhee, J., Zhang, X., and Xu, D. (2015). Accurate, low cost and instrumentation free security audit
logging for windows. In ACSAC, pages 401–410

Repositories

State holders

Resources

UI Elements

Data Sources

App Logic

Application-specific logging agent

App A v1

Repositories

State holders

Resources

UI Elements

Data Sources

App Logic

App A v2

Repositories

State holders

Resources

UI Elements

Data Sources

App Logic

App B

● Relies on application-specific knowledge and code

comprehension effort to determine:

○ Objects of interest

○ Where/when they are used during execution

● Are therefore likely to break compatibility

between application versions and across

applications, requiring frequent updates

Problem

Infrastructure-based logging agent

App A v1

Standard APIs

Native libraries

3rd party development
libraries

App A v2

App B

Standard APIs

Native libraries

3rd party development
libraries

Standard APIs

Native libraries

3rd party development
libraries

Proposed Solution

Potential benefits:

● More stable than application-specific code

● Backward-compatible

● Publicly-available documentation (reducing

app-specific code comprehension efforts)

● Common across applications and versions

Methodology

Step 2:
Identify underlying APIs
that enable the events

Step 3:
Determine underlying
infrastructure at the most native
level

Step 4:
Log Collection -
Identify and observe infrastructure
events that need to be recorded

Step 5:
Log Parsing - parse
application-specific elements of the
logs generated.

Step 1:
Identify key application
events

Experimentation Context

Experimentation Context

JIT-MF

Experimentation Context

Just In Time - Memory Forensics (JIT-MF):

● Timely collection of critical data objects in volatile memory related to the

critical attack steps from victim benign apps

● Uses JIT-MF drivers: responsible for establishing the points in time when

memory dumps should be triggered and the heap/native memory

areas/objects to be included.

Experimentation Context

JIT-MF

Experimentation Objectives

RQ1: Is common infrastructure usage prevalent across different versions of a

messaging apps ?

RQ2: Can infrastructure-based agents work across different Android messaging apps

while maintaining the same accuracy as application-specific agents?

Experiment Setup

Step 1:
Identify key application
events

● Storing messages
● Sending messages

Experiment Setup

AppBrainStep 2:
Identify underlying APIs

Step 1:
Identify key application
events

Most popular:
● Storage library - SQLite
● Network library - Retrofit

86.62% of messaging apps
use SQLite

14.6% used Retrofit

● Storing messages
● Sending messages

https://www.appbrain.com/

Experiment Setup

AppBrainStep 2:
Identify underlying APIs

Step 3:
Determine underlying
infrastructure at the most native
level

Step 1:
Identify key application
events

Most popular:
● Storage library - SQLite
● Network library - Retrofit

86.62% of messaging apps
use SQLite

14.6% used Retrofit

● Storing messages
● Sending messages

sqlite.c

https://www.appbrain.com/

Results: SQLite prevalent across a 5-year span

Static check for presence of SQLite
interface usage across versions from
last 5 years:

Results show that each version and app
interfaced with SQLite in some way (either
through API or native library or both)

Codebase Average Release time (in days) over the last 5 years

WhatsApp 6.324

Telegram 14.917

Signal 7.319

SQLite 39.48*

● Common across applications and versions

● More stable than application-specific code

● Publicly-available API documentation

Results: SQLite prevalent across a 5-year span

Experiment Setup

Step 4:
Log Collection -
Identify and observe infrastructure
events that need to be recorded

Step 5:
Log Parsing - parse
application-specific elements of the
logs generated.

JIT-MF, JIT-MF drivers
based on SQLite events that are

publicly-documented

Application-specific parsing

Results: Maintaining accuracy

JIT-MF
app-specific

driver

JIT-MF SQLite
driver

{"time": "1662485256" , "event": "Telegram Message Sent" , "trigger_point": "recv" ,
"object": {"date": "1662483779" ,"message_id" : "2328" , "text": "Normal_message_1" ,
"to_id": "5181266731" , "to_name": "target_phone ;;;" , "to_phone":"35699626972" ,
"from_id": "1679923803" , "from_name": "contact_phone ;;;" , "from_phone": "35679247196" }}

{"time": "1662483789" , "event": "Message Sent" , "trigger_point (s)":
"sqlite3_clear_bindings|sqlite3_prepare_v2|sqlite3_prepare16_v2|sqlite3_bind_int|sqlite3_bind_
int64|sqlite3_bind_text|sqlite3_bind_text16|sqlite3_bind_blob|sqlite3_finalize" , "object": {“
REPLACE INTO messages_v2 VALUES(2328, 1662483779, 2, 0, 1662483779,
n8\"QY[!d\"QY[!dC}cNormal_message_1 , 0, 0, 18446744073709552000, NULL, 0, 0, 0, undefined, 0,
0, 0, undefined)” }}

Results: Maintaining accuracy

JIT-MF
app-specific

driver

JIT-MF SQLite
driver

{"time": "1662483789" , "event": "Message Sent" , "trigger_point (s)":
"sqlite3_clear_bindings|sqlite3_prepare_v2|sqlite3_prepare16_v2|sqlite3_bind_int|sqlite3_bind_
int64|sqlite3_bind_text|sqlite3_bind_text16|sqlite3_bind_blob|sqlite3_finalize" , "object": {
"message_number" : "2328" , "date": "1662483779" , "text": "Normal_message_1 " , "type"
:"received" , "to_id": "5181266731" , "to_name": "target_phone ;;;" , "to_phone":
"35699626972" , "from_id": "1679923803" ,"from_name": "contact_phone ;;;" , "from_phone":
"35679247196" }}

{"time": "1662485256" , "event": "Telegram Message Sent" , "trigger_point": "recv" ,
"object": {"date": "1662483779" ,"message_id" : "2328" , "text": "Normal_message_1" ,
"to_id": "5181266731" , "to_name": "target_phone ;;;" , "to_phone":"35699626972" ,
"from_id": "1679923803" , "from_name": "contact_phone ;;;" , "from_phone": "35679247196" }}

{"time": "1662483789" , "event": "Message Sent" , "trigger_point (s)":
"sqlite3_clear_bindings|sqlite3_prepare_v2|sqlite3_prepare16_v2|sqlite3_bind_int|sqlite3_bind_
int64|sqlite3_bind_text|sqlite3_bind_text16|sqlite3_bind_blob|sqlite3_finalize" , "object": {“
REPLACE INTO messages_v2 VALUES(2328, 1662483779, 2, 0, 1662483779,
n8\"QY[!d\"QY[!dC}cNormal_message_1 , 0, 0, 18446744073709552000, NULL, 0, 0, 0, undefined, 0,
0, 0, undefined)” }}

Application-specific parsing

Results: Reducing code comprehension efforts

Application Maximum LoC within scope for
app-specific JIT-MF driver

Maximum LoC within scope for
SQLite JIT-MF driver

WhatsApp 1,515,334 395,076

Telegram 1,025,467 -

Signal 1,552,171 -

Results: Coverage Analysis for storage- based
JIT-MF drivers

Future Work

● Further applicability of JIT-MF:

○ As used in the context of Endpoint Detection and Response

Systems (e.g. GRR, Velociraptor) for mobile devices.

● Towards a less intrusive approach to post-deployment log

enhancement of mobile application logging.

Questions

