
RVsec: Towards a Comprehensive Technology Stack for
Secure Deployment of Software Monitors

Christian Colombo
Axel Curmi
Robert Abela

{christian.colombo,axel.curmi,robert.abela}@um.edu.mt
Department of Computer Science, University of Malta

Malta

Abstract
Runtime monitors frequently need to be deployed in highly secure
software environments to help further secure the system under
scrutiny. In such contexts, the monitor could benefit from security
hardening over and above the rest of the system since the mon-
itoring component is of particular interest to the attacker. If the
attacker successfully disables the monitor, the attack can be exe-
cuted without potential alarms being raised, leaving no evidence
behind. Furthermore, due to the separation of concerns inherent
in runtime verification, monitors are typically separated from the
rest of the system, facilitating isolation and a hardened security
environment which would otherwise be difficult to achieve for the
whole system.

The combination of these observations, motivate us to consider
a number of approaches for increased monitor security which we
present as a technology stack called RVsec which could be instan-
tiated in various contexts. Using a quantum-safe chat application
as a case study, we present a pragmatic solution to various threat
scenarios while considering the trade-offs in terms of additional
setup and runtime costs.

CCS Concepts
• Security and privacy→ Software and application security;
Intrusion/anomaly detection and malware mitigation; Software se-
curity engineering; • Computer systems organization→ De-
pendable and fault-tolerant systems and networks;
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1 Introduction
Runtime verification (RV) monitors have been used as a lightweight
formal methods technique to improve software dependability in
various scenarios ranging from spacecraft [7], financial transaction
systems [4], autonomous systems [5], and communication proto-
cols [13]. Not surprisingly, such applications typically also benefit
from stringent security considerations: if a system warrants RV
for improved dependability, then there is also reason to invest in
securing it and the surrounding infrastructure. Our argument thus
far explains why it is likely that RV and security concerns occur to-
gether in a system. However, the relationship between the two goes
deeper because RV monitors constitute an added attack surface
which could particularly attract the adversaries’ attention given its
ability to raise intrusion alarms. An intruder in the physical world
would typically either disable cameras/alarm systems or ensure
that these would not detect the intrusion. In other words, either
the monitor is ineffective, or it could constitute a prime target for
the attacker.

One obvious way of reducing the monitor exposure to attacks is
to deploy it offline, but this impacts the timeliness of the detection
mechanism. In any case, instrumentation and recording of the
events in a log file still need to happen within the system at runtime
and somehow need to be made accessible to the monitor without
allowing any attacker to manipulate the file in the process.

While there are numerous accounts of the application of RV
techniques to the area of security (see for example [3, 9, 10, 14]),
the challenging task of securing the monitor implementation itself
seems not to be so well studied. In fact, the survey of RV challenges
in 2019 [8] leaves this aspect out. There are of course several other
considerations to achieving “high-assurance” RV, but securing and
protecting the monitoring code under various threat models cannot
be left out if RV is to be deployed in real-life, high-security scenarios
[6].

In previous work [13] we have presented RV-TEE as a blueprint
for deploying RV within highly secure scenarios, showing how RV
can contribute towards the overall security of a system. However,
we have not considered the security concerns of the monitor itself
except as part of the rest of the system. In more recent work [1], we
have presented a two-tiered threat model for an RV deployment:
onewhere the attacker gains non-privileged access to themonitored
system and a second one where the attacker achieves successful
privilege escalation. This paper extends this work in a number of
ways:
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Figure 1: Compromise level and corresponding RVsec layers

Extended threat model and security stack In the previous
work we looked at two levels of threat while in this paper we
consider a more comprehensive technology stack comprising
four layers of threat and corresponding mitigations.

Proof of concept implementation While the previous pa-
per presented experimentation results concerning container-
isation of the monitor, the present paper further implements
and combines the tamper-evident component with the rest
of the setup.

Overhead measurements By using the chat application case
study, we present overhead measurements of various config-
urations of the proposed setup consisting of various layers
of security.

In the rest of the paper, we consider a multi-tiered threat model
(see Section 2) which a deployedmonitor can be exposed to. Through
a series of measures, we propose a corresponding stack of tech-
nologies that mitigate different threat levels (see Section 3). Subse-
quently, this is instantiated for a chat application case study (see
Section 4), reporting the overheads observed. Finally, we conclude
and propose future work in Section 5.

2 Threat Landscape
Before presenting the security stack, we present the threat land-
scape in terms of layers, starting from a system which is operating
normally, gradually increasing the level of compromise to a com-
plete takeover by an attacker (see the left column of Figure 1).
Alongside each level of compromise, we include a description of
what we expect to observe at each level (see the centre column of
Figure 1) assuming that the attacker exploits the gained leverage
within the system (as opposed to remaining passive).

No compromise In the first layer, we consider the system be-
havingwithout external reconnaissance activities or outright
attacks but with potential bugs which could appear during
system use.

Malicious behaviour Before an attacker can successfully com-
promise a system, one would typically expect a period of
malicious behaviour exhibiting particular patterns of un-
usual traffic (in terms of volume and type) or an abnormal
execution of commands (e.g., repeated failed attempts to gain
execution privilege). These could be either for information
gathering reasons or could constitute attacks.

Non-privileged access In this threat model, we consider the
presence of user-space malware without root privileges. We
assume that while such processes do not have elevated priv-
ileges, they still have sufficient privileges to perform mali-
cious actions in user space to interfere with the RV monitor
and the monitored app through their data artefacts (e.g., log
files, backups) or directly by tracing executing processes
(e.g., through a debugger, an attacker would be able to follow
execution, monitor the value of parameters and read process
memory contents).

Successful privilege escalation In the event of an elevated
malware infection, i.e., when the attacker achieves privilege
escalation (e.g., attacks such as process injection using a
debugging API), the possibilities of attacks are much wider,
including access to the entire file system, all devices, and
even the OS kernel. In other words, the only thing we assume
under this threat model is that the monitor has not yet been
compromised and that cryptographic secrets (held inside
a hardware security module (HSM) or otherwise) have not
been stolen.

Monitor is compromised At this level of compromise, the
whole system is taken over, including the monitor, but we
still assume that any secrets remain safe: If secrets are held in
an HSM, either the HSM is still operational and any attacks
directed at it have been unsuccessful, or the HSM has been
tampered with and became nonoperational with the secrets
remaining safe.

3 RVsec: A Proposed Technology Stack
In the area of security, one can never really claim complete protec-
tion against all attacks, but rather it is a question of cost-benefit
analysis where the security risks involved warrant a corresponding
degree of investment in the security infrastructure. Typically this
is handled through security layers where the more sensitive the
component, the more layers the attacker would need to penetrate to
reach the target1. Building on this, the central idea of the proposed
RVsec stack is that one can afford more effort to secure the monitor
beyond the rest of the system because it constitutes a smaller and
more sensitive part thereof. It is implied that if stronger security
measures could be afforded for the whole system, then these would
already be in place.

The RVsec components are introduced below, corresponding to
the layers as shown on the right of Figure 1:

Functional RV monitors The first layer of the stack employs
typical RV monitors focusing on functional properties. This
is no different from typical RV use and the technology adopted
to collect and process events depends on that of the underly-
ing system. A few examples from the literature include RV
use to ensure the correctness of protocols [3, 9, 14].

Performance and security RV monitors The next layer con-
sists of further RV monitoring which is aimed at detecting
performance and security issues. For example, one could ob-
serve a period of heightened traffic volume, use of commands
like whoami (used by attackers for reconnaissance), brute

1For example, consider the additional security layers an operating system enjoys
compared to general applications.
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Figure 2: Different experiment setups corresponding to results in Table 1

forcing of logins or su (used for privilege escalation), and
service set up running as admin/root (used for persistence).
Such observable behaviour can be encoded in terms of RV
properties to warn of ongoing attacks being sustained by the
system (see [14] as an example).

Monitor isolation and access control At this layer, the aim
is to isolate the monitor process via access control mecha-
nisms. One way of achieving this in Linux is to use Linux
Security Modules (LSMs), a framework enforcing various
security policies (e.g., mandatory access control) by hooking
into the kernel. Another option is to use containerisation, i.e.,
running the monitor process in a container to achieve com-
plete isolation. Unlike LSMs, containerisation is available
for the major operating systems through tools like Docker.
While containerisation and LSMs are not mutually exclusive,

it makes sense to choose one since they aim at similar goals.
The former is more lightweight but the latter is more secure
in terms of the level of isolation. In fact, if opting for con-
tainerisation, one would be required to emulate or virtualise
the missing devices and kernel resources through network
proxies over virtual network interfaces. Apart from the ad-
ditional architectural/programming effort, such adaptations
could introduce further runtime overheads.

Monitor code attestation Given that the threat landscape we
consider includes a complete takeover of the system by the
attacker, it is useful to consider a code attestation protocol
for the monitoring component to ensure that the monitor
has not been successfully attacked along with the rest of the
system. This could take the form of a heartbeat (e.g., through
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the use of a signed timestamp) call to the HSM such that no
further logs are accepted from the monitor if it fails the test.

Tamper-evident logging If all else fails, the RVsec stack in-
cludes the option of a tamper-evident logging system. This
is useful both as a means of storing the whole trace (e.g.,
that obtained through instrumentation) and/or storing the
outcome from the RV monitor. Tampering with both of these
elements could compromise crucial evidence in case an at-
tack has been successful and a postmortem investigation is
needed. Tamper-evident logging, such as that implemented
in SealFS [11], provides the analysts with reassurance that
the logs (or a part of them up to a certain point in time)
have not been modified during the attack and are safe to use
in a forensic analysis. As expected, tamper-evident storage
involves cryptographic operations that if carried out on an
HSM (as opposed to the system processor) further guaran-
tees that the secrets and cryptographic primitives used are
protected in the case of a successful attack.

4 Chat Application Case Study
To explore the cost-benefit tradeoff of the proposed technology
stack, we carried out an empirical investigation considering the
case study of a quantum-safe chat application developed through a
NATO-funded project [1, 2].

4.1 Implementation
Setting up the whole stack is non-trivial because it consists of sev-
eral different components, each with its own set of dependencies
that must be set up. To keep the setup manageable, we make use of
Vagrant2 to provision and automatically set up a virtual machine
consisting of the technology stack3. In the study being presented in
this paper, we have implemented the following elements of RVsec:
instrumentation to support functional monitors, HSM integration
using the SECube4 chip, containerisation, and tamper-evident log-
ging (corresponding to the first, third, and fifth layers shown in
Figure 1). The other layers (e.g., monitors to check for abnormal
performance behaviour) will be considered in future work. Below
we provide more details on each of these layer implementations.

Functional RV The functional RV component was not modi-
fied from previous work [2] in terms of the properties being
monitored. However, in this work, the monitor has been
deployed in an online asynchronous fashion where the mon-
itor reads from a log file which is being updated on the fly
by the instrumentation component. Another significant de-
parture from the earlier work is that when instrumenting
the chat application for runtime verification, we opted for
compile-time function hooking, using the open-sourced li-
brary funchook5, as opposed to dynamic instrumentation
(e.g., Frida). The reason for this decision is twofold: (i) the

2Vagrant is a software product for building and maintaining portable virtual software
development environments, typically via virtual machines. It streamlines the setup
and management by automating the configuration of the virtual environment based
on a set of steps, allowing developers to easily spin up consistent environments across
different machines.
3https://github.com/axelcurmi/vagrant-sealfs-secube-runc
4https://www.secube.blu5group.com/
5https://github.com/kubo/funchook

setup is less complex due to having fewer moving parts and
failure points, and (ii) the attack surface is smaller since
dynamic instrumentation toolkits, such as Frida, typically
require additional capabilities like CAP_SYS_PTRACE6.

Monitor isolation Regarding the access control layer, in pre-
vious work [1], we opted to use containerisation to handle
the first threat model, i.e., non-privileged access. Via empir-
ical analysis we showed that the overhead introduced by
this containerisation, in terms of increased time to complete
an action, is minimal (with readings of 0.02%). Since the
containerisation isolates the application from any outside
communication, our implementation requires tailor-made
allowances, in this case, communication with the monitoring
process was achieved by mounting a directory from the host
machine to the instrumented application’s container, with
write permissions, and then mounting the same directory to
the monitoring container, with read permissions.

Tamper-evident logging To implement tamper-evident log-
ging, we have employed SealFS — a Linux kernel module that
implements a stackable file system that authenticates the
written data to provide tamper-evident logs. While SealFS
code is open source, SEcube does not provide the required
kernel-level API out of the box. At this point we could either
write this kernel-level API library ourselves or implement a
cut-down version of SealFS in user space. While the former
would be ideal for security purposes, for our proof of concept
implementation aimed at overhead empirical analysis, we
opted for the latter.

4.2 Experiment Design
Given the implementation detailed above, we consider a number
of different configurations (depicted in Figure 2) to understand the
overhead that each layer introduces:

Baseline In this setup, no additional security mechanisms are
employed apart from those that are provided by the runc
container, specifically namespace isolation and limiting of
Linux capabilities. This configuration is used to have a clear
baseline for performance analysis. The only guarantees that
can be made using this setup are that (i) applications running
inside the container are protected from unprivileged access
and (ii) the configured namespace isolation and limiting of
capabilities cannot be modified during its runtime. Since this
aspect has already been studied in [1] in terms of overheads,
we use this as our baseline.

SECube In this configuration, the chat application is making
use of the SECube for cryptographic operations when per-
forming the group key establishment (GKE) protocol and
transmitting secure messages, as described in [2]. This addi-
tional layer of security guarantees that cryptographic keys

6CAP_SYS_PTRACE is a Linux capability that allows a process to use the ptrace system
call to trace, observe, and manipulate the execution of a process. This capability is
typically used for debugging purposes by tools such as gdb and Frida.

https://www.secube.blu5group.com/
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are protected within the confines of the HSM’s secure en-
vironment, and that the cryptographic operations are per-
formed by the dedicated crypto processor and not the host
CPU7.

RV This setup employs instrumentation, via function hooking,
and RV monitoring of the chat application from [2]. The
introduction of RV guarantees that the execution of the GKE
protocol and chat functionality are as expected. In the event
of abnormal behaviour detected by the monitor, alarms are
raised to notify system maintainers.

RV + SECube In this configuration, the software-based RV
and the hardware-embedded security features of the SECube
are integrated with the chat application. This combines the
benefits of both, as described above, to achieve a more secure
execution of cryptographic operations and ensure correct
functional execution.

RV + SealFS In this configuration, apart from solely relying
on RV monitoring, we also make use of SealFS to protect the
integrity of the monitor via tamper-evident logging. In the
event of a breach, the adversary might interfere with the RV
monitor to thwart intrusion detection by tampering with the
RV input and/or output files. Therefore, the combination of
SealFS with RV further strengthens the guarantees provided
by RV, as we can be more certain that without privileged
access to the system, the input and output artefacts of the RV
monitor are not tampered with, at least not without being
detected.

RV + SealFS + SECube This final configuration is the combi-
nation of all additional security layers, described above, to
achieve a trustworthy execution of the software system.

4.3 Results
The two testing scenarios that we have consistently used in pre-
vious work [1, 2] involved a number of chat client applications
connecting to one server, performing the protocol handshake to
establish a secure session, and exchanging some text messages be-
tween them. The client application was extended making it accept
scripted session input in order to allow for automated testing. Arti-
ficial pauses were also introduced to better simulate a typical user’s
interaction with the chat application. In both scenarios, the service
and all client applications were running on the same machine, but
only the chat client with id=1 was instrumented.

Specifically, the testing scenarios were as follows (we refer the
reader to [12] for more information about the protocol):

• Scenario A: 3 clients are involved, with client id=1 creating a
room (following the protocol steps for an initiator participant
𝑈0).

• Scenario B: 3 clients are involved, with client id=1 joining
the room (following the protocol steps for a non-initiator
participant𝑈1≤𝑖≤𝑛).

Initial experiments involving both scenarios resulted in insignifi-
cant overheads which could not be consistently detected above the
unpredictability of background noise. Therefore, the scenarios have

7Note that this security improvement is independent of RV; indeed RV has not been
included at this point. However, since in later setups we also use the SECube to execute
SealFS crypto operations, this measurement is useful to compare like with like.

been expanded with more and longer messages to make the over-
head more pronounced. Furthermore, we have reduced the waiting
time between messages in an attempt to have the overhead emerge
more clearly. Hence, we call the scenarios A+ and B+ in Table 1. The
experiments were carried out on a local virtual machine, having
allocated four virtual Central Processing Units (vCPU) and 8GB of
RAM. All experiments were run ten times and the results reflect
their average running time.

The numbers in Table 1 indicate that the overhead introduced
by RV and SealFS is still minimal and hardly detectable for both
scenarios when the HSM is not used8. When the SECube is used,
the overheads increase significantly but it is important to note that
the SECube doesn’t exclusively contribute to the security of the RV
module. Therefore one could argue that this overhead is not simply
a result of the introduction of the RVsec stack. Still, assuming the
chat application is used for messages which are a few bytes long
with pauses in between, we don’t expect a chat application user to
notice any difference in performance. Scenarios A+ and B+ each
include the exchange of around 3KB of message contents with only
10-16% overhead.

To understand better how the SECube overhead grows as mes-
sages exchanged over the chat application grow larger, we created
a further Scenario C (with an order of magnitude more bytes ex-
changed). As the results in Table 1 under C show, the overheads
grow significantly as crypto operations become more expensive.

As one of the main contributions of this paper is the incorpora-
tion of SealFS, we wanted to explore in particular how the size and
number of logs affect overheads. Thus, we performed dedicated
experimentation by generating artificial logs of various frequencies
and sizes and storing them on SealFS using SECube. The durations
of time as reported in Figure 3 show that the overhead is directly
proportional to the number of log entries. However, when it comes
to log entry size, the gradient becomes a little steeper with logs
larger than the buffer size of approximately 7500 bytes. This is
expected since once the buffer size is exceeded, data is split into
buffer-sized batches and processed accordingly.

5 Conclusions and Future Work
The secure deployment of runtime verificationmonitors poses an in-
teresting challenge where the monitor needs access to the system’s
observation at runtime, while at the same time benefiting from an
elevated security posture due to its sensitive nature. Building on
previous work, we present RVsec as a step towards the compre-
hensive secure deployment of software monitors and instantiate
it for a quantum-safe chat application. The overheads measured
are mostly attributed to the introduction of a hardware security
module which improves the security of the underlying application
whether RV is introduced or not.

As future work, we aim to expand our implementation of RVsec
to cover the whole stack while measuring the overheads to ensure
limited impact on the system’s performance. Following this, we
plan to explore different case studies that do not include wait time
between message transmission that is natural when humans are
using a chat application. Such case studies might include ones

8We note that RV and SealFS run on separate processes so these can run on separate
cores with minimal impact on the main chat application process.
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Time in sec. (% inc.) No SECube SECube
Configuration A+ B+ C A+ B+ C

Baseline 14.16 7.54 51.20 15.77 (11.33%) 8.37 (10.98%) 92.18 (80.03%)
RV 14.19 (0.23%) 7.55 (0.13%) 51.28 (0.15%) 15.93 (12.51%) 8.61 (14.23%) 94.64 (84.83%)

RV + SealFS 14.29 (0.89%) 7.53 (-0.09%) 51.40 (0.39%) 16.14 (13.93%) 8.77 (16.30%) 95.01 (85.56%)
Table 1: Performance analysis of security layers
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Figure 3: SECube overhead in SealFS

where the communication occurs between a number of sensors or
IoT devices with a central server. Other plans include the simulation
of different real-world attack scenarios that are relevant to the case
studies in order to provide evidence of the effectiveness of RVsec
in dealing with such threats.
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