Digital Signal Processing CCE 4201

The textbook Digital Signal Processing by J.G. Proakis and D.G. Manolakis is allowed.

Paper duration 2.5 hours
Answer ANY THREE questions

1 (a) Figure 1 shows a 2 pole 2 zero diagram.

(i) Determine the transfer function in the z-domain. (3 marks)
(ii) Hence sketch a possible implementation of the system and determine the corresponding difference equation.
(iii) Is the system stable? Give reasons. (3 marks)
(iv) The system is a maximum phase system. Sketch the pole-zero diagram of a minimum phase system with the same magnitude response.
(3 marks)
(b) Show using suitable block diagrams how the cepstral coefficients of a signal are obtained.
(6 marks)
(c) Given a four stage lattice filter with coefficients

$$
\mathrm{K}_{1}=1 / 3, \mathrm{~K}_{2}=1 / 4, \mathrm{~K}_{3}=1 / 4 \text {, and } \mathrm{K}_{4}=1 / 3 \text {, }
$$

Determine the FIR filter coefficients for the direct form structure.
(12 marks)

$$
\begin{aligned}
y(n) & =2 & & 0 \leq y(n) \leq 2 \\
& =0 & & 3 \leq y(n) \leq 6 \\
& =2 & & y(n)=7
\end{aligned}
$$

$$
\begin{aligned}
x(n) & =2 & & 0 \leq x(n) \leq 3 \\
& =0 & & 4 \leq x(n) \leq 7
\end{aligned}
$$

compute the DFT of the sequence $y(n)$, in terms of $X(k)$, given by
(7 marks)
(b) The system in (a) above is changed by adding a further eight zeroes, i.e

$$
x(n)=0 \quad 8 \leq y(n) \leq 15
$$

Suggest a relationship, giving reasons, between the DFT of the new sequence, and the DFT of the original sequence.
(c) An FFT uses in place computation using the decimation-in-frequency algorithm on a 1024 point FFT. Assuming the output 1024 point array is stored from element 0 to element 1023 , what is the position in the array of the frequency response for $\mathrm{k}=349$? (4 marks)
(d) Let $\mathrm{x}_{\mathrm{a}}(\mathrm{t})$ be an analogue signal with a bandwidth of 4 kHz . An FFT is required to compute the spectrum of the signal with a resolution less than 40 Hz . Determine
(i) the minimum sampling rate;
(ii) the minimum FFT size for the required resolution
(iii) the minimum time length of the analogue signal record.
(5 marks)
(a) (i) A Butterworth filter has a 3-dB cut off frequency of 4 kHz and an attenuation of 80 dB at a frequency of 4.3 kHz . Calculate the minimum required order for the filter.
(ii) What order would be required if a Type - I Chebyshev filter is used to obtain the specifications in (a) above assuming that a $1-\mathrm{dB}$ ripple is allowed in the passband.
(10 marks)
(iii) Give reasons for the difference in the order necessary for the Chebyshev filter compared to the Butterworth filter.
(b) A long speech signal is segmented into blocks of 20 ms . to be analysed. Part of the analysis requires the use of a Hamming window.
(i) What is the Hamming window?
(ii) Why is a Hamming Window preferred over a rectangular window.
(iii) Assuming a sampling rate of 8 kHz , what is the size of a suitable Hamming window for the block of 20 ms ?
(3 marks)

4 (a) Figure 2 shows the Haar wavelet smoothing filter at $\Phi_{0,0}$ and three other instances of a Haar wavelet function at different time and scaling.

Derive the Haar wavelet function as either $\Phi_{\mathrm{i}, \mathrm{j}}$ or $\Psi_{\mathrm{i}, \mathrm{j}}$, as appropriate, for each of the three waveforms (a), (b) , (c), in Figure 2.
(14 marks)
(b)An FIR lowpass filter with 48 coefficients is used to limit the frequency range of a signal to one-sixth of its original value.
(i) Sketch a diagram relating the frequency response of the original waveform to the frequency response after decimation by a factor of 6 . (3 marks)
(ii) A polyphase structure is used for the decimation, using the coefficients of the 48 point FIR filter, denoted $h(0)$ to $h(47)$. How many polyphase filters are required? (2 marks)
(iii) For each polyphase filter, give the elements $\mathrm{h}(\mathrm{i})$ from the original FIR filter that form part of the particular polyphase filter. Give reasons for your answer. (3 marks)
(iv) Assuming an input sequence $x(n)$ and an output sequence $y(m)$, derive the first four outputs $y(m), m=0$ to $m=2$, in terms of $\mathrm{x}(\mathrm{n})$ and $\mathrm{h}(\mathrm{n})$, indicating from which polyphase filter each term is being drawn.
(6 marks)
(c) Changing the sampling rate of a DSP signal in the digital domain normally uses a rational fraction. Why is a rational fraction preferred?

