BYOD for Android — Just add Java

Jessica Buttigieg, Mark Vella, and Christian Colombo

[Jessica.buttigieg.12][mark.vella][christian.colombo]@um.edu.mt SRR B G SN

L-Universita ta’ Malta

Motivation

In a Bring Your Own Device (BYOD) setting employees use their personal mobile devices to access enterprise resources. This poses a
security concern where un-trusted user-installed applications might interfere maliciously with corporate ones. Android has limited support for
dual work-personal contexts that either outright excludes non-work apps or require apps to be programmed specifically for BYOD. Other
solutions focus on malware scanning and virtualization. A dynamic policy system can further benefit BYOD In providing both dynamic
permissions and context-specific app functionality, without offloading security-critical decisions to device users.

Contributions

Runtime Verification (RV) — Context-based policy Prototype implementation based on the DDI toolkit.

rule definition revolving around Android Java API. .
Application-level Events

8O (FTV

work

BYOD-RV: | (=V . ©

work work
=~V
work

Device-level Events

Lightweight Dynamic Binary Instrumentation (DBl) — Hooks
Android APl methods without modifying Android/app source
code.

First-stage experimentation

RV

Rules follow a Guarded Command Language format:
Event | Condition - Action

and are implemented in Java with access to Android API calls. =2

class RVMonitor {

public RVMonitor() {
global rs1 = DeclareRuleSet1();
}

public static RuleSet DeclareRuleSet1() {

class RuleSetl extends RuleSet {public boolean eventl,}

Recording Point: Recording
final RuleSetl rs1 = new RuleSetl();
rsl.addRule(new Rule(*ARule”) {public void condition(){...} public void action(){...} }); ... -
return rsi,;

}

public void setEventToTrigger(String EventName) {

rsl.trigger(EventName); ... //eventually calls individual rule condition()/action() methods T ok e This URL eannot be searched

} workplace environment

You have a meeting at 12:00pm
i ferenceRoom Q@@ 2 company.

}

DBI
4 Android Applications/Framework h Future Cha”enges
App class AP, Framework : . y .. -
cal class RV: Domain-Specific Language (DSL) provision for defining policies
N A A < - Move away from Java to a more natural way to define rules.
4 Android Middleware Y - Decouple policy definition from enforcement.
App Evernt Ee;‘;g‘vﬁﬁggo' INI - Requires DSL design & compilation. Requires a-priori hooking of all
b)??jr?tciirﬁePl call RV instrumentation API calls security-critical events.
redefinition to native €rminates
Mori de DBI: Single central RV monitor & Port to ART
/ Dynamic - Requires separating event collection and monitoring.
Y INI Call: 2?23.2?2{.’;% - Compiled OAT files only allow for system call-level hooking,
g‘ggﬁg& setEventToTrigger() Using JNI introducing a semantic gap challenge.
process at { libbyod.so RVBroadcast - JNI-driven dynamic class loading and access to the Android API from
> hace intorface L= | Recelver.dex RVMonitor is still possible through ART-mediated JNI.
Device event: |
Ap; ;?,sz necelvel) methoc Practical deployment: Runtime overheads and Deployment model
Hooked system call - Battery life and retaining prompt application responses are key, and
App IS bionic }Future_ hooking level for the_refore performance eval_uation will focus on these two aspects
OAT libc Android Runtime (ART) using BYOD-RYV on real devices.
- Envisaged setup: Device vendors are responsible to apply a minimal
\ System cal . Android patch - update the system image with the library-injecting
v process and associated SELinux re-configuration. libbyod.so and
Linux Kernel J RVMonitor.dex are dynamically placed on device by IT administration

(e.g. through a work policy app or work SD card). Non-compliant
devices must be flagged.

	Slide 1

