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MotivationMotivation

In a Bring Your Own Device (BYOD) setting employees use their personal mobile devices to access enterprise resources. This poses a 
security concern where un-trusted user-installed applications might interfere maliciously with corporate ones. Android has limited support for 
dual work-personal contexts that either outright excludes non-work apps or require apps to be programmed specifically for BYOD. Other 
solutions focus on malware scanning and virtualization. A dynamic policy system can further benefit BYOD in providing both dynamic 
permissions and context-specific app functionality, without offloading security-critical decisions to device users.

Runtime Verification (RV)  – Context-based policy
rule definition revolving around Android Java API.

Lightweight Dynamic Binary Instrumentation (DBI) – Hooks 
Android API methods without modifying Android/app source 
code.
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Future challengesFuture challenges
RV: Domain-Specific Language (DSL) provision for defining policies
- Move away from Java to a more natural way to define rules.
- Decouple policy definition from enforcement. 
- Requires DSL design & compilation. Requires a-priori hooking of all 
security-critical events.

DBI: Single central RV monitor & Port to ART
- Requires separating event collection and monitoring.
- Compiled OAT files only allow for system call-level hooking, 
introducing a semantic gap challenge.
- JNI-driven dynamic class loading and access to the Android API from 
RVMonitor is still possible through ART-mediated JNI.

Practical deployment: Runtime overheads and Deployment model
- Battery life and retaining prompt application responses are key, and 
therefore performance evaluation will focus on these two aspects 
using BYOD-RV on real devices.
- Envisaged setup: Device vendors are responsible to apply a minimal 
Android patch - update the system image with the library-injecting 
process and associated SELinux re-configuration. libbyod.so and 
RVMonitor.dex are dynamically placed on device by IT administration 
(e.g. through a work policy app or work SD card). Non-compliant 
devices must be flagged.

RV

Prototype implementation based on the DDI toolkit.

Application-level Events

Device-level Events
Rules follow a Guarded Command Language format:

  Event | Condition → Action
and are implemented in Java with access to Android API calls.

class RVMonitor {

public RVMonitor() {
global_rs1 = DeclareRuleSet1(); ….

}

public static RuleSet DeclareRuleSet1() {

class RuleSet1 extends RuleSet {public boolean event1; ….}

final RuleSet1 rs1 = new RuleSet1();
rs1.addRule(new Rule(“ARule”) {public void condition(){...} public void action(){...} }); …
return rs1;

}

public void setEventToTrigger(String EventName) {
rs1.trigger(EventName); … //eventually calls individual rule condition()/action() methods

}
}
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