
BYOD for Android — Just add Java
Jessica Buttigieg, Mark Vella, and Christian Colombo

[jessica.buttigieg.12][mark.vella][christian.colombo]@um.edu.mt

MotivationMotivation

In a Bring Your Own Device (BYOD) setting employees use their personal mobile devices to access enterprise resources. This poses a
security concern where un-trusted user-installed applications might interfere maliciously with corporate ones. Android has limited support for
dual work-personal contexts that either outright excludes non-work apps or require apps to be programmed specifically for BYOD. Other
solutions focus on malware scanning and virtualization. A dynamic policy system can further benefit BYOD in providing both dynamic
permissions and context-specific app functionality, without offloading security-critical decisions to device users.

Runtime Verification (RV) – Context-based policy
rule definition revolving around Android Java API.

Lightweight Dynamic Binary Instrumentation (DBI) – Hooks
Android API methods without modifying Android/app source
code.

BYOD-RV:
First-stage experimentation

BYOD-RV:
First-stage experimentation

Future challengesFuture challenges
RV: Domain-Specific Language (DSL) provision for defining policies
- Move away from Java to a more natural way to define rules.
- Decouple policy definition from enforcement.
- Requires DSL design & compilation. Requires a-priori hooking of all
security-critical events.

DBI: Single central RV monitor & Port to ART
- Requires separating event collection and monitoring.
- Compiled OAT files only allow for system call-level hooking,
introducing a semantic gap challenge.
- JNI-driven dynamic class loading and access to the Android API from
RVMonitor is still possible through ART-mediated JNI.

Practical deployment: Runtime overheads and Deployment model
- Battery life and retaining prompt application responses are key, and
therefore performance evaluation will focus on these two aspects
using BYOD-RV on real devices.
- Envisaged setup: Device vendors are responsible to apply a minimal
Android patch - update the system image with the library-injecting
process and associated SELinux re-configuration. libbyod.so and
RVMonitor.dex are dynamically placed on device by IT administration
(e.g. through a work policy app or work SD card). Non-compliant
devices must be flagged.

RV

Prototype implementation based on the DDI toolkit.

Application-level Events

Device-level Events
Rules follow a Guarded Command Language format:

 Event | Condition → Action
and are implemented in Java with access to Android API calls.

class RVMonitor {

public RVMonitor() {
global_rs1 = DeclareRuleSet1(); ….

}

public static RuleSet DeclareRuleSet1() {

class RuleSet1 extends RuleSet {public boolean event1; ….}

final RuleSet1 rs1 = new RuleSet1();
rs1.addRule(new Rule(“ARule”) {public void condition(){...} public void action(){...} }); …
return rs1;

}

public void setEventToTrigger(String EventName) {
rs1.trigger(EventName); … //eventually calls individual rule condition()/action() methods

}
}

DBI

Android Applications/Framework

Linux Kernel

Framework
classApp class

Android Middleware

libbyod.so

RVMonitor.dex

bionic
libc

App
OAT

Future hooking level for
Android Runtime (ART)}calls

System call

API
call

App Event:
Hooked API call
by runtime
redefinition to native

{
}

RVBroadcast
Receiver.dex

Injected in
application
process at
start-up using
ptrace interface

Dynamic
class loading
& registration
Using JNI

Device event:
Hooked onReceive() method

JNI
API calls

Return control
to app when
RV instrumentation
terminates

JNI Call:
setEventToTrigger()

App Event:
Hooked system call

ContributionsContributions Case studiesCase studies

 | () → ∨

 | ()∨ → ∧
 | () → ∨

work work

work work

work work

 | ()→ ..∨
 | ()∨ → ∧

work work

work work

	Slide 1

